2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Addressing Renewed Gate Level Simulation Needs
for 10nm-28nm and Below

Gagandeep Singh, Cadence, Noida, India (gagans@cadence.com)

Abstract— Gate level simulation iscritical in the verification cycle but often overlooked for newer challenges such as
test bench developmentwith the UVM. However, the increase in design sizes and the complexity of timing checks
seen intechnologiesnodes 10-28nm and below are responsible for longer run times, high memory requirements, and
agrowingsetof GLS applicationsincluding design for test(DFT) and low-power. AlsoGLS can catch issuesthat
STA orlogical equivalence tools are not able to report. Continuousimprovements have been on goinginthe
simulator for last few yearsto improve the O ut of box gate-level simulation pe rformance by addingoptimizationsin
the simulator. However, in order to match the verification requirements for newer, larger designs, thathave
increased complexities, a combined simulation and methodology approach hasto be taken.

This paper captures some newer,innovative techniquesthathelp increase the effectiveness of the gate level
simulation flow, along with some of the bestpractices generally used by verification teams.

Keywords—Gate level simulation methodology, Timing verification, Efficient Gate level simulation

l. INTRODUCTION

This paper describes new methodologies and some best practices that increase GLS productivity with timing in
addition to thecontinuous Out of Box simulator performance. In technology nodes 10-28nmand below, it is
seen thatGLS with timing is around 6-7x more expensive than GLS in zero delay mode due to complextiming
checks andtheir conditions. Also GLS in zero delay mode is around 1.5x-2x slowerthan RTL. So running GLS
efficiently can savea lot of verification effort. This canbe done by using innovative methodologies based onthe
information available with static tools like static timing analysis, logical equivalenceand passing that
information for efficient gate level simulations. Suchtechniques canhelp designers focus on the verification of
real gate levelissuesandnotthe ones that have already been caught with othertools in some way.

Section Il capturesallthe GLS Methodology techniques and gains seen in some real designs.
Section Illis the conclusionand followed by references, Section IV

II. GLS METHODOLOGIES
1. Hybrid Mode (RTL+GLS)

Big, complex SoCs are made up of multiple IPs and in orderto verify the each gate-level IPat SoC level,a
hybrid mode of simulation can be used. Alsodifferent IPs in the design come at different phases ofthe design
cycle so GLS netlist can be used forthe blocks thatare available and need to be tested, while use RTL for the
other portions of the design. Since RTLruns much faster and will take much less memory, especially in
technology node 10-28nmand below, the verification of the IPs at GLS level with/without timing can be done
easily. This can give a huge run time improvement and keep focus on verifying selective GLS IPs ata given
time. In addition to performance benefits, hybrid technique also enables GLS much early in the designcycle so
can save a lot of verification time.

Please note: For functional issues, GLS should run in zero-delay mode while for verifying the timing, GLS with
timing should be used.

mailto:gagans@cadence.com

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Test bench Instantiating the SOC having hybrid netlist (RTL + GLS)

Gate level IP3 needs to be tested at SOC level

Complete SOC with multiple IP5

Other IPs (IP1, IP2, IP4, IP5) can be in RTL form

Figure 1: Hybrid RTL+GLS
Performance Gains seen
Hybrid GLS + RTL mode can give a huge productivity benefit and canreduce upto 2xGLS verification time as
different IPs come at different intervals oftime. This also reduces the heavy debug effort to debugany
functionalissue or timing issueat the IP level. When all the IPs are functionally/timing verified and then

running full GLS at SOC has potentially lesser number of issue. It can help designers to resolve the integration
levelissues.

2. Using abstracted timing models for GLS with timing

Abstracted timing model (patentpending) canbe generated using STA tool thatkeeps the interface timing only
and can be used toverify the timing at complete SOC level

N1 m ouT
Ln||c1 —_—

IN2 m,, ouT
. gn:d

CLK

L)

ouT3

Comb |
Logic 6

IN3

Figure 2: Original Design

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Remove timing and timing]
- . checks for internal gates
- Orlglnal De5|gn B and set delays to 0

o Comb _—0ouT ‘
Logic1

|
| | |
1
ouT3 ‘
Comb Comb 1

LN ‘

Keeping the timing
for interface gates

Figure 3: Abstracted timing model (Interface timing)

SOC TOP Example g
)

IN3

IP
TOPIN1 K \ TOPOUTA

TOPIN2 B

TOPOUT2

Comb
Ju) ,gic 4

TOPOUT3

\ Catch Potential timing

Issues at SOC
integration level or at
the TOP SOC block

Figure 4. Integration at SOC level

-
: B

i /’ .

