
ACE’ing the Verification of a Coherent System Using UVM

Romondy Luo
Synopsys

Zhaofeng Plaza,
Shanghai

+86.212.307.2379
rluo@synopsys.com

Ray Varghese, Parag Goel, Amit Sharma, Satyapriya Acharya

Synopsys RMZ Infinity, Bangalore,
0091.80.40180000

{rayrv, paragg, amits, acharyas}@synopsys.com

Peer Mohammed
MindSpeed Technologies

Hyderabad
+91 40 43402429

peer.mohammed@mindspeed.com

ABSTRACT

The need for higher processing capabilities while

continuously optimizing on power consumption is imperative

in most of the electronic appliances that we use today. This

is fed by the requirement to run compute intensive

applications such as video editing, image processing, image

recognition, gaming engines and so on. It is well understood

that multi-processing is a more efficient mechanism to

achieve this instead of pushing the boundaries of single core

processor. In addition, there is a need to move towards

virtualization of the SoC‟s, which increases the processing

power efficiency, by enabling the ease of feature integration

with minimum effort. However with multi-processor

intensive SoC‟s, there is a requirement to maintain coherency

across the system (including peripherals and the main

memory). It is critical to have multiple applications working

together either simultaneously or in synchronism and the

new AMBA 4 Coherency Extensions (ACE) helps in this

scenario. ACE provides hardware-level cache coherency and

is primarily aimed at multi-processor ARM Cortex-A15

designs for mobile devices.

Now, verifying and validating a coherent system can pose

significantly complex problems for the verification engineer.

This is where a robust verification methodology can come to

the rescue. A powerful Verification Methodology empowers

the verification engineer to help leverage the constrained

random capabilities in the language to create configurable

stimulus to help verify a wide range of functionalities. UVM-

1.1 which was released recently provides a very flexible

mechanism of achieving this. Thus, by using the case study

of the Synopsys® Verification IP (VIP) for AMBA AXI, we

will demonstrate how a set of sequences and a sequence

library along with other UVM base class functionalities can

be leveraged to meet the various challenges in the system-

level validation of such cache coherent systems.

Categories and Subject Descriptors
Methodology – UVM, VIP, re-use philosophies

General Terms
Management, Performance, Verification, Design,

Standardization

Keywords
AXI4, ACE, VIP, UVM, Layered Protocol, SystemVerilog

1. INTRODUCTION

The AMBA 4 specification now features AXI coherency

extensions (ACE) in support of multi-core computing. The

ACE specification enables system-level cache coherency

across clusters of multi-core processors. When it comes

down to the functional verification of such a system, these

coherency extensions brings their own complex challenges.

Some of these can be,

 System-level cache coherency validation: At any given

time, whether the ACE Interconnect is able to maintain

cache coherency across the different ACE Masters in the

system.

 Cache state transition validation: Whether the ACE

interconnect is able to handle all cache line state

transitions in ACE Masters in the system

At a high level, this requires a high degree of configurability

and responsiveness in the stimulus generation infrastructure.

In terms of validating the System-level cache coherency, a

robust checking mechanism also needs to be created. We

show how the UVM configuration mechanism is leveraged

to bring in the configurability of the sequences. This

mechanism also enables the reactive sequences to create the

right stimulus for the respective VIP

(Master/Slave/Interconnect) components. Given that the

coherency has to be maintained across multiple masters, this

has to be enabled through the system-level components (and

also sub-system). Using the UVM resource mechanism and

ACE interconnect in different modes(Active/Passive), we

demonstrate how to check the cache coherency using a

combination of front-door and backdoor accesses to it. The

UVM hierarchical phasing schemes and configurable

sequences are also leveraged to model various transitions for

the system which ensures complete verification closure. To

handle such a complex system, an appropriate debug

environment is also provided to the verification engineer to

debug the environment at different levels of abstraction using

the base UVM infrastructure.

