

Ace'ing the Verification of SOCs with

Cache Coherent Heterogeneous

Multiprocessors Targeted for Optimized

Power Consumption

Mehul Kumar, Broadcom Inc., San Diego, CA (mehulkum@broadcom.com)

Tushar Mattu, Synopsys Inc., Marlboro, MA (Tushar.Mattu@synopsys.com)

Amir Nilipour, Synopsys Inc., San Diego CA (Amir.Nilipour@synopsys.com)

Abstract
In most of the electronic devices that we use today, the requirements to have higher processing capabilities with

optimized power consumption has become a central theme. This is driven by a need for higher processing capabilities

while continuously optimizing on power consumption is imperative in most of the electronic appliances that we use today.

For such multi-processor intensive SoCs, there is a requirement to maintain coherency across the system (including

peripherals and the main memory). This is critical to have multiple applications working together. Creating stimulus for

cache coherent SoCs has become increasingly complex, with the requirement to create the correct random, yet coherent

traffic, while additionally ensuring that the system remains coherent. It is also important to also ensure that the

verification framework can validate that interconnect is able to maintain coherency or the fabric is able to handle all

cache line transitions across the different processors in the SoC.

In this paper, we look at two specific aspects while dealing with these challenges. First, we see how we can leverage

UVM based capabilities of AMBA 4 Coherency Extensions (ACE) based BFMs and Verification IPs to create the

necessary traffic patterns. This would involve hierarchically building up existing sequences and nesting them together to

create increasingly complex patterns. This would also involve building up the required configurability to manage the

different requirements expected of this system. This would go together with the monitoring framework that would

leverage the passive BFMs and components to monitor the increasingly complicated traffic across the fabric and verify

not only the functional response but also dump out the relevant performance statistics. Subsequently, we would want to

go down to the next level of abstraction where we look at how we can have a LP aware testbench with Power aware UVM

agents drive the verification of low power requirements of our systems with multiple cache coherent buses.

1. INTRODUCTION

The ACE specification enables system-level cache coherency across clusters of multi-core processors. The

verification of such a system poses significant challenges. When planning the functional verification of such a

system, we need to have an effective testing strategy to ensure not only that all aspects of the protocol are tested, but

also that bugs are caught with the least effort.

Our team has been involved in advanced verification of ARM based systems including AXI interconnect designs

for a few years resulting in successful tapeouts. However, the addition of cache coherency and low power design

requirements has instantly increased the verification complexity. Considering the immediate challenge of ramping

up our team on the protocol itself and planning for an effective and timely sign-off, made us consider the well-

mailto:mehulkum@broadcom.com
mailto:Tushar.Mattu@synopsys.com
mailto:Amir.Nilipour@synopsys.com

proven Synopsys VIP, enabling us to leverage its innovative features so we can solely focus on verifying the

intricacies of our design.

Figure 1 (Design Block a.k.a backplane)

In this paper, we will discuss a number of specific areas, where we faced most challenges in cache coherent and low

power design verification and how we addressed them during our verification.

2. CACHE COHERENCY VERIFICATION

Our ultimate goal was to focus on verifying the coherency aspects of our design by fully leveraging various

features of the VIP and not reinventing the wheel. These features span different areas appropriate to the task as hand

and are described below.

2.A Configuration

This was most critical piece to start with, to ensure parameters in our VIP agents match those in the design. Some

of these were easy to find based on experience but others were new such as:

 Address and Domain mapping

 Cache configuration matching with design caches

 DVM and Barrier etc.

Figure 2 illustrates the testbench topology that includes connections to both active and passive VIP agents over AXI

protocol interfaces of design.

Figure 2 Testbench Topology with AXI-ACE VIP

Figure 3 shows some of the configuration objects that need to be considered for proper operation.

Understanding what fields need to be configured along with all their possible values can be a cumbersome and

error prone task. The VIP configuration creator (figure 4) came handy to provide drop down list of attributes with

pre-populated values to be selected interactively. This method will result in valid configurations as tool implicitly

validates its correctness per protocol.

