DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Adaptive UVM <-> AMOD Testbench for
Configurable DSI IP

Krishnapal Singh, Nvidia, Hyderabad, India (krishnapals@nvidia.com)

Pavan Yeluri, Nvidia, Hyderabad, India (pyeluri@nvidia.com)
Ranjith Nair, Nvidia, Hyderabad, India (ranjithn@nvidia.com)

Abstract—The efforts required to create a functional verification framework scales up significantlywith the increase
in the complexity of hardware design. Moreover, for a new design, verification isobstructed by the availability of
interfaces/ports, initial first-cutdesign. In this paper, we describe an approach where a pure C++architectural model
(AMOD) can be re-used ingeniouslyalong with UVYM modeling to verify the protocol-physical layer IP to shorten the
IP unitlevel verificationcycle. Protocol layer isless timing sensitive and requirestransaction level accurate behavior
to be metwhereas PHY layer is more timingsensitive due to timingsequences, phase alignment marker insertions .
This serves as the foundation of the described approach. This work isdemonstrated usingthe work carried outat
NVIDIA on the configurable MIP1 DSI (Display Serial Interface) IP [1].

Keywords—AMOD, C++, DPI, MIPI, DSI, PHY, DPHY, CPHY, UVM, SV, PPI, ECC

. INTRODUCTION

C/C++ has beenin useas a preferred languageto implement architecture behavioral model (AMOD). AMOD
is used by the architects for algorithm/specification validation of the IP features. Also, the architectural model usage
to enable early software development without being dependent onthe RTL design availability has gained popularity
in recent times. As the framework for cross-language communication of using C/C++ models along with system
verilog modelling already exists which makes use of DPI (Direct programming interface) [2], one would assume
that AMOD re-usein RTL verification would be widespread as well. However, the usage has been limited. Based
on ourexploration, a few of the general points understood for the limited use were:

e Fordesignswhichare lesstiming-sensitiveand can be modelled almost completely using a transaction-
based behavior modelling, the approach seems feasible. However, for designs where timing sensitive
aspect is present as well, it becomes difficult to conceptualize and model interactive communication
between C/C++and systemverilog.

o Howdo we ensure the correctness ofthe AMOD as this serves asthegoldenreference model if used
forRTL verification?

In this paper, we attemptto address the above concerns and demonstrate the benefits of re-using the AMOD
in RTL verification. The paper is organized as follows: Section Il gives a brief overview on MIPI DSI and the
layers presentin DSI which helps to understand the functionality and complexity ofthe DSI IP and provides us the
brief background understanding for Section Il which details out the DSI testbencharchitecture. Section IVwalks
throughthesteps requiredto integrate AMOD in the UVM TB and explains the interactive communication between
SVIUVM and AMOD during run-time through an example. Section VVanswers the concern mentioned above about
how to ensure the correctness of AMOD functionality. Section VI specifies the results based on our experiments
with DS, section V11 leads to the conclusionand section VIl mentions the scope of future enhancement.

Il. MIPIDSI : A BRIEF OVERVIEW

MIPI DSI (display serial interface) specifies the high-speed serial interface between a host processor and a
peripheral, such as a display module. It is widely used for display applications in smartphones, tablets, laptops
and as well as in automotive market for dashboard displays and in-car infotainment systems. DSI has two vanants
which are described below:

mailto:krishnapals@nvidia.com
mailto:pyeluri@nvidia.com
mailto:ranjithn@nvidia.com

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Host Device, e.g. an Application Peripheral, e.g. a Display containing HS 0. 1 il 0. 1
Processs o BassandProcessor | Hignspeed | Recaner L ceter, ool ProcessororBassmnd processor | | M Smednta | R ot
containing HS Transmitter, LP Data Links Transmter (for bidirectional only) & ST 5 Links (Lane 0 may be PT Mtk ! %
Transmiter, LP Receiver (Lane 0 may be containing HS Transmitter, bidirectiona In LP LP Transmitter (for bidirectional only)
L in LP Transmitter, LP Receiver
LP Mode) Mode)
ut Erp— [osRa |
ransmitter eceiver
Optalt i ‘ Detetd N 3Wire Lanes
Datads Datad+ DataN-1_A i DataN-1_A
Data0- ryerepr Data0 DataN-1_B > DataN-1_B
us o
Lanes may be DataN-1_C - DataN-1_C
1,23, 004
Datad_A -4 » Datad_A
Clock+ Clock+ Datal_B » Datad B
ok Gock Data0_C [« »{ Data0_C
Number of Data
Lanes may be
1,2,3 0r4

Figure 1 DSI Transmitter and Recelver Interface (D Option) Figure 2 DSI Transmitter and Receiver Interface (C Option)

DSI interface shown in Figure 1 (D option) has been in existence since 2009. It has a high-speed differential
interface with one 2-wire clock lane and one or more 2-wire data lanes. The physical layer for this variant is
known as DPHY. DSl interface shown in Figure 2 (C option) was first introduced first in 2014. It consists of the
3-wire lanes (which are also known as trios) and the clock information is embedded inside the 3-wire lane. The
physical layerforthis variant is knownas CPHY.

