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ABSTRACT 
 

The need for higher processing capabilities while 

continuously optimizing on power consumption is imperative 

in most of the electronic appliances that we use today.  This 

is fed by the requirement to run compute intensive 

applications such as video editing, image processing, image 

recognition, gaming engines and so on.  It is well understood 

that multi-processing is a more efficient mechanism to 

achieve this instead of pushing the boundaries of single core 

processor. In addition, there is a need to move towards 

virtualization of the SoC‟s, which increases the processing 

power efficiency, by enabling the ease of feature integration 

with minimum effort. However with multi-processor 

intensive SoC‟s, there is a requirement to maintain coherency 

across the system (including peripherals and the main 

memory). It is critical to have multiple applications working 

together either simultaneously or in synchronism and the 

new AMBA 4 Coherency Extensions (ACE) helps in this 

scenario. ACE provides hardware-level cache coherency and 

is primarily aimed at multi-processor ARM Cortex-A15 

designs for mobile devices. 

 

Now, verifying and validating a coherent system can pose 

significantly complex problems for the verification engineer. 

This is where a robust verification methodology can come to 

the rescue. A powerful Verification Methodology empowers 

the verification engineer to help leverage the constrained 

random capabilities in the language to create configurable 

stimulus to help verify a wide range of functionalities. UVM-

1.1 which was released recently provides a very flexible 

mechanism of achieving this. Thus, by using the case study 

of the Synopsys® Verification IP (VIP) for AMBA AXI, we 

will demonstrate how a set of sequences and a sequence 

library along with other UVM base class functionalities can 

be leveraged to meet the various challenges in the system-

level validation of such cache coherent systems. 
 

Categories and Subject Descriptors 
Methodology – UVM, VIP, re-use philosophies 

General Terms 
Management, Performance, Verification, Design, 

Standardization 

Keywords 
AXI4, ACE, VIP, UVM, Layered Protocol, SystemVerilog 
 

 

1. INTRODUCTION 
 

The AMBA 4 specification now features AXI coherency 

extensions (ACE) in support of multi-core computing. The 

ACE specification enables system-level cache coherency 

across clusters of multi-core processors. When it comes 

down to the functional verification of such a system, these 

coherency extensions brings their own complex challenges. 

Some of these can be, 

 System-level cache coherency validation: At any given 

time, whether the ACE Interconnect is able to maintain 

cache coherency across the different ACE Masters in the 

system. 

 Cache state transition validation:  Whether the ACE 

interconnect is able to handle all cache line state 

transitions in ACE Masters in the system 

 

At a high level, this requires a high degree of configurability 

and responsiveness in the stimulus generation infrastructure. 

In terms of validating the System-level cache coherency, a 

robust checking mechanism also needs to be created.  We 

show how the UVM configuration mechanism is leveraged 

to bring in the configurability of the sequences. This 

mechanism also enables the reactive sequences to create the 

right stimulus for the respective VIP 

(Master/Slave/Interconnect) components. Given that the 

coherency has to be maintained across multiple masters, this 

has to be enabled through the system-level components (and 

also sub-system). Using the UVM resource mechanism and 

ACE interconnect in different modes(Active/Passive), we 

demonstrate how to check the cache coherency using a 

combination of front-door and backdoor accesses to it. The 

UVM hierarchical phasing schemes and configurable 

sequences are also leveraged to model various transitions for 

the system which ensures complete verification closure. To 

handle such a complex system, an appropriate debug 

environment is also provided to the verification engineer to 

debug the environment at different levels of abstraction using 

the base UVM infrastructure. 
 

2. OVERVIEW OF THE ACE PROTOCOL 
 

Cache coherency refers to the consistency of data stored in 

the local caches of a shared resource. When clients in a 

system maintain caches of a common memory resource, 

problems might arise with inconsistent data among caches or 

main memory. This is particularly true for CPUs in a 

multiprocessing system. The cache coherence is intended to 

manage such conflicts and maintain consistency between 

cache and memory. 

 
Figure 1: Cache Coherent Components 
 

The ACE protocol extends the AXI protocol and provides 

support for hardware-coherent caches. The ACE protocol is 

implemented by using, 

 A five state cache model to define the state of any cache 

line in the coherent system. The cache line state 

determines what actions are required during access to 

that cache line. 