2. OVERVIEW OF THE ACE PROTOCOL

Cache coherency refers to the consistency of data stored in

the local caches of a shared resource. When clients in a

system maintain caches of a common memory resource,

problems might arise with inconsistent data among caches or

main memory. This is particularly true for CPUs in a

multiprocessing system. The cache coherence is intended to

manage such conflicts and maintain consistency between

cache and memory.

Figure 1: Cache Coherent Components

The ACE protocol extends the AXI protocol and provides

support for hardware-coherent caches. The ACE protocol is

implemented by using,

 A five state cache model to define the state of any cache

line in the coherent system. The cache line state

determines what actions are required during access to

that cache line.

 Additional signaling on the existing AXI channels that

enables new transactions and information to be

conveyed to locations that require hardware coherency

support.

http://lookup/lookup/click2dial/lookup-click2dial.cgi?dialstring=%2B86.212.307.2379%20SVN:%2072379

 Additional channels that enable communication with a

cached master when another master is accessing an

address location that might be shared.[6]

2.1 COHERENCY MODEL

The ACE protocol ensures that all master components

observe the correct data value at any given address location.

The coherency protocol ensures that all masters observe the

correct data value at any given address location by enforcing

that only one copy exists whenever a store occurs to the

location. The following is an example of an ACE based

Coherent System:

Figure 2: Cache Coherent System

The masters initiate requests and often contain a cache. An

Interconnect connects one or more masters to one or more

slaves. When a transaction requires coherency support, it is

passed on to the coherency support logic within the

Interconnect. After each store to a location, other masters can

obtain a new copy of the data for their own local cache,

allowing multiple copies to exist. The Interconnect can

initiate “snoop” transactions to access cache lines in the

master cache.. A cache line is defined as a cached copy of a

number of sequentially byte addressed memory locations,

with the first address being aligned to the total size of the

cache line. There is no requirement to keep main memory up

to date at all times. Main memory is only required to be

updated before a copy of the memory location is no longer

held in any shareable cache.

The ACE protocol enables master components to determine

whether a cache line is the only copy of a particular memory

location, or if there might be other copies of the same

location, so that,

 If a cache line is the only copy, a master component can

change the value of the cache line without notifying any

other master components in the system

 If a cache line that is also be present in another cache, a

master component must notify the other caches, by using

an appropriate transaction.

Besides these, there are additional specifications centered on

the granularity of coherency, access rights, cache line state

updates, protocol transactions, protocol channels and

transaction flows. [6]

3. CHALLENGES IN THE VERIFICATION

OF A CACHE COHERENT SYSTEM

With coherency support now in the hardware with an

associated protocol to support it, the complexity of the

system and the underlying components has increased

substantially. The verification of such systems needs to deal

with several challenges.

3.1 COMPLEX STIMULUS REQUIREMENTS

An ACE system can have a variety of Masters and Slaves

connected by a coherent interconnect. Individually each

Master and Slave component can support complete ACE,

ACE-Lite, AXI4 or AXI3 protocol and might work with

different bus width or clock frequency. The different

permutations involving the following parameters at large:

1. Cache states,

2. Transaction types,

3. Burst lengths, burst sizes,

4. Snoop mechanisms, snooped cache states, snoop

responses,

5. Support for speculative fetches,

6. Support for snoop filtering, and

7. User-specified scheduling of interconnect.

All these cross combinations lead to a very large verification

space. The challenges for generating stimulus mapped to all

of these include:

 Ensuring each individual Master, Slave or Interconnect

is fully compatible with the protocol it supports

 Ensuring all possible combinations of concurrent access

among initiating masters, snooped masters and slave

main memory are verified and are in compliance with

the ACE specification

 Ensuring all user-specific features are covered and

working as expected

 Providing a complete coverage model to ensure the

completeness of verification.

