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ABSTRACT  
Minimizing power consumption has become a critical requirement in 

today’s designs.  Active power management required  to minimize 

power consumption creates additional challenges for functional 

verification.  IEEE Std 1801™-2009 [1] defines the Unified Power 

Format (UPF), which enables visualization and early verification of 

the behavior of a design under active power management during 

RTL simulation.  This paper describes a UPF-based low power 

verification methodology used by Applied Micro Circuits (APM) for 

verification of a low power design, including the process used for 

verification planning, tool flow, and methods used to track progress 

toward coverage closure. 
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1. INTRODUCTION  
Power management has become a critical concern in the design of 

electronic systems, especially for those intended for very low power 

applications.  Larger (e.g., multiprocessor) designs may contain so 

much logic that it is impossible to power up all parts of the chip at 

the same time.  Power management within a chip has become 

mandatory for designs such as these. 

  

Minimizing power consumption and consequent heat generation, and 

for portable systems, maximizing battery life, are key requirements 

for successful products today.  Minimizing power consumption 

through clock gating was sufficient for older process technologies, 

but more recently, with the continued advance to smaller and smaller 

process nodes, static leakage has become a major issue as well, 

representing as much as two thirds of the power consumption of 

modern designs.  The need to minimize static leakage has led to new 

power reduction techniques [2] such as power gating, biasing, and 

multi-voltage supplies, which in turn require power management 

architectures that enable and support the use of these techniques, as 

well as both hardware and software control logic necessary to initiate 

and mediate transitions among the various power states of a system. 

 

Various power management techniques are in common use today. 

Clock gating disables the clock of an unused device, to eliminate 

dynamic power consumption by the clock tree.  Power gating 

disconnects a device from its power supply during standby mode, to 

eliminate static leakage. Body biasing changes the threshold voltage 

to reduce leakage current at the expense of slower switching times. 

Voltage scaling changes the voltage and clock frequency to minimize 

static leakage while still meeting performance requirements.  

Multiple voltages can be used for different parts of a system that 

have different performance requirements.  One or more of these 

techniques may be used to minimize power consumption in a design.  

 

Power management must work correctly while at the same time 

enabling the design itself to function correctly.  Changes from one 

power state to another involve a sequence of operations that must be 

orchestrated correctly to ensure that neither logical nor electrical 

problems occur.  The fact that portions of a chip may be powered 

down or in a low power state at any given time requires logic to 

isolate those portions from other parts that are operating normally.  

Interactions between power domains operating at different voltage 

levels requires level-shifting logic to ensure that logic values are 

correctly transmitted and received.  State retention logic may be 

required to preserve key data across power-down periods or to enable 

a given power domain to power up quickly without lengthy 

reinitialization. 

 

Verifying active power management at the IP block level involves 

both verifying the power management architecture – the structures 

that provide control over power gating, mediate interactions between 

power domains, and enable state retention – and verifying the power 

management behavior – the operation of the power management 

architecture together with the design, given appropriate sequences of 

control inputs.  At the system level, power management includes 

verifying the correct sequencing of power management control 

signals as well as thorough verification of all the system power states 

and transitions among them. 

 

2. THE APM DESIGN EXPERIENCE 
APM has developed numerous designs involving power islands for 

power management. Previous designs employed manual insertion of 

technology specific isolation buffers in the RTL design, which 

caused inefficiencies in design technology portability and in 

particular verification and confidence hereof. The verification issue 

was that internal state of powered down blocks did not go ‘X’, but 

retained any acquired previous logic state.  

 

This had two consequences. Firstly any powered down block that 

drove logic outside the block would not drive an X potentially 

causing missing or incorrectly isolated logic from being detected, 

and missing any consequences of nets being driven from powered 

down block, which could cause complete malfunction in silicon. 

Secondly upon repowering of the powered down block(s), one could 

not tell if the blocks would correctly repower with uninitialized state 

or not, since the internal state would not be driven to X. 



Based on these prior experiences  the APM86290 design [3] team 

recognized early on in the definition phase as requiring more 

sophisticated verification capabilities due its more elaborate power 

management mechanisms. The APM86290 is a high complexity 

SOC with dual IBM46x PowerPC processors organized in a SMP 

configuration for cache coherent operation between processors and 

I/O and has numerous high-speed interfaces on-chip combined with 

several power domains to permit a power operation range of 10uW 

to 6W. 