Figure 4 VIP Configuration Creator

However, one can always manually edit various configuration objects in the environment as shown in Figure 5.

class cust_system_configuration extends svt_axi_system_configuration;

 for(int i=0;i < `NUM_MASTERS ;i++) begin

 master_cfg[i].is_active = 1;

 master_cfg[i].axi_interface_type = svt_axi_port_configuration::AXI_ACE;

 master_cfg[i].snoop_data_width = 64;

 master_cfg[i].cache_line_size = 64;

 begin
 int inner_domain_masters_0;
 inner_domain_masters_0 = new[2];
 inner_domain_masters_0 = {0,1};

 void'(create_new_domain(0,svt_axi_system_domain_item::INNERSHAREABLE,inner_domain_masters_0));
 set_addr_for_domain(0,64'h100000000,64'h1ffffffff);

..

endclass

Figure 3 AXI/ACE Configuration Objects

Figure 5 Manual Edit of System Configuration

We still faced some initial hiccups with first run of the tests such as the following scenarios:

 Snoop control register not configured in design

 Mismatch in speculative read configuration compared to Design

As the following run time UVM error message shows, the inbuilt VIP system checkers helped to isolate the failures

for mismatching configuration on cache line size versus number of bytes transferred in full cacheline transaction

(CLEANINVALID).

2.B Stimulus and Coverage

 Many types of predefined coherent sequences from VIP library can be registered with AXI or ACE component

sequencers that exist in the AMBA System environment. Some sequences work at the master and slave agent port

levels, while others work at the system virtual sequencer level where multiple master and slave agents are involved.

Generating correct and efficient stimulus from AXI masters is complex and involves careful consideration of many

factors some of which are described below and shown in figure 7.

 All the legal initial states of the cache lines for various masters need to be generated and responses

validated.

 As the problem space is further expanded with the final cache line state (after a transaction ends) being

determined by various configuration options, all the response types for each initial cache line state need to

be tested.

 Since accesses to overlapping addresses can be initiated, need to ensure that all the rules are correctly

followed by the interconnect when two masters access the same/overlapping address.

Figure 7 Cache Line Verification Complexity

Figure 6 Messages from VIP System Monitor

UVM_ERROR : 6075 ns :

[register_fail:AMBA:AXI_ACE:cache_line_arsize_valid_check] Description: Monitor

Check that the total number of bytes transferred in the transaction is equal to

the cache_line_size! - cache_line_size = 2048 (bytes). burst_size =

BURST_SIZE_128BIT. burst_length = 4. coherent_xact_type = CLEANINVALID :

Most of the above scenarios were covered by use of VIP test suite, which provided the capability to program

required number of participating masters and to customize target address ranges etc. However , initially some of the

desired sequences didn’t exist as part of test suite, but were made available by Synopsys extracting from their

internal regression suite.

Usage of these test suite sequence was as easy as to select the sequence and set it to VIP provided AXI system

sequencer in uvm_build_phase() of a uvm_test inherited class as shown in figure 8 for system, master and slave

sequencers respectively.

By setting specific weights on required kind of transactions within the VIP built-in coherent sequences, very high

level of coverage was achieved per our coverage needs.

Figure 9 shows a how the sub-sequences of a hierarchical sequence initiate the required cache line initialization from

peer ACE master port to put cache of targeted master port to one of the desired valid state, and create the required

coherent transaction from that targeted master.

Figure 9 Example of a built-in hierarchical sequence

Leveraging VIP provided sub-sequences enabled us to create specific and custom scenarios to ensure coherency

across caches and memory is not broken at any time.

VIP System Monitor was key factor to point out any system coherency violation, data integrity and transaction

routing issues.

uvm_config_db#(uvm_object_wrapper)::set(this,

"env.axi_system_env.sequencer.main_phase", "default_sequence",

svt_axi_ace_master_two_port_overlapping_add_store_sequential_sequence::type_

id::get());

uvm_config_db#(uvm_object_wrapper)::set(this,

"env.axi_system_env.master[0].sequencer.main_phase", "default_sequence",

svt_axi_basic_writeback_full_cacheline::type_id::get());

uvm_config_db#(uvm_object_wrapper)::set(this,

"env.axi_system_env.slave[0].sequencer.main_phase", "default_sequence",

svt_axi_slave_memory_suspend_response_sequence::type_id::get());

Figure 8 Using VIP Built-in Sequences

System Monitor also ensured that protocol specific ordering is followed, when there is concurrent accesses to same

cacheline OR coherent and snoop happening at the same time.Even beyond that , errors flagged by System Monitor

helped us clean up testbench issues like missing pin connection , configuration mismatch etc.

VIP also provided a robust coverage model, which we customized with combination of cover group enable switches

and Verdi exclusion mechanism wherever finer granularity was needed. Customized covergroups were developed

based on our design-testing requirement by copying and modifying similar ones from VIP open source

documentation...

While there was need to ensure system wide coherency, there was another aspect to our design verification that

whenever system goes to low power mode, all the testbench components need to align with that requirement and all

initiated traffic and its associated snoops should be completed in all means from request to response. Using VIP

provided APIs and events, we were able to query for transactions to conclude the traffic before initiating power

down sequence. In the following section, we will detail the low power requirement for design verification and how it

was achieved.

