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Abstract—A fully verified address map on SoC level is one of the challenges in System-On-Chip (SoC) systems. The 

paper outlines why this is essential in the context of functional safety and security. Existing simulation and formal based 

verification techniques on their own fail to solve the problem. A method for solving this problem by a unique 

combination of equivalence class testing, simulation techniques and formal verification techniques is presented. The 

results prove successful application of the method to SoC verification and give some insight in the type of RTL defects 

which could be discovered.  
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I. MOTIVATION 

A fully verified address map is one of the challenges in System-on-Chip (SoC) verification and a primary goal 

for all semiconductor devices that are targeted for a safety application and/or including security features. This is 

driven by some megatrends which are increasing the importance of solving this challenge:  

SECURITY: An incomplete address decoding or the existence of undocumented registers provides potential 

backdoors that can be exploited by attackers to circumvent security features (i.e. areas only accessible within a 

specific lifecycle state, master and mode specific accesses). Mirrored address ranges are known to cause security 

vulnerability on SoCs throughout the industry. 

FUNCTIONAL SAFETY: Furthermore, functional safety requires proving the “Freedom from Interference” 

between software tasks; especially when these tasks are developed for different safety levels (e.g. “quality 

controlled” software vs. software developed according to an ISO26262 ASIL level). This implies the need to ensure 

there are no side effects between register accesses but also that the memory usage of different software tasks does 

not impact other software tasks. “Undocumented registers” and “mirrored address spaces” are on obvious violation 

of such a requirement. 

MULTI MASTER: The number of processors, DMA’s, encryption engines, Protocol Engines which can act 

as master within a SoC is constantly increasing. The need to verify the complete memory map for all those masters 

including any master specific deviation significantly increases the complexity of this task.  

MULTI-MODES: The increasing amount of security and safety features of SoC’s introduces additional 

“modes” of operation which often influence the memory map.  

As a result any memory map access is not anymore a function of the address but becomes a function of the 

address, the master, and any further SoC mode (e.g. safety,security) having an impact on the memory map 

decoding:.  

𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐹(𝑎𝑑𝑑𝑟𝑒𝑠𝑠,𝑚𝑎𝑠𝑡𝑒𝑟, 𝑠𝑎𝑓𝑒𝑡𝑦𝑀𝑜𝑑𝑒, 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑀𝑜𝑑𝑒) 
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II. STATE OF THE ART 

State-of-the-art verification methods for the verification of memory and register accesses suffer from the 

complexity of the resulting address map in combination with involved run-time and capacity issues: 

 Checking a single address by simulation requires a significant amount of simulation cycles (to be multiplied 

by the access sizes, the amount of masters, of the relevant SoC modes). As a result, already the verification 

of a 16KB address slot for one IP block for one combination already takes hours. Safety/security devices 

require this check for every master and every possible safety/security mode. Additionally have side effects 

between registers to be taken into account. 

 Formal verification involves the formulation of specific properties. Although possible, this is not trivial due 

to distributed modes/permissions and involved complexities. The bigger problem however is to get those 

checks proven on SoC level. This suffers from severe capacity issues that already cause verification at 

module level to require GBs of memory. The capacity problems result from the state-space-explosion on 

SoC level. Applying this within a SoC is significantly more complex since it needs to cover the path from 

the master to the data sink, taking into account the SoC modes, the multiple masters, etc. Getting such checks 

proven on the SoC level would require lot of abstraction such as abstracting to a single clock domain, 

abstracting IP, pipeline stages, arbitration etc. Those abstractions potentially cause to ignore relevant aspects 

and consequently miss a related defect. 

This makes a complete address map verification basically impossible by brute force methods. There are many 

methodologies for verifying register accesses and behavior in the SoC context. One of them, which is generating 

register tests based on an IP-XACT database is part of the approach presented within this paper. The generated 

stimuli can be applied by SoC simulation for validation purposes. In contrast to sub-module IP verification these 

tests guarantee the register and bitfield access in the context of clock domain crossing, MPU settings, register 

protection settings and other SoC aspects. Additionally they ensure that the SoC memory map as document in SoC 

reference manual the SoC specific parameterization of the sub-module IP. Due to simulation time limitations these 

approaches cannot be applied to large address ranges. On the other side, announcements in [3] mention, that formal 

methods can be applied for memory map verification but no dedicated method is described. The approaches of 

OneSpin [2] and formal register verification tookkits target to IP level register verification and are hard to apply on 

the SoC level. The methods [2] and simulation based methods are regarded as complementary.  

The systematic approach we present in the next chapter combines formal and simulation methods by means of 

equivalent class testing. A brief overview about equivalence class testing can be found in [1]. 

III. INTRODUCING A SYSTEMATIC APPROACH : HIERARCHIAL PARTITIONING 

The solution we have developed is a systematic break down of the verification space to enable equivalence class 

testing and the related partitioning. Subsequently the most suitable verification methodology can be selected for 

every equivalence class. The resulting scheme matches and goes along with the usual address decoding as it is 

applied in many SoC, and allows as such a natural selection of verification matters for corresponding SoC objects. 

