
 

1 

 

Adaptive UVM <-> AMOD Testbench for 

Configurable DSI IP  
 

Krishnapal Singh, Nvidia, Hyderabad, India (krishnapals@nvidia.com) 

Pavan Yeluri, Nvidia, Hyderabad, India (pyeluri@nvidia.com) 

Ranjith Nair, Nvidia, Hyderabad, India (ranjithn@nvidia.com) 

 

Abstract—The efforts required to create a functional verification framework scales up significantly with the increase 

in the complexity of hardware design. Moreover, for a new design, verification is obstructed by the availability of 

interfaces/ports, initial first-cut design. In this paper, we describe an approach where a pure C++ architectural model 

(AMO D) can be re -used ingeniously along with UVM modeling to verify the protocol-physical layer IP to shorten the 

IP unit level verification cycle.  Protocol layer is less timing sensitive and requires transaction level accurate behavior 

to be met whereas PHY layer is more timing sensitive due to timing sequences, phase alignment marker insertions . 

This serves as the foundation of the described approach. This work is demonstrated using the work carried out at 

NVIDIA on the configurable MIPI DSI (Display Serial Interface) IP [1]. 

 

Keywords—AMOD, C++, DPI, MIPI, DSI, PHY,  DPHY, CPHY, UVM, SV, PPI, ECC 

I.  INTRODUCTION  

C/C++ has been in use as a preferred language to implement architecture behavioral model (AMOD). AMOD 

is used by the architects for algorithm/specification validation of the IP features. Also, the architectural model usage 

to enable early software development without being dependent on the RTL design availability has gained popularity 

in recent times. As the framework for cross-language communication of using C/C++ models along with system 

verilog modelling already exists which makes use of DPI (Direct programming interface) [2], one would assume 

that AMOD re-use in RTL verification would be widespread as well. However, the usage has been limited. Based 

on our exploration, a few of the general points understood for the limited use were:  

• For designs which are less timing-sensitive and can be modelled almost completely using a transaction-

based behavior modelling, the approach seems feasible. However, for designs where timing sensitive 

aspect is present as well, it becomes difficult to conceptualize and model interactive communication 

between C/C++ and system verilog. 

• How do we ensure the correctness of the AMOD as this serves as the golden reference model if used 

for RTL verification? 

     In this paper, we attempt to address the above concerns and demonstrate the benefits of re-using the AMOD 

in RTL verification. The paper is organized as follows: Section II gives a brief overview on MIPI DSI and the 

layers present in DSI which helps to understand the functionality and complexity of the DSI IP and provides us the 

brief background understanding for Section III which details out the DSI testbench architecture. Section IV walks 

through the steps required to integrate AMOD in the UVM TB and explains the interactive communication between 

SV/UVM and AMOD during run-time through an example. Section V answers the concern mentioned above about 

how to ensure the correctness of AMOD functionality. Section VI specifies the results based on our experiments 

with DSI, section VII leads to the conclusion and section VIII mentions the scope of future enhancement. 

II. MIPI DSI : A BRIEF OVERVIEW 

MIPI DSI (display serial interface) specifies the high-speed serial interface between a host processor and a 

peripheral, such as a display module. It is widely used for display applications in smartphones, tablets, laptops 
and as well as in automotive market for dashboard displays and in-car infotainment systems. DSI has two variants 
which are described below:  

 

mailto:krishnapals@nvidia.com
mailto:pyeluri@nvidia.com
mailto:ranjithn@nvidia.com


 

2 

 

 
 

DSI interface shown in Figure 1 (D option) has been in exis tence since 2009. It has a high-speed differential 
interface with one 2-wire clock lane and one or more 2-wire data lanes. The physical layer for this variant is 
known as DPHY. DSI interface shown in Figure 2 (C option) was first introduced first in 2014.  It consists of the 

3-wire lanes (which are also known as trios) and the clock information is embedded inside the 3-wire lane.  The 
physical layer for this variant is known as CPHY. 