 Additional signaling on the existing AXI channels that 

enables new transactions and information to be 

conveyed to locations that require hardware coherency 

support. 

http://lookup/lookup/click2dial/lookup-click2dial.cgi?dialstring=%2B86.212.307.2379%20SVN:%2072379


 Additional channels that enable communication with a 

cached master when another master is accessing an 

address location that might be shared.[6] 

 

2.1 COHERENCY MODEL 
 

The ACE protocol ensures that all master components 

observe the correct data value at any given address location. 

The coherency protocol ensures that all masters observe the 

correct data value at any given address location by enforcing 

that only one copy exists whenever a store occurs to the 

location. The following is an example of an ACE based 

Coherent System: 

 

 
Figure 2: Cache Coherent System 

 

The masters initiate requests and often contain a cache. An 

Interconnect connects one or more masters to one or more 

slaves.  When a transaction requires coherency support, it is 

passed on to the coherency support logic within the 

Interconnect. After each store to a location, other masters can 

obtain a new copy of the data for their own local cache, 

allowing multiple copies to exist. The Interconnect can 

initiate “snoop” transactions to access cache lines in the 

master cache.. A cache line is defined as a cached copy of a 

number of sequentially byte addressed memory locations, 

with the first address being aligned to the total size of the 

cache line.  There is no requirement to keep main memory up 

to date at all times. Main memory is only required to be 

updated before a copy of the memory location is no longer 

held in any shareable cache. 

 

The ACE protocol enables master components to determine 

whether a cache line is the only copy of a particular memory 

location, or if there might be other copies of the same 

location, so that, 

 

 If a cache line is the only copy, a master component can 

change the value of the cache line without notifying any 

other master components in the system 

 

 If a cache line that is also be present in another cache, a 

master component must notify the other caches, by using 

an appropriate transaction. 

 

Besides these, there are additional specifications centered on 

the granularity of coherency, access rights, cache line state 

updates, protocol transactions, protocol channels and 

transaction flows. [6] 

 
 

3. CHALLENGES IN THE VERIFICATION 

OF A CACHE COHERENT SYSTEM 
 

With coherency support now in the hardware with an 

associated protocol to support it, the complexity of the 

system and the underlying components has increased 

substantially.  The verification of such systems needs to deal 

with several challenges. 
 

 

3.1 COMPLEX STIMULUS REQUIREMENTS 

 
An ACE system can have a variety of Masters and Slaves 

connected by a coherent interconnect. Individually each 

Master and Slave component can support complete ACE, 

ACE-Lite, AXI4 or AXI3 protocol and might work with 

different bus width or clock frequency. The different 

permutations involving the following parameters at large: 

 

1. Cache states,  

2. Transaction types,  

3. Burst lengths, burst sizes,  

4. Snoop mechanisms, snooped cache states, snoop 

responses,   

5. Support for speculative fetches,  

6. Support for snoop filtering, and  

7. User-specified scheduling of interconnect. 

 

All these cross combinations lead to a very large verification 

space.   The challenges for generating stimulus mapped to all 

of these include: 

 

 Ensuring each individual Master, Slave or Interconnect 

is fully compatible with the protocol it supports 

 Ensuring all possible combinations of concurrent access 

among initiating masters, snooped masters and slave 

main memory are verified and are in compliance with 

the ACE specification 

 Ensuring all user-specific features are covered and 

working as expected 

 Providing a complete coverage model to ensure the 

completeness of verification. 
 