 

To facilitate power management the SOC subsystem design features 

the Scalable Lightweight Intelligent Management processor or 

SLIMproTM, a dedicated very low power micro-controller managing 

power and reset sequencing, so individual processors, both 

processors and individual I/O subsystems can be power sequenced, 

permitting configuration management for the most power efficient 

yet high-performance throughput system based on application 

requirements. 

 

Individual power islands on the chip are powered by external voltage 

regulators, as the high-end power consumption of the chip doesn’t 

permit on-die power switches.  

 

 
 

APM decided to embrace the industry standard UPF-based 

methodology as this was readily supported by their Mentor Questa 

environment and had a convenient design-tool flow path to the 

backend synthesis and P&R tools. 

 

It was nonetheless recognized early on that the power management 

architecture and related functionality needed to be clearly defined 

and specified up-front, and not considered as a quick do-it-later add-

on feature. The specification involved both hardware and software 

permitting hardware-software co-development and verification. 

 
2.1. SPECIFICATIONS AND TESTPLANS 
The power architecture specification detailed all power regions, 

power configurations, specific power goals on a per configuration 

basis and system software interface and sequencing procedures. I/O 

devices and system aspects to power sequencing were also detailed 

to assure end-system compliance.  

 

The architecture specification was further very detailed, describing  

strict methods with exact timing diagrams and sequences limited to 

specific behaviors to minimize error-proneness due to elusive corner-

cases, engineering miscommunications and to minimize the 

verification effort. Of particular concern was the sequencing of 

power, isolation and reset going into power-off and into power-on. 

For the power-on case, isolation should be set and reset should be 

applied and held for a period of time until power is stable and the 

internal state properly reset. Then isolation can be removed, and then 

again after some time reset de-asserted. Figure 2 shows a waveform 

representation of the power on-off flows. 

 

 

Figure 2. Power Sequencing
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On power-off of a processor, the processor first needs to be 

completely quiescent, which was achieved through an internal 

processor mechanism. It should be noted that quiescent in the context 

of MP systems involves a multitude of other aspects than just signal 

quiescence, e.g., all caches must be flushed, all in-flight transactions 

completed, snoop queues empty, etc., all which are beyond the scope 

of this paper. The HALT instruction would thus indicate through a 

signal interface that the processor was ready for power down. Then 

reset could be asserted followed by isolation and then power off. 

 

It should be noted that the processors did not have any internal 

configuration state that required state retention.  Such state was kept 

on the outside the processors’ power domains in an always-on power 

domain.  

 

The architecture specification permitted a detailed RTL development 

plan to be written, starting with a clear-cut design specification to be 

developed outlining which blocks were impacted by the power 

sequencing and how the different blocks would interact as a 

consequence.  

 

The testbench and test development also benefited from the detailed 

upfront architecture specification as the test complex could be 

developed with the power sequencing requirement in mind. In 

particular at the subsystem level, e.g., for the CPU complex the 

encapsulating testbench was developed with a pseudo power 

sequence controller emulating the SOC level SLIMproTM processor, 

permitting testing with the exact sequencing and timing in a simple 

manner. 

 

Testplans were developed, which specified all the tests required for 

all the power configurations, and coverage objects for all the power 

sequences and power configurations. 

 

A key decision was made to include actual system software in the 

verification plan to assure software-hardware integration correctness 

on a pre-tape-out basis. It was naturally felt this type of verification 

would be very time-consuming, but the runtime was found 

acceptable as it was estimated possible on an overnight run basis on 

high-end servers and minimal iterations would be expected given the 

pre-verification should weed out all major hardware issues, and thus 

the runs should work with no hiccups except for software issues. But 

the potential time cost was considered acceptable given the 

alternative time and monetary cost of malfunctioning silicon. 



 

2.2. RTL ORGANIZATION 
As RTL development was gated by the architectural specification, it 

was possible to properly plan the RTL organization and design effort 

with the power architecture fully integrated upfront. 

The RTL was accordingly partitioned along power domain borders, 

greatly simplifying the UPF specification, verification and debug and 

backend work.  It is possible to specify power domains in UPF with 

logic scattered across multiple blocks, but this was considered error-

prone and was thus deliberately avoided. 

 

The RTL was coded with the needed power-on reset and power 

sequencing signals which would then be connected automatically by 

the back-end tools thru the UPF specification. 