 
The above figure describes the different layers of DSI:  
 

Application layer: Provides the pixel data stream or the commands to the DSI controller. 
 
Protocol layer:  Forms the packets by appending (in case of transmitter) ECC (error correcting code), checksum 

and generates the header and the data payload information. 
 

Lane management: Determines how the packet data should be distributed on the lanes. The lanes can be 1, 2, 3 
or 4. 
 

PHY layer: Mainly specifies the transmission medium characteristics, electrical signaling parameters, start of 
packet and end of packet signaling.   
 

DSI Receiver (peripheral module) performs the reverse operations of those executed in the DSI transmitter 
(Application processor). 

 
 

 
 

Figure 3 MIPI DSI layers 
 



 

3 

 

III. DSI TESTBENCH ARCHITECTURE 

DSI TB ENV

DSI REF Model
Protocol Layer

(SV, UVM)

AMOD (C++) 
(Protocol Layer)

DPI

DSI 
Protocol 

Layer 
(Transmitter)

DSI Peripheral 
Device VIP 
(Reciever)

Protocol 
checks

3

  – Packet level, Frame CRC check – 
at Protocol Layer output
  – Packet level check end-to-end i.e. 
– including (PHY Layer + Device VIP)
  – Device VIP protocol and internal 
checks. 
4- lanes/trios level checks

SCOREBOARD
21

DSI 
PHY 

Layer 
(Transmitter)

DSI DUT

C/C++ (AMOD)

UVM/SV

PPI 
Monitor

PHY 
Layer 
VIP

PPI
 TXN 

DRIVER

actual 
PPI txn

DSI Peripheral 
Device VIP 
(Reciever)

Protocol 
checks 3

4

 
 

Figure 4 DSI Testbench Architecture 

We will be using following term PPI – “Logical PHY-Protocol interface” in this paper, which is defined in 

MIPI DSI specification. This refers to the interface between DSI Protocol and PHY layer. 

Following is the brief description and application of the testbench architecture:  

 

• The AMOD implements the DSI protocol layer functionality which requires transaction-based 
accuracy to be met. The AMOD provides the transaction output expected at the protocol layer 

output.  
 

• UVM model connects with the AMOD through DPI (Direct programming interface) [3]. It drives 
the AMOD input and collects the architectural model output and forms the expected PPI 
transaction. Expected PPI transaction is compared against actual PPI transaction received from 

Protocol layer output from DUT inside the SCOREBOARD for verifying protocol layer 
functionality correctness. 

 

• Actual PPI interface transaction is used in the PPI TXN DRIVER to drive the input of the PHY 
layer VIP.  PHY layer VIP implements the PHY layer functionality for transmitter written using 
UVM/System-Verilog as PHY layer involves timing sequences insertion. There are following two 

reasons for using actual PPI interface transaction and not expected PPI interface transaction to drive 
the input of the PHY layer VIP: 

o PPI output from DUT gives the data-rate/timing information to the PHY TXN DRIVER so 

that timing sequence insertion in the PHY layer VIP can be handled appropriately.  
o PPI transaction correctness is ensured with respect to transaction accurate handling inside 

the SCOREBOARD and timing sequence correctness is ensured inside the protocol and 
timing checks implemented inside the DSI Peripheral Device VIP (as mentioned in point 
below). 

 

• DSI Peripheral Device VIP is hooked up at the PHY layer output from DUT and is used for 
checking the correctness of end-to-end functionality. It implements checkers for all the protocol and 

timing rules specified in the MIPI DSI specification.  
 

• SCOREBOARD logic ensures the correctness of the functionality at-  



 

4 

 

o PPI interface. 
o PHY layer output (lanes/trios). 

o End-to-end functionality using DSI Peripheral Device VIP. 