3.2 SYSTEM LEVEL SELF-CHECKING 

 
The ACE System can have a complex configuration of 

Masters, Slaves and Interconnect. Some of them can be RTL 

components with or without a local cache, while others can 

be VIPs or behavioral models. With such complex 

configurations, the system-level checks should be able to 

handle a lot of complexity. Some of these are: 

 

 Most of the details of an AXI3/AXI4 transaction are 

presented on the bus. However, for an ACE system, 

many details of an ACE transaction are not presented on 

the bus. Some of these are not propagated as it gets 

routed through the Interconnect.  Some of these 

attributes map to the  store/load/update/evict of the local 

cache line by the ACE Master, or  by Interconnect which 

initiates  a snoop 

 

 Multiple Masters would send out coherent transactions 

and at the same time receiving snoop transactions that 

might access the same location 

 

 The ACE Master and Slave components support 

outstanding, interleaving and out-of-order transactions 

 

All these make it very difficult to predict what the expected 

results should be. The more complicated checks would be, 

 

 The snoop mechanism: The system-level checks should 

be aware of which master should or should not be 

snooped. The information such as the cache line state in 

each master or the source master of a snoop transaction 

will not be present on the bus. There might be instances 

of a  user-defined snoop scheduling. For example,  the 

snoop can be done in a broadcast manner, which means 

all the snooped master are snooped at almost the same 

time with the same type of snoop transactions,  or in a 

sequential  manner, which means the snooped masters 

are snooped at different time with different type of 

snoop transactions. 



 The snoop response: Each „snooped‟ master should 

respond properly based on the cache line state in its local 

cache. However, the cache line state of a „snooped‟ 

master changes dynamically between the “snoop  start 

phase” and “snoop end phase”. These states can 

encompass an implicit local store or invalidation sent by 

it, an explicit writeback/writeclean/evict transaction sent 

by it, or any unfinished outstanding snoop transactions 

on its channel sent by other Masters. 

 

 The slave memory access: The system-level checker 

must check for the appropriate slave operation that must 

happen on the slave bus for an access.  A slave access 

can be generated from a non-snoop transaction, a 

speculative fetch, cache miss fetch or a PassDirty 

propagating (Refer APPENDIX). It can also result from 

partial line merged to full line propagating; or direct 

coherent write. 

 

 Data integrity check: Different transactions can have 

different actual (data in the cache or in the main 

memory)/expected (local data queues) data sources. 

Even for a single transaction the data sources can be 

varied. The system-level checker must monitor the 

whole ACE system to decide where the expected/actual 

data should come from. For example, a   ReadOnce 

transaction from ACE master can have the expected data 

source on any of these: a local cache copy before the 

transaction is sent (speculative read); the local cache 

copy after a coherent response (allocate after read), a 

snooped master‟s cache (cache hit), a slave memory 

(cache miss) and an ACE bus (does not allocate after 

read). The data checking becomes all the more 

challenging because as interconnect can modify a 

transaction issued from coherent master. So it is not easy 

to map a slave memory access to a coherent transaction 

initiated by a master. 

 

 Cache coherency check:  The system-level checker 

must monitor the whole ACE system to decide when and 

what type of operation might cause a cache line change. 

Whenever there is a cache line change, it needs to check 

if there is any loss of coherency.  The checks include 

“cache vs. cache” comparison and “cache vs. slave 

memory” comparison. The two important cacheline 

checks are as follows: 

 

1. A cacheline can be held in a dirty state only in one 

master's cache 

2. A cacheline can be held in a unique state only in 

one master's cache 

 

 User-specified features: Such might have impact on the 

prediction of the expected behavior. For example, 

interconnect scheduling/priority can affect the behavior 

of snoop and slave accesses. Support for unaligned/cross 

line access can affect how many times the snoop/slave 

access will happen. Support for different bus width can 

affect the burst type and burst length difference between 

masters and slaves. 

 
 

3.3 REUSE REQUIREMENTS 

 
Horizontal and Vertical reusing of block-level environments 

has its own set of unique challenges. In the context of 

vertical reuse, some of the ACE components can be replaced 

with actual RTL models. 

Thus, the testbench or the verification components should 

provide the infrastructure to be able to factor in the behavior 

of the RTL components at various protocol phases, for 

example, during the initiation state of an ACE DUT master, 

the end state of a snoop transaction, the cache state transition 

after a local store/invalidation and so on. Horizontal reuse or 

reuse across the projects can be more complicated. 

The different projects can have different numbers of Master 

and Slave components complying with a different subset of 

the complete protocol.  The large number of ACE masters 

with different levels of protocol compliance complicates the 

expected result of a coherent transaction. The increasing 

number of caches leads, 

 

1. To more concurrent overlapping accesses to the same 

location, 

2. To more complex snoop scheduling and responses 

 

This makes it more difficult to predict the snoop hit or miss. 