3.2 SYSTEM LEVEL SELF-CHECKING

The ACE System can have a complex configuration of

Masters, Slaves and Interconnect. Some of them can be RTL

components with or without a local cache, while others can

be VIPs or behavioral models. With such complex

configurations, the system-level checks should be able to

handle a lot of complexity. Some of these are:

 Most of the details of an AXI3/AXI4 transaction are

presented on the bus. However, for an ACE system,

many details of an ACE transaction are not presented on

the bus. Some of these are not propagated as it gets

routed through the Interconnect. Some of these

attributes map to the store/load/update/evict of the local

cache line by the ACE Master, or by Interconnect which

initiates a snoop

 Multiple Masters would send out coherent transactions

and at the same time receiving snoop transactions that

might access the same location

 The ACE Master and Slave components support

outstanding, interleaving and out-of-order transactions

All these make it very difficult to predict what the expected

results should be. The more complicated checks would be,

 The snoop mechanism: The system-level checks should

be aware of which master should or should not be

snooped. The information such as the cache line state in

each master or the source master of a snoop transaction

will not be present on the bus. There might be instances

of a user-defined snoop scheduling. For example, the

snoop can be done in a broadcast manner, which means

all the snooped master are snooped at almost the same

time with the same type of snoop transactions, or in a

sequential manner, which means the snooped masters

are snooped at different time with different type of

snoop transactions.

 The snoop response: Each „snooped‟ master should

respond properly based on the cache line state in its local

cache. However, the cache line state of a „snooped‟

master changes dynamically between the “snoop start

phase” and “snoop end phase”. These states can

encompass an implicit local store or invalidation sent by

it, an explicit writeback/writeclean/evict transaction sent

by it, or any unfinished outstanding snoop transactions

on its channel sent by other Masters.

 The slave memory access: The system-level checker

must check for the appropriate slave operation that must

happen on the slave bus for an access. A slave access

can be generated from a non-snoop transaction, a

speculative fetch, cache miss fetch or a PassDirty

propagating (Refer APPENDIX). It can also result from

partial line merged to full line propagating; or direct

coherent write.

 Data integrity check: Different transactions can have

different actual (data in the cache or in the main

memory)/expected (local data queues) data sources.

Even for a single transaction the data sources can be

varied. The system-level checker must monitor the

whole ACE system to decide where the expected/actual

data should come from. For example, a ReadOnce

transaction from ACE master can have the expected data

source on any of these: a local cache copy before the

transaction is sent (speculative read); the local cache

copy after a coherent response (allocate after read), a

snooped master‟s cache (cache hit), a slave memory

(cache miss) and an ACE bus (does not allocate after

read). The data checking becomes all the more

challenging because as interconnect can modify a

transaction issued from coherent master. So it is not easy

to map a slave memory access to a coherent transaction

initiated by a master.

 Cache coherency check: The system-level checker

must monitor the whole ACE system to decide when and

what type of operation might cause a cache line change.

Whenever there is a cache line change, it needs to check

if there is any loss of coherency. The checks include

“cache vs. cache” comparison and “cache vs. slave

memory” comparison. The two important cacheline

checks are as follows:

1. A cacheline can be held in a dirty state only in one

master's cache

2. A cacheline can be held in a unique state only in

one master's cache

 User-specified features: Such might have impact on the

prediction of the expected behavior. For example,

interconnect scheduling/priority can affect the behavior

of snoop and slave accesses. Support for unaligned/cross

line access can affect how many times the snoop/slave

access will happen. Support for different bus width can

affect the burst type and burst length difference between

masters and slaves.

3.3 REUSE REQUIREMENTS

Horizontal and Vertical reusing of block-level environments

has its own set of unique challenges. In the context of

vertical reuse, some of the ACE components can be replaced

with actual RTL models.

Thus, the testbench or the verification components should

provide the infrastructure to be able to factor in the behavior

of the RTL components at various protocol phases, for

example, during the initiation state of an ACE DUT master,

the end state of a snoop transaction, the cache state transition

after a local store/invalidation and so on. Horizontal reuse or

reuse across the projects can be more complicated.