IV. INTEGRATING AMOD IN UVM TESTBENCH 

The flow to provide the interface between system Verilog and C/C++ programming exists already [2]. We’ve 

listed down the steps below which we had followed for integrating DSI AMOD in UVM TB. These steps are generic 

and can be used for integrating any class based AMOD implementation in UVM TB:  

• AMOD implementation class 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Create wrapper functions to support AMOD member functions call from SV/UVM model 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Construct AMOD object in SV/UVM model 

• UVM/SV interactive communication during run-time – explained through uvm_callback. 

Pixel interface used in the below example is an example input interface to the DSI controller which 

drives the pixel information to the DSI controller. 

/// DSI AMOD class 

class dsiCore { 

 public: 

     dsiCore (); 

     ~dsiCore(); 

     /// Function to process input pixels received and form the packets and store on the 

PPI interface FIFO. Example function with 32-bit data and 1-bit valid signal 

     void processPixel (const uint32_t data, bool valid); 

private: 

     /// PPI I/F Buffer 

     queue <uint32_t> m_PPIData[2];   /// Buffer for Storing processed protocol layer 

output PPI data. 

}; 

 

#include "svdpi.h" /// include the system Verilog DPI header file 

/// Create a static object for DSI AMOD class and initialize to NULL 

static dsiCore* s_pDsiCore = NULL;    

                     /// function to construct DSI AMOD class in UVM TB 

               extern "C" bool UVMSetDsiCore() {    

                    s_pDsiCore = new dsiCore (); 

return (s_pDsiCore != NULL) ? 1 : 0;  

              } 

       /// wrapper function for processing pixels  

extern "C" void UVMProcessPixel (const uint32_t data, const bool valid) { 

       s_pDsiCore -> processPixel(data, valid); 

} 

 

                    import "DPI-C" function void UVMSetDsiCore ();  /// Import C/C++ function                

                    /// Inside the build phase of the SV/UVM model 

                    virtual function void build_phase (uvm_phase phase); 

                    super.build_phase(phase); 

                    /// AMOD constructor 

                    UVMSetDsiCore (); 

endfunction: build_phase 

 



 

5 

 

pre_transaction post_transaction

pixel_txn
form_pixel_data UVMProcessPixel

data, valid

post_transaction call back 
function can be used for PPI 
output transaction extraction 
from AMOD.

Pixel transaction starts Pixel transaction ends

C/C++ (AMOD)

UVM/SV

pre_transaction and post_transaction are uvm_callback 
methods implemented for the pixel monitor.

One pixel transaction active phase in pixel monitor.
uvm_callback methods used for calling AMOD functions.

 
Figure 5 Interactive UVM/SV → AMOD communication during run-time 

               

      The implementation logic for the callback method is as follows:  

 

 

V. ENSURING CORRECTNESS OF AMOD 

 An important question on the proposed approach we encountered was – “How is it ensured that AMOD is 

correctly implemented?”. To serve as the golden reference model for RTL verification, it should be ensured that 

AMOD is implemented and validated appropriately. 

 For validating AMOD functionality, the following steps were followed: 

• A standalone AMOD testbench written in C/C++ for validating the sanity features of the AMOD. 

C/C++ tests were written to program DSI and drive the input pixel interface by using appropriate 

function calls.  

• For checking AMOD functionality correctness, we implemented data integrity checker by 

implementing a SINK model which does the reverse of the DSI controller operation i.e., takes the 

packet, strips-off the packet header and checksum information and extracts the output payload pixel 

data which can be compared with input pixel data. 