To support the maximum reuse, configurability of different 

verification components is vital. 

 
 

4. UVM STIMULUS GENERATION 

INFRASTRUCTURE OVERVIEW 
 

It is quite apparent that the stimulus generation schemes have 

to be sophisticated and configurable to meet the complex 

verification requirements of the ACE cache coherence 

capabilities. The UVM base class library provides significant 

functionalities in string together a robust and configurable 

stimulus generation infrastructure. 

 

uvm_sequence is the basic building block to help model 

complex verification scenarios. The figure below illustrates 

the basic UVM stimulus generation mechanism. 

 

 
Figure 3: Stimulus Communication with Testbench 

Components 

 

Typically, one would start with some atomic sequences and 

move towards creating complicated ones as the basic 

functionality is verified.  Instead of creating a flattened logic 

in the sequence body, hierarchical or nested sequences can 

be created which leverage the basic sequences which have 

already been created. 

 

 
Figure 4: Nested Sequences 

 

This can go upto multiple levels of hierarchy and thus it 

becomes possible to converge towards meeting the 

requirements of the most complex scenarios. 

 



As the complexity increases across multiple ACE 

components, there might be a requirement to coordinate the 

sequences across multiple sequencers and drivers. This can 

be handled through virtual sequences and sequencers 

 

 
Figure 5: UVM BCL Interaction 

 

Now each „sequence‟ extending from uvm_sequence has a 

reference (m_sequencer) to the sequencer on which it is 

supposed to execute. So, whenever a sequence is executed on 

a sequencer either directly through a sequence.start() or by 

setting it as the default_sequence of a sequencer in a specific 

phase, the „m_sequencer‟ variable is appropriately set. A 

virtual sequence which basically orchestrates multiple 

sequences can execute only on the virtual sequencer. It is 

ensured that the individual sequences within are 

appropriately executed on the desired sequencer by mapping 

these to the real sequencers instantiated within the virtual 

sequencers (route „B‟ in figure 4). This infrastructure can 

also be leveraged to enable the sequencer composition to 

create a layered protocol implementation 

 

The other important functionality from a stimulus generation 

perspective is the grouping of sequences and the creation of 

hierarchical sequences. In UVM, it is possible to group 

similar sequences together into a sequence library. 

 

 
Figure 6: UVM Sequence Library Package 

 

The „uvm_sequence_library‟ is used to create a sequence 

library. The `uvm_sequence_library_utils(class_name) 

would  build the library infrastructure. Any sequence can be 

registered to the sequence library through the 

add_typewide_sequence() method of the library. 

 

Once the library is registered to be the default_sequence of 

any sequence, the default functionality causes a random 

number of sequences to be picked up and executed. Now, the 

default mode of sequence library can be modified by 

changing the parameters of the 

uvm_sequence_library_cfg class. The user can cause specific 

number of sequences to be picked up, enable random cyclic 

sequences and can also program a user defined sequence 

execution. Hence, without having to write multiple tests, the 

user can create user defined sequence execution across 

multiple sequence libraries across different interfaces 

through a virtual sequencer to create a stimulus management 

setup which would help meet all the stimulus generation 

requirements much faster. 

 

 

5. OVERVIEW OF THE UVM Based ACE 

VERIFICATION VIP 

 
The Synopsys Verification IP (VIP) for AMBA AXI is a 

suite of SV UVM-based verification components that 

provide a complete UVM-based verification solution for 

ACE protocol. The AXI ACE VIP provides a System 

Environment component with a configurable number of ACE 

Master and Slave agents, a System monitor and an 

Interconnect component. The VIP also  has a purely SV 

architecture that eliminates the need for wrappers giving 

much improved performance and complete alignment with 

standard SystemVerilog methodology. The architecture 

without any gaskets enables users to leverage the underlying 

SV UVM  methodology to the fullest extent. This also brings 

in inherent visibility and control. As the entire VIP runs 

natively in the simulator, there are no layers to slow it down.  