The different projects can have different numbers of Master

and Slave components complying with a different subset of

the complete protocol. The large number of ACE masters

with different levels of protocol compliance complicates the

expected result of a coherent transaction. The increasing

number of caches leads,

1. To more concurrent overlapping accesses to the same

location,

2. To more complex snoop scheduling and responses

This makes it more difficult to predict the snoop hit or miss.

To support the maximum reuse, configurability of different

verification components is vital.

4. UVM STIMULUS GENERATION

INFRASTRUCTURE OVERVIEW

It is quite apparent that the stimulus generation schemes have

to be sophisticated and configurable to meet the complex

verification requirements of the ACE cache coherence

capabilities. The UVM base class library provides significant

functionalities in string together a robust and configurable

stimulus generation infrastructure.

uvm_sequence is the basic building block to help model

complex verification scenarios. The figure below illustrates

the basic UVM stimulus generation mechanism.

Figure 3: Stimulus Communication with Testbench

Components

Typically, one would start with some atomic sequences and

move towards creating complicated ones as the basic

functionality is verified. Instead of creating a flattened logic

in the sequence body, hierarchical or nested sequences can

be created which leverage the basic sequences which have

already been created.

Figure 4: Nested Sequences

This can go upto multiple levels of hierarchy and thus it

becomes possible to converge towards meeting the

requirements of the most complex scenarios.

As the complexity increases across multiple ACE

components, there might be a requirement to coordinate the

sequences across multiple sequencers and drivers. This can

be handled through virtual sequences and sequencers

Figure 5: UVM BCL Interaction

Now each „sequence‟ extending from uvm_sequence has a

reference (m_sequencer) to the sequencer on which it is

supposed to execute. So, whenever a sequence is executed on

a sequencer either directly through a sequence.start() or by

setting it as the default_sequence of a sequencer in a specific

phase, the „m_sequencer‟ variable is appropriately set. A

virtual sequence which basically orchestrates multiple

sequences can execute only on the virtual sequencer. It is

ensured that the individual sequences within are

appropriately executed on the desired sequencer by mapping

these to the real sequencers instantiated within the virtual

sequencers (route „B‟ in figure 4). This infrastructure can

also be leveraged to enable the sequencer composition to

create a layered protocol implementation

The other important functionality from a stimulus generation

perspective is the grouping of sequences and the creation of

hierarchical sequences. In UVM, it is possible to group

similar sequences together into a sequence library.

Figure 6: UVM Sequence Library Package

The „uvm_sequence_library‟ is used to create a sequence

library. The `uvm_sequence_library_utils(class_name)

would build the library infrastructure. Any sequence can be

registered to the sequence library through the

add_typewide_sequence() method of the library.

Once the library is registered to be the default_sequence of

any sequence, the default functionality causes a random

number of sequences to be picked up and executed. Now, the

default mode of sequence library can be modified by

changing the parameters of the

uvm_sequence_library_cfg class. The user can cause specific

number of sequences to be picked up, enable random cyclic

sequences and can also program a user defined sequence

execution. Hence, without having to write multiple tests, the

user can create user defined sequence execution across

multiple sequence libraries across different interfaces

through a virtual sequencer to create a stimulus management

setup which would help meet all the stimulus generation

requirements much faster.

5. OVERVIEW OF THE UVM Based ACE

VERIFICATION VIP

The Synopsys Verification IP (VIP) for AMBA AXI is a

suite of SV UVM-based verification components that

provide a complete UVM-based verification solution for

ACE protocol. The AXI ACE VIP provides a System

Environment component with a configurable number of ACE

Master and Slave agents, a System monitor and an

Interconnect component. The VIP also has a purely SV

architecture that eliminates the need for wrappers giving

much improved performance and complete alignment with

standard SystemVerilog methodology. The architecture

without any gaskets enables users to leverage the underlying

SV UVM methodology to the fullest extent. This also brings

in inherent visibility and control. As the entire VIP runs

natively in the simulator, there are no layers to slow it down.

New features can easily be added to help in protocol centric

debug and in providing a simple configuration interface to

the VIP. This also ensures portability across all simulators.