3. AXI LOW POWER VERIFICATION

3.A INTRODUCTION : CLOCK TREE, POWER RELATION

ASICs designed for applications like mobility, tablet computing, handheld devices etc. have a mandatory

requirement for low power consumption to facilitate longer battery life. A common methodology adopted to reduce

power consumption on SOC is clock gating. It is a technique to reduce the dynamic power consumption by turning

off the sequential circuitry or flops during an idle state of operation. During this period of non-operation the circuit

would gate off all clocks that are not needed anymore.

3.B SCHEMES TO CONSERVE CLOCK TREE POWER

In SoC designs clock gating may be done at two levels:

 Internal Clock Gating cells insertion: During synthesis, the tools identify groups of FFs which share a

common enable control signal and use them to selectively switch off the clocks to those groups of flops.

 Implementing traffic aware clock controllers are another way of shutting off clock to entire logic cone. It

stops the clocks for individual blocks when those blocks are inactive. Since large cones of logic are not

switching for many cycles it saves substantial dynamic power. The simplest and most common form of

clock gating is by use of “AND” to selectively disable the clock to individual blocks by a control signal.

This section would provide more detail on AXI based clock controllers to turn off clock for the backplane fabric.

Design clock gating Requirement from AXI controller perspective :-

1) Deep sleep Mode :

This is mode where SoC enters ultra-power saving state thereby doing the following :

a) Turning off all clocks , thereby using the C channel to request clock controllers to gate off clocks

b) Assertion of all isolations and resets

c) Turning off Bucks and LDOs to except always ON domain to conserve power

d) Finally turning off Crystal clock thereby completing the power mode entry

Wake up process was exactly same in reverse order , except that BUCKs are turned on before XTAL

clock. This was verified in simulation using same AXI VIP agents for backplane clock gating with and

without UPF. To run without UPF bench needed to emulate all isolations and power turn-off behavior

using forces.

2) Dynamic Low Power Mode:

Figure.1 represents AXI based SoC architecture with multiple NICs and CCI controller. The design

requirement for dynamically turning off backplane clocks when PCIe link is in L1.1 would help save

power. Since the traffic is absent to-from IPs, SoC should be able to gate clocks to either individual AXI

ports or entire backplane depending on the C-channel handshake. This would enable to save power on logic

cone working on AXI port clock. The system clock controller could easily utilize the C-channel of AXI to

gather control information of which interface is requesting clock to be turned on or off.

3.C AXI BASED C CHANNEL CLOCK GATING

The low-power clock control interface consists of the following signals:

 A signal from the peripheral indicating when its clocks can be enabled or disabled

 Two handshake signals for the system clock controller to request exit or entry into a low-power state.

The CACTIVE signal indicates whether the peripheral requires a clock signal. The peripheral asserts

CACTIVE HIGH when it requires the clock to be enabled, and the system clock controller must enable the

clock immediately.

The peripheral deasserts CACTIVE to indicate that it does not require the clock.

CSYSREQ The system clock controller uses the CSYSREQ signal to request:

Figure 8 Typical flow for requesting entry(Left) and exit(Right) to low-power state

 The peripheral enters a low-power state. The system clock controller drives the CSYSREQ signal LOW to

initiate the request.

 The peripheral exits a low-power state. The system clock controller drives the CSYSREQ signal HIGH to

initiate the request.

CSYSACK The peripheral uses the CSYSACK signal to acknowledge:

 The request to enter the low-power state. It drives CSYSACK LOW when it recognizes this request.

 The request to exit from low-power state. It drives CSYSACK HIGH when it recognizes this request.

Figure 10

3.D CHALLENGES & MOTIVATION

To verify dynamic AXI based clock gating scheme requires interface level monitoring of C-Channel and overall

scoreboard which could capture port states published by individual port monitors and use that information to

implement overall abstract checks. Such implementation would need maintenance and since it is part of AXI

specification, it became a motivation to collaborate with Synopsys to come up with C-Channel interface level

monitor/checker as part of SVT AXI package. This would alleviate maintenance, compliance to AXI specifications

and standardization issues. Only customer specific implementation would be an end-end to scoreboarding depending

on SoC clock controller behavior based on the c-channel handshake information being published by SVT-AXI

monitors.

Here are examples of many such useful transaction field provided by VIP monitor to build custom scoreboard:

 Whether the object is related to power down handshake or power up handshake.

 Initiator of the powedown/powerup – Either peripheral or clock controller

 Number of cycles it took to complete the handshake.