The above figure describes the different layers of DSI:
Application layer: Provides the pixel data streamor the commands to the DSI controller.

Protocol layer: Forms the packets by appending (in case of transmitter) ECC (error correcting code), checksum
and generates the headerand the data payload information.

Lane management: Determines howthe packet data should be distributed on thelanes. The lanescanbe 1,2, 3
or4.

PHY layer: Mainly specifies the transmission medium characteristics, electrical signaling parameters, start of
packetand endof packetsignaling.

DSI Receiver (peripheral module) performs the reverse operations of those executed in the DSI transmitter
(Application processor).

Application Processor Peripheral

Pixel to Byte Packing Formats

Application Coded Bitstream Format) Application
Command Generation / Interpretation

Data Control Data Control
gpeves [[[]]]] 15 soes [[][]]]
Data Control Packet Based Protocol Data Control
Low Level Protocol ECC and Checksum Generation and Low Level Protocol
Data Control Testing Data Control
dosoes [1[[]1] g soes [[[]]]]

Lane Distribution and Merging

Lane Management Lane Management

QEN x n-bits <—|—|—|—|—|—H n=16 for Option C {C-PHY); n=8 for Option D {D-PHY) —{4}—» Nxn h’ds| | | | | | |

Data Control Start of Packet / End of Packst Data Control

Serializer / Desenalizer
PHY Layer Clock Generation / Recovery PHY Layer

Electrical Layer

T High Speed Unidirectional Clock (applies to D Option anly) ? T

Lane 0 — High Speed Data (optionally Bidirectional in LP Mode)
"

Lane N-1 - High Speed Unidirectional Data

Figure 3 MIPI DSl layers

DESIGN AND VERIFICATION™
Nl
‘.L, LI

CONFERENCE AND EXHIBITION

I1l. DSI TESTBENCH ARCHITECTURE

| DSI TB ENV }
|

I
} DSl Peripheral |
} Device VIP }
| SCOREBOARD (Reciever) |
| |
| I Protocol 3 |
[DSI REF Model checks }
} Protocol Layer A |
| (sv, uvm) }
|
| T | e S L a |
| (15 actual }] }] } DSl Peripheral | |
i 4 PPItXn | gy Py | | Devicevip | }
I ____y____ - ﬂ‘ TXN ‘F - +} Layer i:— - -N‘ (Reciever) } }
} } AMOD (C++) | PPl | | DRIVER [/ I Protocol | I
I | (Protocol Layer) | Monitor } J } J } checks | 3 } }
T — ' earessE- . I DN ——————
‘ A }
I

DSI DUT
C/C++ (AMOD)
DSI DSl
uvm/sv Protocol _ N PHY »
Layer Layer
(Transmitter) (Transmitter)
1 - Packet level, Frame CRC check —

at Protocol Layer output

3 — Device VIP protocol and internal
checks.
4- lanes/trios level checks

Figure 4 DSITestbench Architecture

We will be using following term PPI — “Logical PHY-Protocol interface” in this paper, which is defined in
MIPI DSI specification. This refers tothe interface between DSI Protocoland PHY layer.

Following is the brief description and application of the testbench architecture:

e The AMOD implements the DSI protocol layer functionality which requires transaction-based
accuracy tobe met. The AMOD provides the transaction output expected at the protocol layer
output.

e UVM model connects with the AMOD through DPI (Direct programming interface) [3]. It drives
the AMOD input and collects thearchitectural model outputand forms theexpected PPI
transaction. Expected PPI transaction is compared againstactual PPl transactionreceived from
Protocol layer output fromDUT inside the SCOREBOARD for verifying protocol layer
functionality correctness.

e Actual PPlinterface transactionis usedin the PPI TXN DRIVER to drive the input ofthe PHY
layer VIP. PHY layer VIP implements the PHY layer functionality for transmitter written using
UVM/System-Verilog as PHY layer involves timing sequences insertion. There are following two
reasons forusing actual PPl interface transaction and not expected PPl interface transaction to drive
the input ofthe PHY layer VIP:

o PPl outputfromDUT gives thedata-rate/timing informationto the PHY TXN DRIVER so
that timing sequence insertionin the PHY layer VIP can be handled appropriately.