 

OVL assertions were added to the RTL code to cover incorrect 

and/or unexpected power sequencing. This allowed for quick 

determination of miscommunications and misunderstandings 

between design, verification and software development, and 

trivialized potential disasters by pin-pointing critical issue on a very 

immediate basis. The UPF code itself also includes a behavioral 

description that permits checking of power sequence violations.  

 

2.3. TESTS, TOOLS AND FLOWS 
An important aspect of the overall power verification effort was 

assurance of full design tool flow integration from specification to 

the tape-out database. Mentor’s Questa power aware simulator 

readily supported the RTL to UPF integration in an easy to use 

manner.  The compiler/ simulator can include a UPF file 

specification on the command-line, which permits fast integration. 

 

Using UPF enabled technology independent verification, where the 

library isolation cells need not be specified yet. In contrast, the target 

library isolation cells are required for a CPF specification. Thus with 

the UPF format, the power domain aspects of the design can be 

verified before and without a cell library available. 

 

The testbench code used the standard UPF interface subroutines to 

control the power sequencing. The routines were readily made 

available through a library import statement in the testbench:  

 

    Import UPF::* 

 

And routines herein were then called e.g.: 

 

    supply_off(“streak_tb/streak/pVDD1”); 

    supply_on(“streak_tb/streak/pVDD1”,0.99); 

 

The signals specified in the function calls are correlated with the 

RTL through the UPF file. 

 

In the second supply_on statement, the 0.99 indicates the power on 

voltage and would be flagged if the voltage was specified differently 

in the testbench than in the UPF file. This is a feature provided by 

the UPF format for systems that use multiple voltage levels, e.g., 

Dynamic Voltage Scaling (DVS), but was redundant for this 

particular application.  

 

Verification using the simulator quickly identified issues with the 

UPF specification, RTL coding, and general functionality. Coverage 

was collected as per the specified coverage points to assure all ends 

of the design were tested. This was readily available through the 

Mentor toolset.  

 

Running actual system software was shrink-wrapped to the power 

sequence subroutines, which simplified the verification, shortened 

the runtime, but still provided the looked-for software-hardware 

integration assurance.  

 

The back-end tools posed an initial challenge as they used the CPF 

format which is not compatible with UPF. The design team was 

aware of this limitation upfront, but as Questa supports UPF and 

early verification could commence before cell library availability, 

UPF was used. Furthermore, using Conformal LEC, a CPF file could 

be written which, when read in with the RTL, could generate a UPF 

file after elaboration. This permitted connecting the front-end tools to 

the back-end tools using a single source CPF file. The flow is shown 

in Figure 3. 

 

Figure 3. Power Verification Flow
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Naturally this meant an initial UPF file had to be written for early 

verification, then a CPF file written for the back-end tools, and then 

the verification rerun with the UPF file generated from the CPF file. 

However, at the time the design went to the back end, the power tests 

were completed and the verification rerun a minor affair. 

 

The CPF-UPF conversion was admittedly not perfect and did require 

a minor tweak in the naming of power nodes.  This was not 

considered reason for any concern, although it would have been nice 

to have better translation correspondence from the naming 

conventions used in the CPF file to the generated UPF file. 

 

With a netlist, gate simulations could also be run, and though slow, 

this permitted assurance that the netlist worked the same as the RTL. 

The Mentor Questa simulator further provided the same corruption 

of powered down blocks’ state in the netlist as for the RTL, which 

provided good verification confidence. Gate simulations were run 

both in Zero delay and with SDF, with the latter permitting 

observation and resolution of potential timing troubles, which could 

occur due to delays incurred due to the isolation buffer insertions, 

including buffer delays and turn-on/turn-off delays. 

 
2.4. UPF CODE 
For reference the UPF code for the dual PowerPC processor (Tiger) 

complex (Streak) is listed below to exemplify the actual design. 

Key elements are the power domain structure specification which 

specifies the two power domains PD1 and PD2. There is a processor 



in each domain, but only the processor in power domain PD2 is 

specified as able to be powered down.  

 

Since the processors are designed in logical blocks the power 

domains are easily specified, e.g., tiger_1/tgr. The individual power 

ports are specified for connections to the power isolation controls. 

Isolation is specified to define the operation of the power isolation 

buffers. But the isolation buffers do not need to be specified as the 

back-end tools will pick these automatically. This is handy for a 

technology-independent design.  Isolation can be specified on inputs 

and outputs, but output isolation was found to be sufficient.  