The VIP leverages most of the functionality mentioned in the

previous sections and the UVM Resource Mechanism to give

the configurability and the sophisticated stimulus generation

requirements in the ACE context.

Figure 7: AXI ACE System Environment

The Master agent generates constrained random ACE

coherent transactions, and responds to the ACE Snoop

transactions concurrently. It also allocates cache lines and

performs cache state transitions to the various cache states

based on the transactions it sends and receives by using a

built-in cache model. The user has back-door access (through

API‟s in the cache model) to the cache model to allocate, de-

allocate or query the cache lines. The Slave agent responds to

read/write requests and models the memory for the system. It

also supports ACE-Lite requirement through simple

configuration parameters. The Interconnect Environment

component receives coherent transactions from the initiating

master, and generates appropriate snoop transactions to the

other masters based on domain information. It then responds

to the coherent transactions based on responses received

through snoop transactions.

The Master and Slave agent instantiate the Port Monitor

which continues to be available when the agents are

configured in the passive mode. These monitors perform

port-level transaction checks, signal stability checks and

sequencing between ACE coherent and snoop transaction

checks. Another key component of the ACE solution is the

System Monitor. The System Monitor performs system-level

checks, coherency checks and data integrity checks. As

certain checks are dependent on design behavior, the system

monitor also provides hooks to implement design-specific

checks. The built-in coverage supports ACE coherent and

snoop transaction coverage. The cache state transition

coverage helps to validate whether the master‟s cache has

transitioned through all the legal cache states. The coverage

can be used in conjunction with ACE Verification Planner to

track the verification progress.

6. SOLVING CACHE COHERENCY

VERIFICATION CHALLENGES

The verification strategy for a cache coherency system can

be broken down into different stages. They would be :

 Integration testing : This would involve all the different

VIP and RTL components are appropriately hooked up.

Pre-defined sanity tests shipped with the VIP and the

sequences shipped with the UVM register package can

help in this regard.

 Basic Testing: Here stimulus generation is directed

towards single interfaces. All different transaction types

and the combination of all valid cache line states should

be validated in this stage

 Intermediate Testing: This would involve specific

scenarios involving multi-master communication. Some

example sequences could be those involving overlapping

„writes‟ and „snoops‟ during memory updates

 Advanced Testing: In this stage, system level stimulus

mapped to different traffic profiles would be generated

and all the checks enabled to verify the correct

operation.

The following subsections capture how different challenges

are addressed in the context of stimulus generation, system

level checks, hierarchical phasing, coverage tracking and

management and debug.

6.1 STIMULUS GENERATION

The VIP components are complemented by a library of

configurable ACE sequences. These sequences weaved

together form virtual sequences and sequencers further aids

in scenario creation at the block, cluster or system level

across various masters and the Interconnect. Additionally,

the UVM sequence library enables the user to control the

different permutations by which atomic and hierarchical

sequences can be stitched together to create the complex

scenarios depicted above.

Creating custom rules for the sequence library would not

only help to streamline multiple sequences in different

simulations but also to avoid redundancy and move

progressively towards convergence of all interesting system-

level scenarios. Again, in such scenarios, the sequences have

to be aware of the functional configuration so as to be able to

reconfigure itself based on the system-level requirements.

6.1.1 CREATING CONFIGURABLE SEQUENCES

There might be specific requirements when the sequences‟

constraints or properties depend on the values in the

configuration object. The UVM Resource mechanism is used

in the AC sequences to bring in the configurability as shown

below:

Figure 8: Configurable Sequence

Though the hierarchical UVM configuration mechanism is

designed around components, the non-component object can

access the configuration field through the component handle.