o PPl transactioncorrectness is ensured with respect to transaction accurate handling inside
the SCOREBOARD and timing sequence correctness is ensured insidethe protocol and
timing checks implemented insidethe DSI Peripheral Device VIP (as mentioned in point
below).

e DSl Peripheral Device VIP is hooked up at the PHY layer outputfromDUT and is used for
checking the correctness of end-to-end functionality. It implements checkers forall the protocol and
timing rules specified in the MIP1 DSl specification.

e SCOREBOARD logic ensuresthecorrectness of the functionality at-

DESIGN AI\{LD—\ V,EZVIFIS}A;&L?E N
o PPlinterface.
o PHY layeroutput(lanes/trios).
o End-to-endfunctionality using DSI Peripheral Device VIP.

IV. INTEGRATING AMOD INUVM TESTBENCH

The flow to provide the interface between systemVerilog and C/C++ programming exists already [2]. We*ve
listed down the steps below which we had followed for integrating DSI AMOD in UVM TB. These steps are generic
and can be used forintegrating any class based AMOD implementationin UVM TB:

e AMOD implementation class

//I DSIAMOD class
class dsiCore {
public:
dsiCore ();
~dsiCore();
/I Functionto process input pixels received and formthe packets and store on the
PPI interface FIFO. Example functionwith 32-bit data and 1-bit valid signal

void processPixel (constuint32_tdata, boolvalid);
private:

{11 PPI I/F Buffer

queue <uint32_t>m_PPIData[2]; /// Buffer for Storing processed protocol layer

output PPl data.
+

Create wrapper functions tosupport AMOD member functions call from S\V/UVM model

#include "svdpi.n™ /llincludethe systemVerilog DPI header file
/1] Create a static objectfor DSI AMOD class and initialize to NULL
static dsiCore*s_pDsiCore=NULL;
/Il functionto construct DSI AMOD class in UVM TB
extern "C" bool UVMSetDsiCore() {
s_pDsiCore =newdsiCore ();
return (s_pDsiCore I=NULL) ? 1: 0;
}
/I wrapper function for processing pixels
extern "C" void UVMProcessPixel (const uint32_tdata, const bool valid) {
s_pDsiCore -> processPixel(data, valid);
¥

e Construct AMOD object in SV/UVM model

import "DPI-C" function void UVM SetDsiCore (); /// Import C/C++ function
/Il Inside the build phase of the SV/UVM model
virtual function void build_phase (uvm_phase phase);
super.build_phase(phase);
/Il AMOD constructor
UVMSetDsiCore ();
endfunction: build_phase

e UVM/SV interactive communication during run-time — explainedthrough uvm_callback.

Pixel interface used in the below example is an example input interface to the DSI controller which
drives thepixel information to the DSI controller.

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

One pixel transaction active phase in pixel monitor.
uvm_callback methods used for calling AMOD functions.

post_transaction call back
function can be used for PPI
output transaction extraction

from AMOD.
/ pixel_txn data, valid \
form_pixel_data ———————»{ VLol ca |

Pixel transaction starts Pixel transaction ends

pre_transaction post_transaction

C/C++ (AMOD)
pre_transaction and post_transaction are uvm_callback
methods implemented for the pixel monitor. uvm/sv

Figure 5 Interactive UVM/SV € > AMOD communication during run-time

The implementation logic for the callback method is as follows:

/I Import the pixel processing wrapper function in UVM/SVmodel
import " DPI-C" function void UVMProcessPixel (input int unsigned data, inputbit valid);

/1l Extending callbacks for DSI pixel monitor
class dsi_pixel_monitor_callbackextendsuvm_callback;
/11 Over-writing the pre_transaction task called at start of observed transaction.
task pre_transaction (pixel_transactiontr);
/Il Form pixel data
form_pixel_data (tr); /// to extract data and valid frompixel transaction

/11 Pixel processing in AMOD
UVMProcessPixel(data, valid);
endtask: pre_transaction

/I Over-writing the post_transaction method called at the end of pixel transaction
task post_transaction (pixel_transactiontr);
/11 Post transaction task canbe usedto process PP1 output transactionfrom AMOD
endtask: post_transaction
endclass:dsi_pixel_monitor_callback

V. ENSURING CORRECTNESS OF AMOD

An important question on the proposed approach we encountered was — “How is it ensured that AMOD is
correctly implemented?”. To serve as the golden reference model for RTL verification, it should be ensured that
AMOD is implemented and validated appropriately.