New features can easily be added to help in protocol centric 

debug and in providing a simple configuration interface to 

the VIP. This also ensures portability across all simulators.    

The VIP leverages most of the functionality mentioned in the 

previous sections and the UVM Resource Mechanism to give 

the configurability and the sophisticated stimulus generation 

requirements in the ACE context. 

 

 
Figure 7: AXI ACE System Environment 

 

The Master agent generates constrained random ACE 

coherent transactions, and responds to the ACE Snoop 

transactions concurrently. It also allocates cache lines and 

performs cache state transitions to the various cache states 

based on the transactions it sends and receives by using a 

built-in cache model. The user has back-door access (through 

API‟s in the cache model) to the cache model to allocate, de-

allocate or query the cache lines. The Slave agent responds to 

read/write requests and models the memory for the system. It 

also supports ACE-Lite requirement through simple 



configuration parameters. The Interconnect Environment 

component receives coherent transactions from the initiating 

master, and generates appropriate snoop transactions to the 

other masters based on domain information. It then responds 

to the coherent transactions based on responses received 

through snoop transactions. 

 

The Master and Slave agent instantiate the Port Monitor 

which continues to be available when the agents are 

configured in the passive mode. These monitors perform 

port-level transaction checks, signal stability checks and 

sequencing between ACE coherent and snoop transaction 

checks. Another key component of the ACE solution is the 

System Monitor. The System Monitor performs system-level 

checks, coherency checks and data integrity checks. As 

certain checks are dependent on design behavior, the system 

monitor also provides hooks to implement design-specific 

checks. The built-in coverage supports ACE coherent and 

snoop transaction coverage. The cache state transition 

coverage helps to validate whether the master‟s cache has 

transitioned through all the legal cache states. The coverage 

can be used in conjunction with ACE Verification Planner to 

track the verification progress. 

 

6. SOLVING CACHE COHERENCY 

VERIFICATION CHALLENGES 

 
The verification strategy for a cache coherency system can 

be broken down into different stages. They would be : 

 

 Integration testing : This would involve all the different 

VIP and RTL components are appropriately hooked up. 

Pre-defined sanity tests shipped with the VIP and the 

sequences shipped with the UVM register package can 

help in this regard. 

 

 Basic Testing: Here stimulus generation is directed 

towards single interfaces. All different transaction types 

and the combination of all valid cache line states should 

be validated in this stage 

 

 Intermediate Testing: This would involve specific 

scenarios involving multi-master communication. Some 

example sequences could be those involving overlapping 

„writes‟ and „snoops‟ during memory updates 

 

 Advanced Testing:  In this stage, system level stimulus 

mapped to different traffic profiles would be generated 

and all the checks enabled to verify the correct 

operation.  

 
The following subsections capture how different challenges 

are addressed in the context of stimulus generation,  system 

level checks, hierarchical phasing, coverage tracking and 

management and debug.  

 
6.1 STIMULUS GENERATION 

 
The VIP components are complemented by a library of 

configurable ACE sequences. These sequences weaved 

together form virtual sequences and sequencers further aids 

in scenario creation at the block, cluster or system level 

across various masters and the Interconnect. Additionally, 

the UVM sequence library enables the user to control the 

different permutations by which atomic and hierarchical 

sequences can be stitched together to create the complex 

scenarios depicted above. 

 

Creating custom rules for the sequence library would not 

only help to streamline multiple sequences in different 

simulations but also to avoid redundancy and move 

progressively towards convergence of all interesting system-

level scenarios. Again, in such scenarios, the sequences have 

to be aware of the functional configuration so as to be able to 

reconfigure itself based on the system-level requirements. 

 

6.1.1 CREATING CONFIGURABLE SEQUENCES 

 

There might be specific requirements when the sequences‟ 

constraints or properties depend on the values in the 

configuration object. The UVM Resource mechanism is used 

in the AC sequences to bring in the configurability as shown 

below: 

 

 
Figure 8: Configurable Sequence 

 

Though the hierarchical UVM configuration mechanism is 

designed around components, the non-component object can 

access the configuration field through the component handle. 