 Number of clock cycle delay between different signals (cactive to csysreq; csysreq to csysack; etc)

Below are some of design issues which were caught by the combination of custom scoreboard and VIP checker

 Outstanding responses when the controllers request the clock turn off, therefore dropping responses.

(scoreboard)

e.g:

Clock not turning on:

UVM_ERROR @ 118555.1ns: [scoreboard] csysack_cd_clk_sysm not changing as expected

Clock not turning off after required N clock cycle expiry:

UVM_ERROR @ 119473.2ns: [scoreboard] cactive_cd_clk_sysm csysreq_cd_clk_sysm not changing as

expected after Timer timeout

 Error response needing IPs to take corrective action, whereas the gating logic requests clocks to be turned

off. The new request would wake up the controller however, it would incur latency penalty on retries every

time clock is shut off. (scoreboard)

 Clocks are never turned off even when the interface remains idle for required amount of time (VIP check)

 C-channel handshake protocol signaling adherence (VIP check)

 Requests from IPs do not result in clocks to be turned on. (VIP check)

3.E STEPS TO INTEGRATE AXI SVT LOW POWER AGENTS

SVT AXI LP Monitor

Module Top

 svt_axi_if should be present in the module top.

The ‘svt_axi_if’ interface now also contains an array of low power interfaces, lp_if[] in addition to

master_if[] and slave_if[].

 Connect clock, reset and low power signals to lp_if. Signals of low power interface are aclk, aresetn,

cactive, csysreq and csysack

System Configuration

Low power configuration is required in the system configuration file with following:

Configuring the number of low power masters using the attribute num_lp_masters

Enable/disable low power protocol checks using protocol_checks_enable. This is enabled by default.

Low power master monitors have ‘item_observed_port which collects and write low power transactions whenever

low power activity is observed on the bus.

Example class snippet is given below. Master and slave configurations are not included.

axi_system_env.lp_master[0].monitor.item_observed_port.connect(lp_listener.analysis

_export);

this.num_lp_masters = 1; //This needs to be configured before create_sub_cfgs()

assign axi_if.lp_if[0].aclk = clk;

assign axi_if.lp_if[0].aresetn = rstn;

assign axi_if.lp_if[0].cactive = cactive;

assign axi_if.lp_if[0].csysreq = csysreq;

assign axi_if.lp_if[0].csysack = csysack;

svt_axi_if axi_if();

class cust_svt_axi_system_configuration extends svt_axi_system_configuration;

 function new (string name = "cust_svt_axi_system_configuration");

 super.new(name);

 /** Assign the necessary configuration parameters.

 */

 this.num_masters = 1;

 this.num_slaves = 1;

 this.num_lp_masters = 1;

 this.lp_master_cfg[0].protocol_checks_enable = 1'b1;

endfunction

endclass

System level scoreboard

 Provide write implementation for the individual analysis ports of each LP agent

 Capture the C-channel information published as below:
UVM_INFO ./env/axi_basic_env.sv(45) @ 490000: uvm_test_top.env.lp_listener [lp_listener] inside

write method

Name Type Size Value

lp_entry_obj svt_axi_service - @1749

 causal_xact object - <null>

 implementation da(object) 0 -

 original_xact object - <null>

 trace da(object) 0 -

 lp_entry_active_req_delay real 64 185.000000

 lp_entry_req_ack_delay real 64 115.000000

 lp_exit_prp_active_req_delay real 64 0.000000

 lp_exit_prp_req_ack_delay real 64 0.000000

 lp_exit_ctrl_req_active_delay real 64 0.000000

 lp_exit_ctrl_req_ack_delay real 64 0.000000

 lp_exit_ctrl_active_ack_delay real 64 0.000000

 lp_handshake_type lp_handshake_type_enum 32 POWER_DOWN

 lp_initiator lp_initiator_type_enum 32 PERIPHERAL

 lp_active_assertion_time real 64 190.000000

 lp_req_assertion_time real 64 375.000000

 lp_ack_assertion_time real 64 490.000000

 begin_time time 64 190000

 end_time time 64 490000

 Implement clock controller behavior

 Capture port clock state and flag any errors in case the clocks are not turned off/on

4. CONCLUSION

The verification performed with combination of Synopsys-SVT and end-end Scoreboard lowered risk and

provided necessary confidence on RTL implementation of complex dynamic clock gating scheme deployed in the

SOC. The design issues are caught early in the RTL design cycle using the methodology proposed. Initially the

verification effort sounded complex with additional complexity of Coherency protocol (AXI-ACE) and Low power

design aspect. However due to the capabilities and ease of integration provided by Synopsys VIP , the bulk of

verification cycle was spent in writing design specific tests, checks and coverage.