\\\\ é , e

The abstracted timing model, removes timing for internal flops & gates for IPs thatare either fully \erified by
STA or GLS with timing verified at IP levelusing IP level tests or Verified with GLS+RTL hybrid simulation.
It preservesthe interfacetiming accuracy at the portlevel and gives better performancein GLS as only
limited/required timing is enabled.

As forlower technology nodes timing & timing checks are very expensive so forhuge SOCs, it is nearly
impossible to run GLS with timing due to much higher run time and machine memory limitations. So abstracted
timing model, allows verification engineers to run GLS with timing at the SOC level without caringaboutthe
internal timing of different blocks thathave been already verified.

Figure belowshows thetiming of abstracted timing block matches with fulltiming at the port level

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Sub Block waveform with full timing

‘Ez‘ Tinea v|=[341466 || ps R_ﬁ-‘ L Time: 87 [0 son,000ps 5l G, T ;;

0ps

1 object selected

1e

T

@ Baselngv=0
EF|Cursor-Baseine v=341,466ps

[E[]¥]E| # I

Sub Block waveform with abstracted models (Timing accurate)

Figure 5: Port level timing abstracted timing model vs full timing

Performance Gains seen

Abstracted timing model has beentried on some design and has shown promising results. It has helped reducing

the simulation run time around 1.5x-2x and reduce memory around 1.25-1.5x dependingupon the level of
abstractionin the design.

3. Verifying long GLS initialization through hardware accelerator

Gate-leveltiming simulations for large SoCs have long runtimes as they have complextiming checks, andit can
take several days just for chip initialization. In addition to thelong runtime, the other key challengeis debug of
GLS environment giventhat theturnaroundtime increases significantly with eachiteration. Bring-up testsare
typically run separately to verify the bring-up andinitialization of the SOC. Forall the other tests, the timing or
timing checkduring theinitialization/configuration phase is of no significance/interestas it is tested with bring-
up tests. So a unique (patent-pending) concept of Simulation- Acceleration methodology/flow with sdf can be
used where the sdfannotation is honored whenthe runis in software simulator and without timing when the run
is on the emulator.

_ . Begin Test with
Gate level simulation environment SDF Annotation

Simultation Acceleration Flow

Start Initiation Sequence

Run initialization on Hardware (zero

delay mode) p

Move to Sofiware simulator DUT + TB

Use run time SDF annotation for timing
venfication for functional part

Figure 6 Hot-Swap

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

With this methodology, the netlist simulations can be run with high performance (zero delay mode) on hardware
by swapping the design intothe emulator for the completeinitialization/configuration phase. Then, swapping
out ofthe emulator onceinitialization is complete and running the rest of the testin the software simulator with
sdf. The simulator has a capability to annotate SDF during run time. So this feature is used oncethe
initialization is complete and simulation moves tothe software side.

Performance Gains seen

In some ofthe designs the initialization itself was taking more than 24hrs and remaining simulation just ran has
3-4hrs. Using this approachthe overall simulation was completed in 6-7hrs as initialization in zero delay mode
completed much faster on the hardware box.

4. Saving and Restarting Simulations

Typically, much GLS time is spentin the initialization phase. This time can sometimes be verysignificant. Asa
result,asingle simulation should be saved and all other (n-1) simulations should be run fromthe saved
checkpoint snapshot.

Original Regression Start of interesting traffic

TestA

Re-Start/Re-Use Initial Setup
Initial Setup Run
TestA !
Save
Significant reduction State
in simulation time

State

Figure 7. Save Restart
Performance Gains seen

Initialization sequences are generally quite longand save restart methodology has seen upto 60% improvement
in simulation run time by re-using the sequence.

5. Minimum Tests required at GLS timing based on RTL tests.

Static timing analysis toolis not able to catchall the issues that can only be seenin a GLS run. There are some
assumptions or constraints writtenin STA that canbe confirmed only during GLS. Some of the typical scenarios
which STA is notable to cover.

« STA constraints verifications (MCP, False, Maxdelay etc) to ensure the assumptions are correct.
Constraints might be written incorrectly by the user

* Inability of STA to handle asynchronous paths.

* Functional Glitches detection related to timing

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

* Clock related: Clock domain crossing for asynchronous clocks, Clock Gating for low power, Dynamic
changingofclocks

* Low powermode, switching on/off power domains with timing

* Verify powerup and reset operation of the design with timing

STA tool GLS with timing tests should focus on limitations of STA tool as mentioned above. Itis not required
torunall the RTL tests at GLS and currently identification is done manually based on verification engineer
experience. The testidentification can be automated andthe flow will identify tests thatcan potentially find
these issues. These tests must be runfirst to verify timing and more can be run later in case time resourcesand
time is available.