In case of sequences, „m_sequencer‟ is the handle to the 

sequencer that executes the sequence.  It is a built-in member 

of the uvm_sequence class. The configuration parameter can 

be accessed in a hierarchical context through the 

„m_sequencer‟ handle as shown below. 

 

uvm_config_db#(int)::get(m_sequencer,“”,                                                            

"item_count",item_count); 

 

The „set‟ of the parameter is as follows: 

 

uvm_config_db#(int)::set(this"env.agent.seqr", "item_count", 

20); 

 

Therefore, when parameters change in a dynamic 

environment, the ACE sequences can reconfigure themselves 

to meet the generation requirements at that point in time. 

Thus,  for different  Master and Slave component which 

might support a subset or full ACE, ACE-Lite, AXI4 or 

AXI3 protocol and might work with different bus width or 

clock frequency, the sequences can be reconfigured to work 

with each of their associated sequencers. 
 

6.1.2 HIERARCHICAL SEQUENCE STITCHING AND 

SEQUENCE LIBRARIES 

 

The range of functionalities supported by the protocol ranges 

from ones that can be mapped to atomic transactions to ones 

which would run into hundreds of lines of testbench code.  

The sequence collection has a rich set of functionality. There 

are sequences to initiate all the possible coherent 

transactions, Sequences which do not cause a snoop of any 

cached masters, which must cause a snoop of the cached 

masters that can hold a copy of the cache line, which must 

cause a snoop of any of the cached masters that can hold a 

copy of the cache line and more. 

Hence, given the functionality that UVM provides, it is much 

more convenient to stitch together complex scenarios from 

low level ones which has been proven or validated.  This is 

how the ACE higher level and virtual sequences are built up 

and here we can see how custom user scenarios can be built 

using the sequence collection. 

 

Let us take the case where we need to verify that all the 

cacheline states associated with a Readclean transaction 

needs to be tested. This would require a cacheline 

initialization followed by cacheline invalidation then a basic 

Readclean. A cacheline initialization sequence initializes the 

cacheline states of a master's cache and its peer's caches to a 



set of random but valid states. This ensures that all the 

different cacheline state transitions for a coherent transaction 

initiated by a master are verified. A cacheline invalidation 

sequence invalidates cachelines of a master. This may be 

required for load type of transactions which are not 

speculative. A basic Readclean sequences initiates a 

Readclean transactions over a given set of addresses. The 

basic steps for the same are: 

 

1. Choose the set of addresses on which to test the 

sequence (user configurable) 

2. Cacheline initialization - brings cachelines states to 

random, but valid states for all masters. 

3. Cacheline invalidation - Load transactions may need to 

invalidate its cache before initiating transactions, unless 

they are speculative. 

4. Basic ReadClean - Initiate a particular transaction type 

from one master. 

 

 
Figure 9: ReadClean Coherent Command – A basic flow 

 

A complete verification scenario (like, shown in Fig. 9) can 

be mimicked using the nested sequences as explained in 

Figure 4. With the hierarchical approach, it becomes 

relatively easy to model any scenario generation 

requirements regardless of  how complicated they are. 

The same approach when combined with the virtual 

sequences helps to bring this functionality across multiple 

interfaces and is very relevant in the system context. For 

example, there are multiple virtual sequences that are part of 

the library and perform a combination of different sequential 

coherent transactions from different masters to the same 

slave. 

 
// Write into M0’s local cache. Data is 

now dirty in local cache 

M0 initiating MAKEUNIQUE to addr1 

 

// Write data into memory. Data is now 

clean in local cache. Data in cache 

matches data in memory 

M1 initiating WRITECLEAN to addr1 

 

// Read data into M1’s local cache. Gets 

clean data from M0 

M1 initiating READSHARED to addr1 

 

Through the above sequence we test that the interconnect can 

do the following: 

 

1. Initiate snoop transactions correctly 

2. Fetch data from snooped masters and provide it to 

another master. 