In case of sequences, „m_sequencer‟ is the handle to the

sequencer that executes the sequence. It is a built-in member

of the uvm_sequence class. The configuration parameter can

be accessed in a hierarchical context through the

„m_sequencer‟ handle as shown below.

uvm_config_db#(int)::get(m_sequencer,“”,

"item_count",item_count);

The „set‟ of the parameter is as follows:

uvm_config_db#(int)::set(this"env.agent.seqr", "item_count",

20);

Therefore, when parameters change in a dynamic

environment, the ACE sequences can reconfigure themselves

to meet the generation requirements at that point in time.

Thus, for different Master and Slave component which

might support a subset or full ACE, ACE-Lite, AXI4 or

AXI3 protocol and might work with different bus width or

clock frequency, the sequences can be reconfigured to work

with each of their associated sequencers.

6.1.2 HIERARCHICAL SEQUENCE STITCHING AND

SEQUENCE LIBRARIES

The range of functionalities supported by the protocol ranges

from ones that can be mapped to atomic transactions to ones

which would run into hundreds of lines of testbench code.

The sequence collection has a rich set of functionality. There

are sequences to initiate all the possible coherent

transactions, Sequences which do not cause a snoop of any

cached masters, which must cause a snoop of the cached

masters that can hold a copy of the cache line, which must

cause a snoop of any of the cached masters that can hold a

copy of the cache line and more.

Hence, given the functionality that UVM provides, it is much

more convenient to stitch together complex scenarios from

low level ones which has been proven or validated. This is

how the ACE higher level and virtual sequences are built up

and here we can see how custom user scenarios can be built

using the sequence collection.

Let us take the case where we need to verify that all the

cacheline states associated with a Readclean transaction

needs to be tested. This would require a cacheline

initialization followed by cacheline invalidation then a basic

Readclean. A cacheline initialization sequence initializes the

cacheline states of a master's cache and its peer's caches to a

set of random but valid states. This ensures that all the

different cacheline state transitions for a coherent transaction

initiated by a master are verified. A cacheline invalidation

sequence invalidates cachelines of a master. This may be

required for load type of transactions which are not

speculative. A basic Readclean sequences initiates a

Readclean transactions over a given set of addresses. The

basic steps for the same are:

1. Choose the set of addresses on which to test the

sequence (user configurable)

2. Cacheline initialization - brings cachelines states to

random, but valid states for all masters.

3. Cacheline invalidation - Load transactions may need to

invalidate its cache before initiating transactions, unless

they are speculative.

4. Basic ReadClean - Initiate a particular transaction type

from one master.

Figure 9: ReadClean Coherent Command – A basic flow

A complete verification scenario (like, shown in Fig. 9) can

be mimicked using the nested sequences as explained in

Figure 4. With the hierarchical approach, it becomes

relatively easy to model any scenario generation

requirements regardless of how complicated they are.

The same approach when combined with the virtual

sequences helps to bring this functionality across multiple

interfaces and is very relevant in the system context. For

example, there are multiple virtual sequences that are part of

the library and perform a combination of different sequential

coherent transactions from different masters to the same

slave.

// Write into M0’s local cache. Data is

now dirty in local cache

M0 initiating MAKEUNIQUE to addr1

// Write data into memory. Data is now

clean in local cache. Data in cache

matches data in memory

M1 initiating WRITECLEAN to addr1

// Read data into M1’s local cache. Gets

clean data from M0

M1 initiating READSHARED to addr1

Through the above sequence we test that the interconnect can

do the following:

1. Initiate snoop transactions correctly

2. Fetch data from snooped masters and provide it to

another master.

3. Interact with main memory correctly.

Apart from building the explicit virtual sequences, we can

use the uvm_sequence_library to achieve the same. Here we

can add the sequences registered with the sequence library on

the per requirement basis for a specified instance of the

sequencer. Thus, sequences modeling functionalities such as

overlapping store operations to verify the interconnects

behavior for concurrent transactions or those exercising

multiple initiating masters attempt simultaneous shareable

store operations to the same cache line can easily be made

part of the sequence library or collection which can readily

be leveraged by the end user.