Forvalidating AMOD functionality, the following steps were followed:

e A standalone AMOD testbench written in C/C++ for validating the sanity features of the AMOD.
C/C++ tests were written to program DSI and drive the input pixel interface by using appropriate
functioncalls.

e For checking AMOD functionality correctness, we implemented data integrity checker by
implementing a SINK model which does the reverse of the DSI controller operation i.e., takes the
packet, strips-off the packet header and checksuminformation and extracts the output payload pixel
data which canbe compared with inputpixel data.

e Figure 6 and the steps mentioned below details out the SINK model and data integrity checker
implementation:

DESIGN AND VERIFICATION™
e

CONFERENCE AND EXHIBITION

| For each packet with pixel data payload, strip- :
| off packet header and checksum and extract |
| pixel data payload. :

L e e ——————————
I
I
,,,,,,,,,,,,,,,,,,,,, 1] S —
Pixel i data, valid PPI SINK i data
interface |~ l > DSI AMOD Fifo > MODEL | l >
e T T T 1 s T T T T T T T
I dump input pixel data in queue | I dump output pixel data in queue
: (“inputPixelData”) : : (“outPixelData”)
r-r--"-"-"""""""-"""-"""-""""=-"—"="-"—"—"—"="—-="—-"="=-""7-— A

I' At the end of each pixel frame processing, compare |
' input and output pixel data '

Figure 6 Sink model and data integrity checker for DSIAMOD

Steps used in theprocess:

o Atthe input Pixel interface, dump the valid pixel data into a queue (we’ll refer it as the
“inputPixelData”).

o Implement SINK modelat the PPI interface output, which does the following:

o AtthePPlinterface of AMOD, for each packet with pixel data payload, strip-off
the packet headerand checksuminformation and extract the data payload. Dunp
the extracted data payload corresponding per packet in a queue. We’ll refer it as
“outputPixelData”.

o Foreach pixel frame, do the comparison of “inputPixelData” vs “outputPixelData”. This
servesas data integrity check.

VI. RESULTS

Reuse ofarchitectural model (AMOD) in IP unit verification provided us the following major benefits —

e Behavioral model creation efforts (for IP unit level verification) were reduced by ~50% as protocol layer
functionality is directly reused fromthe architectural model. This, in turn, led to a reductionin overall IP
functional verification cycle efforts by ~15%.

o Minimal efforts spent on fixing issues in protocol layer functionality modelling as the sanity feature
correctness was already ensured in architecture verification. This proved to be highly beneficial during
IP unit verification as we could focus more on finding design issues.

We also performed VCS simulation profiling in orderto evaluate the performance impact DPI usage could have
during run-time. Following analysis shownin Figure 7 below for an exhaustive pixel data transfer clearly indicates
that DPI occupies a very minimal part of overall simulation print.

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Simprofile Report

Database: | simprofile_dil = Time Summary View
Component Time Percentage

VERILOG 781738 5T %
Module 139.37s 44.79

View Time Summa & 9375 475 %
Package 73228 2353%
intertace 64075
G0 Function Coverage Kernel 265 0BS%
Functonal Coverage 2435

KERNEL 26673 BS57 W
Ol on (18 tmes) . 5 %

21ls 068 %
imping 472 4807 15
472.48ms 0.15%
HSIM 108.00ms 0.03 %
CONSTRAINT 94 50ms. 003 %
‘total 3M1%s 100%

Figure 7 Simulation profiling report for exhaustive pixel data transfer usecase for DSI

VII. CONCLUSION

As described in the current paper, the architectural model (AMOD) can be re-used in RTL verification as
behavioral model with the use of DPI, evenforthe complexIP protocol. At NVIDIA, we have successfully used it
for DSI IP unit level verification which benefited us in terms of effortreduction, early verification enablementand
bring-up of end-to-end testing.

We strongly believe a similar approach can be utilized for other complex IP protocols as well where both
transactionaccurateandtiming sensitive aspects are present.

VIII. FUTURE ENHANCEMENT

We have implemented and demonstrated AMOD functionality for protocol layer of DSI and re-used in
verification. More pieces of IP can be developed in AMOD and re-used in RTL verification for further effort
reduction. Forexample —for DSI CPHY, there is an encoder state and mapper stage which can be conceptualized

to be implemented in AMOD, with only the timing sequence insertion required to be implemented in UVM/SV
modelling.

REFERENCES

[1] https://www.mipi.org/specifications/dsi

[2] SystemVerilog Meets C++: Re-use of Existing C/C++ Models Just Got Easier — “John Aynsley Doulos john.aynsley@doulos.com”
[3] https://www.doulos.com/knowhowi/sysverilog/tutorial/dpi/

https://www.mipi.org/specifications/dsi
https://www.doulos.com/knowhow/sysverilog/tutorial/dpi/