3. Interact with main memory correctly. 

 

Apart from building the explicit virtual sequences, we can 

use the uvm_sequence_library to achieve the same. Here we 

can add the sequences registered with the sequence library on 

the per requirement basis for a specified instance of the 

sequencer. Thus, sequences modeling functionalities such as 

overlapping store operations to verify the interconnects 

behavior for concurrent transactions or those exercising 

multiple initiating  masters attempt simultaneous shareable 

store operations to the same cache line can easily be made 

part of the sequence library or collection which can readily 

be leveraged by the end user. 
 

6.2 USING THE AXI INTERCONNECT AND 

SYSTEM LEVEL CHECKS 

 
The system monitor observes transactions across the ports of 

a single interconnect and performs checks between the 

transactions of these ports. It does not perform port level 

checks which are done by the checkers of each master/slave 

agent connected to a port. In ACE, the system monitor 

correlates coherent transactions and the corresponding snoop 

transactions to perform checks. The checks in the system 

monitor are geared towards checking the proper working of 

an interconnect DUT.  

 

The system monitor requires transaction-level inputs from 

the master and slave ports that are connected to interconnect. 

By transaction level inputs, we mean transactions created by 

port level monitors as a result of signal level activity. The 

system monitor does not require signal level inputs. 

Transaction level inputs are provided by port monitors. In 

order to provide transaction level inputs, the system monitor 

could in turn instantiate port level monitors. UVM provides 

us with the capabilities to easily connect various 

components. All transactions from the port level monitors of 

each of the agents can easily be provided to the system 

monitor via TLM connections, thereby eliminating the need 

for instantiating these port level monitors in the system 

monitor.  

Two examples for system level checks are, 

 

 

Check Specification Ref. Description 

coherent_re

sp_isshared

_check 

C6.4 Transaction responses 

from the interconnect 

10. If WasUnique was not 

asserted for any snoop 

response received by the 

interconnect then, 

- If any snoop responses had 

IsShared asserted then, 

IsShared must be asserted in 

the transaction response to the 

initiating master 

Checks that the 

IsShared response 

to initiating master 

is correct 

snoop_resp

_wasunique

_check 

C1.2.3 Cache State Rules: A 

line in a Unique State must be 

only in one cache 

Checks that no two 

responses to a 

snoop transaction 

have the 

WasUnique(CRRE

SP[4]) bit asserted. 

Figure 9: System Checks  
 

Thus again by leveraging the UVM capabilities coupled with 

knowledge on the coherency the system check provides 

robustness to the DUT verification. 
 

6.3 DISTRIBUTED PHASING 

 
Finally, given the usage of such coherent systems in all 

handheld devices, it is imperative to come up with a 

mechanism to have a power aware verification setup. Also, 

as mentioned earlier, different components might support a 

different subset of the protocol. Some of the components 

might be power aware and would be modeling components 



in power domains. Such components would need the phase 

aware sequences to be executing in user defined phases. 

Some of these might go to a powered down phase in the 

middle of simulation and on „waking up‟ would have to 

catch up the other phases. Again, the UVM hierarchical 

phasing schemes and configurable sequences can be 

leveraged to help the user to model the different power state 

transitions for the system. 

UVM allows new domain‟s to be created and components 

can be grouped into different domains which have executed 

their phases independent of each other.  The default domain 

name is the „uvm‟ domain which contains the default runtime 

phases. 

 

 
Figure 9: Distributed phase synchronization 

 

New phases can be inserted to the domains created. The 

components in a specific user-defined domain can be made 

to come in sync with the other domain at the end of 

run_phase. So, even if an ACE component is powered down, 

it alone can be made to rewind back to an earlier phase, 

wake-up and then get in phase with the other components 

running the default runtime phases. 

 

 
Figure 10: UVM phasing – jump-back 

 

 

6.4. Coverage Tracking and Management 

 
It is important to track the diverse permutation and 

combinations of verification scenarios for a Cache Coherent 

System.  An executable verification plan can help 

significantly in this regard. This verification plan has to be 

hierarchical with sub-plans based on the different ACE 

components. UVM Resource Mechanism can be used to 

ensure that the functional coverage model can be configured 

based on the system configuration. Coverage Model  is thus 

„configuration aware‟ which means bins are ignored if they 

are not applicable to the VIP configuration. Users can extend 

the built in coverage to add their own bins based on built in 

VIP sampling events and groups or create their own groups 

with any sampling event or data.  The configurability in 

transaction, configuration and scenario coverage would 

ensure that wasteful debug cycles are not spent trying to 

analyze coverage holes which do not have relevance in a 

specific context.. When the VIP provided executable plan  is 

used, functional coverage results can be back-annotated to 

the plan demonstrating  coverage that was achieved as 

mapped to the protocol specification and for a specific Cache 

Coherent System configuration. The executable plan 

provided through the Verification Planner has the skip‟ 

feature to customize the VIP Verification Plan or simply not 

import a subplan that isn‟t needed based on the UVM 

Configuration.  