6.2 USING THE AXI INTERCONNECT AND

SYSTEM LEVEL CHECKS

The system monitor observes transactions across the ports of

a single interconnect and performs checks between the

transactions of these ports. It does not perform port level

checks which are done by the checkers of each master/slave

agent connected to a port. In ACE, the system monitor

correlates coherent transactions and the corresponding snoop

transactions to perform checks. The checks in the system

monitor are geared towards checking the proper working of

an interconnect DUT.

The system monitor requires transaction-level inputs from

the master and slave ports that are connected to interconnect.

By transaction level inputs, we mean transactions created by

port level monitors as a result of signal level activity. The

system monitor does not require signal level inputs.

Transaction level inputs are provided by port monitors. In

order to provide transaction level inputs, the system monitor

could in turn instantiate port level monitors. UVM provides

us with the capabilities to easily connect various

components. All transactions from the port level monitors of

each of the agents can easily be provided to the system

monitor via TLM connections, thereby eliminating the need

for instantiating these port level monitors in the system

monitor.

Two examples for system level checks are,

Check Specification Ref. Description

coherent_re

sp_isshared

_check

C6.4 Transaction responses

from the interconnect

10. If WasUnique was not

asserted for any snoop

response received by the

interconnect then,

- If any snoop responses had

IsShared asserted then,

IsShared must be asserted in

the transaction response to the

initiating master

Checks that the

IsShared response

to initiating master

is correct

snoop_resp

_wasunique

_check

C1.2.3 Cache State Rules: A

line in a Unique State must be

only in one cache

Checks that no two

responses to a

snoop transaction

have the

WasUnique(CRRE

SP[4]) bit asserted.

Figure 9: System Checks

Thus again by leveraging the UVM capabilities coupled with

knowledge on the coherency the system check provides

robustness to the DUT verification.

6.3 DISTRIBUTED PHASING

Finally, given the usage of such coherent systems in all

handheld devices, it is imperative to come up with a

mechanism to have a power aware verification setup. Also,

as mentioned earlier, different components might support a

different subset of the protocol. Some of the components

might be power aware and would be modeling components

in power domains. Such components would need the phase

aware sequences to be executing in user defined phases.

Some of these might go to a powered down phase in the

middle of simulation and on „waking up‟ would have to

catch up the other phases. Again, the UVM hierarchical

phasing schemes and configurable sequences can be

leveraged to help the user to model the different power state

transitions for the system.

UVM allows new domain‟s to be created and components

can be grouped into different domains which have executed

their phases independent of each other. The default domain

name is the „uvm‟ domain which contains the default runtime

phases.

Figure 9: Distributed phase synchronization

New phases can be inserted to the domains created. The

components in a specific user-defined domain can be made

to come in sync with the other domain at the end of

run_phase. So, even if an ACE component is powered down,

it alone can be made to rewind back to an earlier phase,

wake-up and then get in phase with the other components

running the default runtime phases.

Figure 10: UVM phasing – jump-back

6.4. Coverage Tracking and Management

It is important to track the diverse permutation and

combinations of verification scenarios for a Cache Coherent

System. An executable verification plan can help

significantly in this regard. This verification plan has to be

hierarchical with sub-plans based on the different ACE

components. UVM Resource Mechanism can be used to

ensure that the functional coverage model can be configured

based on the system configuration. Coverage Model is thus

„configuration aware‟ which means bins are ignored if they

are not applicable to the VIP configuration. Users can extend

the built in coverage to add their own bins based on built in

VIP sampling events and groups or create their own groups

with any sampling event or data. The configurability in

transaction, configuration and scenario coverage would

ensure that wasteful debug cycles are not spent trying to

analyze coverage holes which do not have relevance in a

specific context.. When the VIP provided executable plan is

used, functional coverage results can be back-annotated to

the plan demonstrating coverage that was achieved as

mapped to the protocol specification and for a specific Cache

Coherent System configuration. The executable plan

provided through the Verification Planner has the skip‟

feature to customize the VIP Verification Plan or simply not

import a subplan that isn‟t needed based on the UVM

Configuration.