The method has the capability to ensure that the applied equivalence class partitioning matches the SoC 

implementation by proving through formal methods; enabling to perform completeness and consistency checks for 

the performed verification The following picture depicts  the achieved hierarchical breakdown of the address space, 

and the resulting mapping to one of three possible checks: 

 accessible memory range 

 reserved range 

 peripheral register slot (which might be eventually broken down further) 
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The figure shows how the address range is broken down hierarchically. Both, the accessible memory range as 

well as the reserved memory range are assumed to be contiguous address ranges providing equivalent access 

behavior. Peripheral register slots are either broken down further, or covered by simulating verification patterns 

that are generated from a register database. 

Based on a high-level memory map specification as it is provided within a SoC Reference Manual, the above 

method enables a partition of the address range into equivalent classes, i.e. [accessible], [reserved] and [other]. For 

example: 

 Memories can have [accessible] and [reserved] equivalent classes. 

 Bridge modules can have [reserved] and [other] type of equivalence classes such as  [SRAM], [FLASH], 

[PERIPHERAL SPACE] etc., which usually can be broken down further … 

Formal verification is then used to confirm [reserved] and always [accessible] areas. Any ([other]) result to such 

an address range triggers an RTL bug or a wrong partitioning. Areas belonging to [other] classes can often be 

further broken down to their expected routing (e.g. a bridge access routed to the Flash) having many alternative 

access paths stay invariant. With the above methodology it is possible to break down any related  address space and 

decide whether a selected sub-address space is better simulated, verified by formal verification, or its partitioning 

need to be continued further (new iteration). 

 

IV. EQUIVALENCE CLASSES 

Equivalence class verification requires to understand and analyze the implementation. For example, suppose 

we have a 1GB FLASH address space, in which 256KB of FLASH is accessible.  

 

From a system point of view, the behavior of this FLASH block relates to the following pseudo-code:  
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At this abstraction level, only two “types” (equivalence classes) of accesses can be observed:  

[accessible] :  any access between memory address 0 and 0x3FFFF 

[reserved]:  any access to an address larger or equal than 0x40000 

 

From a behavioral point of view any access to an address within the memory range 0x00000 and 0x3FFFF 

behaves equivalent; dependent on the specified access properties. Of course the behavior can be further dependent 

on these properties; e.g. misaligned 32 bit accesses. However any access with equivalent properties to such a range 

will behave exactly the same. This even holds if the property “Accessible” and “Reserved” is not just a function of 

the address but a function of other attributes e.g. like a security_mode. In that case would the pseudo code look 

like: 

 

 

Hence, only two sets (classes) of properties need to be verified. Unfortunately, only two test cases are not 

enough, since a wrong implementation can introduce additional behavior: 

 

 

This bug can be discovered in three ways: 

1. Brute-force: simulate the design for all addresses. Given, the usual simulation run times, this is 

unrealistic; especially when different SoC modes need to be considered. 

2. By analyzing and reviewing the logic. Due to the involved complexity and the need to comprehend 

this by the human brain, this is only realistic for small designs with few lines of code. Furthermore it 

would need to be repeated each time the logic is modified. 

3. By exploiting formal methods and prove that all accesses below 256 kB range are accessible if SoC is 

in unsecure mode (1st property) and all accesses are reserved (2nd property). The formal tool will 

provide a counter-example if one of the properties does not hold in the design. In fact, the tool analyzes 

the code and the formal method provides evidence that the assumed equivalent class partition matches 

the actual RTL implementation. 

Once we have such a partitioning we can apply a technique inherited from equivalence partitioning; for 

which it is enough to test particular cases on the equivalence class to prove correctness (equivalence partitioning 

plus boundary value analysis). Therefore, what we can apply formal verification to prove existence of a proper 

equivalence class separation and break down the address map to significantly reduce the number of simulated 

test patterns. 

V. THE VERIFICATION FLOW 

In practice an iterative verification flow is performed which is shown in the following flow.  

if ( flash_address < 0x40000 ): 

access_flash(flash_address) 

else: 

respond_error 

if ( (flash_address < 0x40000) && (mode==unsecured) ): 

access_flash(flash_address) 

else: 

respond_error 

if ((addr<0x40000) && (mode==unsecured)): 

access_memory 

else if (addr==0x4cafe) 

 I_AM_THE BUG 

else: 

respond_error 
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VI. INVARIANT CONDITION 

Another issue that makes the verification of the complete memory space very complex are the many variations 

of accesses and access conditions that are in existence. To conquer this problem, a second concept has been 

applied: invariant conditions. For many elements within a system-on-a-chip, there are access properties, that 

are invariant – and do not alter between multiple conditions – and can therefore be used to reduce the 

complexity. Some typical examples for invariant conditions are: 

 a multi-core device, where multiple processor cores share a major portion of the address space, having 

equivalent access to any location within this address space 

 a “secure” address range, where only the “security” core  is permitted to access the contained memories 

and/or peripherals; any other bus master cannot access any location within this range 

 a “local” memory range, that is providing a dedicated memory for a particular bus master; this memory 

can only be accessed by this bus master 

 address ranges, that can only be accessed in test mode; but also address ranges, where there is no 

dependency on the selected mode (supervisor/user or test mode) 