 

 

6.5. UVM ENABLED DEBUG OF A CACHE 

COHERENT ARCHITECTURE 
 

The complexity of modern protocols also creates a 

significant challenge for many "traditional" debug 

methodologies. Some methodologies utilize a "bottom-up" 

approach, extracting information from simulation log or 

waveform dump files and then attempting to transform this 

low-level data into more easily analyzed higher-level 

representations. However, this approach assumes that all of 

the required high-level information can be inferred from the 

low-level data. Top-down methodologies which focuses on 

higher layer transactions  rarely offer adequate insight into 

the underlying simulation details, which are often required to 

uncover the ultimate cause of unexpected behavior. This 

illustrates an important requirement for a protocol-oriented 

analysis tool: specifically, the ability to represent and view 

protocol data at multiple levels of abstraction. 

 

How can an UVM based environment help here?  The 

requirements are to provide a protocol-oriented analysis 

environment which should provide visualization and analysis 

of "protocol objects". A "protocol object" would be any 

description of data that is found in a protocol specification.  

To ensure that there are enough configurable hooks in the 

VIP, the component hierarchy is interspersed with UVM 

callbacks at all interesting execution points. These callbacks 

can be leveraged to dump an XML trace of the simulation. 

As these points are all „protocol aware‟ and the UVM 

testbench is aware of the levels of abstraction at these 

different points, the appropriate information can be dumped 

into the XML traced as mentioned earlier. Thus a tool like 

the Protocol Analyzer can efficiently analyze this 

information and provide an Interactive frontend to debug 

protocol behavior  The three different displays that are 

available for visualizing protocol objects each feed on the 

underlying methodology layer to  provide a unique set of 

analysis capabilities . For example, the Object Timeline 

Display emphasizes the temporal relationship between the 

protocol objects in the view, the Object Tree/Table Display 

emphasizes the hierarchical relationship between objects and 

the Object Tree. Display focuses on the field attributes and 

values of the protocol objects. 

 

 
Figure 11: GUI plot of AXI-ACE transactions and VIP 

log messages 

 

Additionally, the underlying UVM base classes can be easily 

leveraged to dump all the transactions and the 

transformations and therefore debugging them with the 

signals from the HDL testbench. 

 

7. CONCLUSION 
 

As the complexity of protocols continues to increase and 

evolve, the infrastructure required for the verification of the 

same needs to scale up in sophistication as well. 

Methodologies such as, UVM and VMM has been 

undergoing continuous evolution to keep up with the many 

complex requirements. The new AMBA 4 Coherency 



Extensions (ACE) comes in at this critical juncture to help 

meet the need for higher processing capabilities under 

optimal power consumption modes. Verification of basic 

cache coherent systems is in itself challenging. The 

additional complexity which the ACE protocol brings 

demands a lot from the verification methodology used. The 

recent updates to the UVM library with respect to sequence 

generation, distributed phasing, configuration management 

has come as a boon to meet all these requirements. 

 

8. APPENDIX 
 

"Speculative fetch" - The interconnect initiates a transaction 

to the slave memory even before it gets a response to snoop 

transaction it initiated to the masters. This is done to improve 

the latency for fetching data. 

"Cache miss fetch" - None of the masters' cache has data 

and so the interconnect needs to fetch from the memory. 

"Pass Dirty propagating" - Certain coherent transactions 

cannot accept a dirty response. Snooped masters can 

however pass dirty data. The interconnect might have to 

write this dirty data to the memory before passing a clean 

response to the master that initiated the transaction.  
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