6.5. UVM ENABLED DEBUG OF A CACHE

COHERENT ARCHITECTURE

The complexity of modern protocols also creates a

significant challenge for many "traditional" debug

methodologies. Some methodologies utilize a "bottom-up"

approach, extracting information from simulation log or

waveform dump files and then attempting to transform this

low-level data into more easily analyzed higher-level

representations. However, this approach assumes that all of

the required high-level information can be inferred from the

low-level data. Top-down methodologies which focuses on

higher layer transactions rarely offer adequate insight into

the underlying simulation details, which are often required to

uncover the ultimate cause of unexpected behavior. This

illustrates an important requirement for a protocol-oriented

analysis tool: specifically, the ability to represent and view

protocol data at multiple levels of abstraction.

How can an UVM based environment help here? The

requirements are to provide a protocol-oriented analysis

environment which should provide visualization and analysis

of "protocol objects". A "protocol object" would be any

description of data that is found in a protocol specification.

To ensure that there are enough configurable hooks in the

VIP, the component hierarchy is interspersed with UVM

callbacks at all interesting execution points. These callbacks

can be leveraged to dump an XML trace of the simulation.

As these points are all „protocol aware‟ and the UVM

testbench is aware of the levels of abstraction at these

different points, the appropriate information can be dumped

into the XML traced as mentioned earlier. Thus a tool like

the Protocol Analyzer can efficiently analyze this

information and provide an Interactive frontend to debug

protocol behavior The three different displays that are

available for visualizing protocol objects each feed on the

underlying methodology layer to provide a unique set of

analysis capabilities . For example, the Object Timeline

Display emphasizes the temporal relationship between the

protocol objects in the view, the Object Tree/Table Display

emphasizes the hierarchical relationship between objects and

the Object Tree. Display focuses on the field attributes and

values of the protocol objects.

Figure 11: GUI plot of AXI-ACE transactions and VIP

log messages

Additionally, the underlying UVM base classes can be easily

leveraged to dump all the transactions and the

transformations and therefore debugging them with the

signals from the HDL testbench.

7. CONCLUSION

As the complexity of protocols continues to increase and

evolve, the infrastructure required for the verification of the

same needs to scale up in sophistication as well.

Methodologies such as, UVM and VMM has been

undergoing continuous evolution to keep up with the many

complex requirements. The new AMBA 4 Coherency

Extensions (ACE) comes in at this critical juncture to help

meet the need for higher processing capabilities under

optimal power consumption modes. Verification of basic

cache coherent systems is in itself challenging. The

additional complexity which the ACE protocol brings

demands a lot from the verification methodology used. The

recent updates to the UVM library with respect to sequence

generation, distributed phasing, configuration management

has come as a boon to meet all these requirements.

8. APPENDIX

"Speculative fetch" - The interconnect initiates a transaction

to the slave memory even before it gets a response to snoop

transaction it initiated to the masters. This is done to improve

the latency for fetching data.

"Cache miss fetch" - None of the masters' cache has data

and so the interconnect needs to fetch from the memory.

"Pass Dirty propagating" - Certain coherent transactions

cannot accept a dirty response. Snooped masters can

however pass dirty data. The interconnect might have to

write this dirty data to the memory before passing a clean

response to the master that initiated the transaction.

9. ACKNOWLEGEMENT
We would like to extend our sincere thanks to Abhijeet

Khopkar, Manager R&D, Verification Group, Synopsys, for

reviewing the paper and providing his valuable insights.

10. REFERENCES
[1] UVM User Guide

[2] UVM Reference Guide

[3] Synopsys® Verification IP (VIP) for AMBA AXI User

Guide

[4] Synopsys Protocol Analyzer Getting Started Guide

[5] Synopsys UVM CES Training

[6] AMBA AXI and ACE Protocol Specification - AXI3,

AXI4, and AXI4-Lite, ACE and ACE-Lite (Non-

Confidential - Draft – Beta) Document Number: ARM IHI

0022D-2c ID060311