 

Some care was required with the isolation_power_net specification 

in the UPF set_isolation command. This port needs to be connected 

to the outside power domain net, because if it is connected to the 

same VDD as the power domain that is powered down, the isolation 

buffer will go X when the power is removed.  

 

As a side note, it was found that the isolation buffers’ leakage current 

can add somewhat to the power consumption. Also since the 

isolation buffers are virtually instantiated thru the UPF simulator 

interface they are not viewable in the signal trace tool (neither in 

Questa’s GUI nor in Debussy) which was found to be a slight 

nuisance.  The isolation control identified the signal used to control 

the isolation buffer, and its active level, i.e., the level that causes the 

isolation buffers to isolate. Getting the hierarchical signal-path right 

proved a little tricky as the testbench and top-level RTL paths need 

not be specified, but after some experimentation we prevailed. 

 

Lastly the power states and transitions are specified. This is handy 

for verification as incorrect state and/or sequencing would be flagged 

permitting a quick identification of otherwise easily overlooked 

violations. 

 
# Define the top 

#=================================================== 

set_design_top streak 

 

# Set up logic power domain structure 

#=================================================== 

create_power_domain PD1 

create_power_domain PD2 -elements {tiger_1/tgr} 

 

# Create power I/O 

#=================================================== 
create_supply_port pVDD -direction in 

create_supply_port pVSS -direction in 

create_supply_net nVDD -domain PD1 
create_supply_net nVSS -domain PD1 

connect_supply_net nVSS -ports { pVSS } 

connect_supply_net nVDD -ports { pVDD } 
 

create_supply_port pVDD1 -direction in 

create_supply_net nVDD1 -domain PD2 

create_supply_net nVDD -domain PD2 -reuse 

create_supply_net nVSS -domain PD2 -reuse 

connect_supply_net nVDD1 -ports { pVDD1 } 

 

set_domain_supply_net PD1 -primary_power_net nVDD  

-primary_ground_net nVSS 

set_domain_supply_net PD2 -primary_power_net nVDD1  

-primary_ground_net nVSS 

 

# Set isolation 

#=================================================== 

set_isolation ISO_PD2 -domain PD2 -isolation_power_net nVDD  

-isolation_ground_net nVSS -elements { tiger_1 } -clamp_value 0  

-applies_to outputs 

 

# Set isolation control 

#=================================================== 

set_isolation_control ISO_PD2 -domain PD2 -isolation_signal 

streak_cpm/cpm_isolatecpu1 -isolation_sense high  

 

# Define static behavior of all power domains 

#=================================================== 

add_port_state pVDD -state {ON 0.99} 

add_port_state pVDD1 -state {ON 0.99} -state {OFF off} 

create_pst PST -supplies {pVDD pVDD1} 

add_pst_state PM1 -pst PST -state {ON ON} 

add_pst_state PM2 -pst PST -state {ON OFF} 

 

3. CONCLUSIONS AND FURTHER  

DEVELOPMENTS 
The UPF flow usage was found to be highly productive and provided 

a high level of confidence in the final design, especially compared to 

prior design experiences. Actual silicon validated the value of the 

design and verification process by providing fully functional first 

silicon for the APM86290 processor.  

 

The effort involved to add the UPF portion to our verification 

process was approximately 2 man-months. The cost associated with 

this effort pales in comparison to the potential disastrous monetary 

costs associated with replacing field failures, mask costs to re-spin 

the chip, and revenue lost by being late to market .  UPF-based low 

power verification does involve extra up-front time and effort 

leading to a potential longer design time, but the time can be folded 

in under other back-end work, for no effective delay. 

 

The integration between Mentor’s front-end low power RTL 

simulation capability and the backend tool flow  could be somewhat 

simpler.  In particular, if the backend tools could read UPF files, this 

would eliminate the need for CPF to UPF conversion. 

 

UPF also holds promise for next generation designs, which may 

involve techniques such as dynamic voltage scaling.  UPF already 

has features and capabilities that would support such designs.  

 

One currently missing capability is low power verification using 

emulation in order to address full system software verification.  

Emulation could speed up hardware-software co-verification 

significantly and therefore enable  verification scenarios such as 

Linux boot and actual application runs. However, this seems likely to 

become available in the near future. 
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