• Figure 6 and the steps mentioned below details out the SINK model and data integrity checker 

implementation: 

/// Import the pixel processing wrapper function in UVM/SV model 

 import "DPI-C" function void UVMProcessPixel (input int unsigned data, input bit valid); 

 

      /// Extending callbacks for DSI pixel monitor  
      class dsi_pixel_monitor_callback extends uvm_callback; 

          /// Over-writing the pre_transaction task called at start of observed transaction. 
          task pre_transaction (pixel_transaction tr); 

              /// Form pixel data 
              form_pixel_data (tr); /// to extract data and valid from pixel transaction 
 

              /// Pixel processing in AMOD 
              UVMProcessPixel(data, valid); 
          endtask: pre_transaction 

 
          /// Over-writing the post_transaction method called at the end of pixel transaction 

          task post_transaction (pixel_transaction tr); 
                    /// Post transaction task can be used to process PPI output transaction from AMOD 
          endtask: post_transaction 

    endclass: dsi_pixel_monitor_callback 
 



 

6 

 

DSI AMOD

Pixel 

interface

PPI 

Fifo
SINK 

MODEL

data, valid

dump input pixel data in queue 

 “inputPixelData  

data

dump output pixel data in queue 

 “outPixelData  

At the end of each pixel frame processing, compare 

input and output pixel data

For each packet with pixel data payload, strip-

off packet header and checksum and extract 

pixel data payload.

 

Figure 6 Sink model and data integrity checker for DSI AMOD 

Steps used in the process:  

o At the input Pixel interface, dump the valid pixel data into a queue (we’ll refer it as the 
“inputPixelData”). 
 

o Implement SINK model at the PPI interface output, which does the following: 
o At the PPI interface of AMOD, for each packet with pixel data payload, strip-off 

the packet header and checksum information and extract the data payload. Dump 

the extracted data payload corresponding per packet in a queue. We’ll refer it as 
“outputPixelData”. 

 
o For each pixel frame, do the comparison of “inputPixelData” vs “outputPixelData”. This 

serves as data integrity check. 

VI. RESULTS 

Reuse of architectural model (AMOD) in IP unit verification provided us the following major benefits –  

• Behavioral model creation efforts (for IP unit level verification) were reduced by ~50% as protocol layer 
functionality is directly reused from the architectural model. This, in turn, led to a reduction in overall IP 

functional verification cycle efforts by ~15%. 

• Minimal efforts spent on fixing issues in protocol layer functionality modelling as the sanity feature 
correctness was already ensured in architecture verification. This proved to be highly beneficial during 

IP unit verification as we could focus more on finding design issues. 
 
We also performed VCS simulation profiling in order to evaluate the performance impact DPI usage could have 

during run-time. Following analysis shown in Figure 7 below for an exhaustive pixel data transfer clearly indicates 
that DPI occupies a very minimal part of overall simulation print. 

 
 



 

7 

 

 
Figure 7 Simulation profiling report for exhaustive pixel data transfer usecase for DSI 

VII. CONCLUSION 

As described in the current paper, the architectural model (AMOD) can be re-used in RTL verification as 

behavioral model with the use of DPI, even for the complex IP protocol. At NVIDIA, we have successfully used it 

for DSI IP unit level verification which benefited us in terms of effort reduction, early verification enablement and 

bring-up of end-to-end testing.  

We strongly believe a similar approach can be utilized for other complex IP protocols as well where both 

transaction accurate and timing sensitive aspects are present. 

VIII.   FUTURE ENHANCEMENT 

We have implemented and demonstrated AMOD functionality for protocol layer of DSI and re-used in 
verification. More pieces of IP can be developed in AMOD and re-used in RTL verification for further effort 
reduction. For example – for DSI CPHY, there is an encoder state and mapper stage which can be conceptualized 

to be implemented in AMOD, with only the timing sequence insertion required to be implemented in UVM/SV 
modelling.  

REFERENCES 

[1] https://www.mipi.org/specifications/dsi 

[2] SystemVerilog Meets C++: Re-use of Existing C/C++ Models Just Got Easier – “ John Aynsley Doulos john.aynsley@doulos.com” 

[3] https://www.doulos.com/knowhow/sysverilog/tutorial/dpi/ 

 

https://www.mipi.org/specifications/dsi
https://www.doulos.com/knowhow/sysverilog/tutorial/dpi/