Due to the importance of “invariant conditions” we hosted the master thesis [4] which developed methods for 

verifying such “access invariants” on bridge modules 

Without taking such invariant conditions into account, any possible access condition will result in the need to 

consider multiple accesses. When it is possible to proof the invariance of such a condition (eventually only for 

a particular range) for any resulting combination, it is possible to limit the verification to cover only a single 

combination (for the particular range). As such, invariant conditions are just a specialization of an equivalence 

class. Due to the complexity of the involved logic, proofing such invariant conditions is often only possible for 

a particular SoC element, i.e. a cross-bar or a peripheral bridge. However, when applied, such invariances can 

drastically reduce the verification space, as can be illustrated by the following examples: 
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 when it is possible to proof that any master connected to a cross-bar behaves equivalent, then only the 

accesses of a single master need to be verified 

 when it can be proven, that any access to a specific address range will be routed to a single slave port 

on a cross-bar, then only the slave devices connected to this port need to be verified for this address 

range. Additionally, all other slave ports can safely ignore this address range for the verification 

 when it can be proven, that toggling the wire transmitting the supervisor property does not have any 

impact on a particular set of SoC elements, then the corresponding verification can be done for a single 

mode; selecting either supervisor or user mode will not make any difference. 

When applied, it can also be used to verify differences between the used bus protocols, to ensure the involved 

translations are not affected by an actual access. 

The following example can be used to illustrate a possible break down of the address space, in its corresponding 

invariant conditions. Assuming a cross bar, providing multiple master ports to three slave, as shown in the 

following: 

 

  

First it might be possible to proof that all masters behave equivalent for any access to one of the master parts. 

Subsequently only a single master needs to be selected for the remaining verification steps. Secondly it might 

be possible to proof that any access to a certain address range selects slave port S0 (Flash), to another address 

range selects port S2 (SRAM), and to yet another address range selects port S7 (Peripheral). All other address 

ranges are forbidden to access (equivalent to [reserved]) and shall result in an error condition. This can be 

formally proven.  

The next level might now break down the corresponding address ranges; e.g. the Flash or SRAM address range 

might provide a certain valid range (related to the [accessible] condition), while the remaining portion of this 

address range cannot be accessed again (corresponding to a [reserved] condition). Furthermore write accesses 

to the Flash range may be forbidden or may be ignored, which provides another invariant condition that can be 

used to reduce the complexity of the verification task further. Similar applies to the peripheral space, that is 

usually broken down into peripheral slots, which are either [reserved] or provide access to a single peripheral. 

As it is described above, it is possible to avoid needless repetition of the same verification steps for different 

masters/slaves/SoC elements. By exploiting the address map hierarchy we can select the most appropriate 

method for a particular verification task. In fact, register and bitfield spaces are, on SoC level, better handled 

by generated stimuli because formal analysis would explode for accesses that come from a top-level module in 

the memory hierarchy (a core for example) and go down to a peripheral slot in the SoC. On the other hand, 

formal methods are very efficient to verify address ranges with repeating or equivalent access patterns. 
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VII. RESULTS 

 

In the following we show some examples of problems which have been identified and fixed: 

 Nested mirroring of address range could be identified. By nested we mean for instance a mirror within a 

16K peripheral slot which multiplies with a mirror of the complete peripheral area. 

 One safety relevant feature is the “Register Protection” which allows to lock configuration registers after 

configuration. It uses the register address within a 16K peripheral slot. One mirror within the peripheral slot 

allowed to bypass that mechanism. 

 One security relevant feature is a restricted programming of specific flash blocks. The mechanism uses an 

absolute address in conjunction with specific security modes. A global mirror allowed to bypass that 

protection logic. 

Overall we could identify several critical address map problems and fix those before silicon fabrication. A few 

of those even presented security vulnerabilities or affected safety mechanisms. Furthermore we provide better 

confidence for “freedom from interference” arguments which are based on the documented SoC address map.  

 

VIII. SUMMARY AND CONCLUSION 

During the verification process of SoCs we were able to develop the described methodology and perform formal 

verification of high-level address decoding by proving existence of equivalence classes. Additional verification has 

been performed by simulation of several hundreds of generated stimuli to target registers and bitfields. 

In conclusion, we can say that this methodology is an unique combination of formal verification and auto-

generated simulation based test cases, which can be applied in conjunction with equivalence class testing and proof 

of invariance conditions to achieve an increased confidence in the equivalence partitioning applied to reduce 

required simulation times. This methodology may allow for an increase in the quality of memory map verification 

and of documentation delivered to customers and to avoid security vulnerabilities and to confirm ‘freedom of 

interference’ required for safety applications.  
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