STA Tool, provide list of constraints

Extract list of nodes for Multi-clock cycle, Async, False Path from STA

Read list of nodes and coverage database

Identify the minimal set of tests that cover the above criteria

Shortlisted Tests can be used at GLS

Figure 8. GLS with timing test identification

Performance Gains seen

It is generally seenthat 10-20% ofthe RTL tests are sufficientfor running GLS with timing. This is based on
the initial trials done usingthe above flow on a few designs. This data is also matches with the survey donewith
different verification engineering teams who select the testmanually. They typically run between 10-25% of
theirRTL testsat GLS.

6. Controlling timing checks based on STA report

Since STA does the complete timing analysis and is good in handling synchronous paths. In caseswheretiming
forthe complete oraportion ofthe design is already met and the paths are synchronous, thetimingchecks during
simulation might not be required for this portion of the design, specifically the internal flops.

The STA and simulator flowis illustrated in Figure 9 and STA can remove the timing checks of synchronous
areas of the design that do not have complextiming constraints in STA.

Please note: Here only the timing checks (setup, hold, recovery, removal, width etc) are switched off, thetiming
i.e. iopath, interconnect, port delays etc are honored so design still runs with timing.

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

STA Flow

Generates
Violation Report

Yes
ERRORS - Fix Violation

ERRORS
l, No
o Generate tfile &
Identify internal S
Flops and Gate L& remove timing

for these gates

Simulator Flow

Gate l
Level
Netlist g @

Figure 9: Controlling timing checks based on STA

Based on STA, timing checkof internal flops can be switched off. In Figure 10, a timing file to control timing
checks be generated for flops marked in the grey as they are internal

INT Comb. Logic 1 our
(ST oTTommmeeTT T TTTTTmmmmmTTTTTTTT 3
1 1
IN2 FF1 1 Comb. . | 2 Comb. | Ff3 Comb 1| Fra ouT2
_r Logic 2 Logic 3 Logic 4 _r
> ! > > g
. i .
1] 1
' ng Checks for these Flops I
CLK T R H
IN3 Comb. Logic 5 FF> Comb. Logic 6 out3
>

Figure 10: Remove timing checks for internal flops
Performance Gains seen

In technology nodes 10nm-28nm or below, it is seen that timing checks haverun time impact of2-2.5x and
require 1.25-1.5x more memory. So if good number of timing checks are removed, it can showa significant
improvement in run time and memory and stillmaking the design runwith timing.

7. Starting GLS early even if STA timing is not completely clean

There can be scenarios where thedesign might not becomplete timing clean but majority of it is timing clean.
Howeverin orderto run meaningful GLS with timing, it is important that thedesignis timing clean so that
verifications engineers donotspend unnecessary time in debugging theissues already reported by STA.

A flow in STA environment can bewritten that fixes the delays (setup & hold violations) temporarily and
dumps timing correct SDF that canbe used in GLS to catch the other potential issues thatare seenat STA. In
the meantime, timing issues canbe fixed in parallelby STA team.

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Setup

Violation

Data Data Out

In
Comb
Logic

Clock

Comb Logic Example

G5 Inputto FF2.02

(o> eDe T s o> 5)
G2

FF1Data Qut

B

c

I End Point l Slack (ns) I Cause |
[Top/core/ctrl/FF2/D2 | -0.56 [Violated |

Figure 11: The example shows setup violation reported by STA.

Results seen

GLS early even ifthe complete timing closure is in process has beentried on customer designs.

Design 1: There were total of 724 setupviolations reported by STA andrequired fixin the design. All 724 setup
violations were successfully removed, ignored in generated SDF to help start Gate level simulation early.
Design 2: There were total of 68 setup violations and all 68 violations were successfully removed in generated
SDF.

The techniquehelps removing, ignoring timing violations reported by STA tooland dump out SDF file that has
no violations for GLS simulation. And in parallel, the actualtiming issue in the design canbe fixed by STA
team. This helped designer to runmeaningful GLS with timing simulation early in design cycle without
spending unnecessary effort in debuggingtheissues thatare already reported by static timing analysis tools like
STA.

I1l. CONCLUSION

Continuous improvements are seenin the simulationandthey are stillongoing. However, in order to match the
verification requirements for newer, larger designs with increased complexities, a holistic approach is required.
A combined simulationand methodology approach hasto be takenin orderto achieve an effective and efficient

verification process

IV. REFERENCES

GLS white paper - https://www.cadence.com/content/dam/cadence-
wwwi/global/en_US/documents/tools/system-design-verification/gate-level-simulation-wp.pdf

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/gate-level-simulation-wp.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/gate-level-simulation-wp.pdf

