
February 28 – March 1, 2012

ACE’ing the Verification of a Coherent
System Using UVM

by

Parag Goel; Amit Sharma;

Ray Varghese; Romondy Luo; Satyapriya Acharya

Peer Mohammed

Synopsys & Mindspeed Technologies

Agenda

• Overview of the AXI-ACE protocol

• Challenges in the verification of a cache coherent
system

• Addressing the challenges using UVM

– Stimulus Generation

– System Level Checks

– Reusability & Debug

• Summary

Motivation & Overview for
ACE Protocol
• Extends AXI to support multi-core

– More processing power

– Optimal Power consumption

– Low latency systems

• Support for hardware-coherent caches.

– All masters observe the correct data value at any
address

– 5 state cache model

• Additional signaling

– Conveys updated information to locations that require
hardware coherency support.

Overview(Continued)

4

• Allows for Complex Configuration of Masters, Slaves and
Interconnect

• Additional channels

– Enable communication with a cached master

• SNOOPs, Cache state transitions etc : new paradigms

Coherent Interconnect Interconnect

MASTER-1 MASTER-2

CACHE CACHE

Interconnect

CACHE

Memory
Controller

Memory

Memory
Controller

Memory

MASTER-3

SLAVE-1

Verification Challenges : ACE System

• Large permutations of transfer attributes

– Cache states, Transaction types, Burst lengths/sizes,
Snoop mechanisms/responses

• coherent transactions/ Responses to Snoop
transactions

• Cache line allocation & cache state transitions

• speculative fetches, snoop filtering, User-specified
scheduling

• All combinations of concurrent accesses

• Effective System level sequence generation

– Across Initiating Masters, Snooped Masters, Slave Main
Memory

Generation of Complex Stimulus

Verification Challenges : ACE System

• Coherent/Snoop
transactions accessing the
same location

• Outstanding, interleaved
and out-of-order
transactions

• System Level Cache
Coherency Validation

• Cache State Transition
Validation

• Data Integrity checks

Coding System Level Checks

• Vertical Reuse Challenges

• Mix of RTL + testbench
components

• Should factor RTL behavior

• Horizontal Reuse Challenges

• Compliance of components
across projects

• More cores-more address
overlapping.

• Complicated snoop
scheduling/sequences

Building Reusable Components

Cache Coherency Validation

• Integration testing

• Basic testing
– Stimulus generation at single interfaces

– Validate all transaction types correctly for all combinations of
valid cache line states.

• Intermediate testing
– Specific scenarios involving multi-master communication:

• Overlapping writes

• Snoop during memory update

• Advanced testing
– System level Stimulus mapped to traffic profiles

VERIFICATION STRATEGY

Leveraging UVM capabilities to tackle
ACE verification Challenges

• Building a reusable
component - ACE UVM
VIP

– Factory enabled,

– Callbacks,

– Configuration mgmt,

– TLM communication

• Stimulus Generation

– Sequence Library: Atomic
& Nested sequences

– Virtual sequencer

S
y
s
te

m
 M

o
n

it
o

r
C

a
c
h

e
 c

o
h

e
re

n
c
y
 c

h
e

c
k

s

ACE-Lite
Master

(Active)

ACE-Lite
Slave

(Active)

ACE
Master

(Active)

DUT

ACE System Environment

C
a

c
h

e
 C

o
h

e
re

n
t

In
te

rc
o

n
n

e
c
t

D
U

T

Port Level

Checks
System Level

Checks

UVM Analysis port UVM Callbacks

H
o

o
k
s
 f
o

r
u

s
e

r-
d

e
fi
n

e
d

 c
h

e
c
k
s

ACE
Coverage

Virtual
Sequencer

ACE Sequences/

Sequence Library

• Slave models memory and responds to requests.

• Infrastructure for System Level Checks

• Port Monitor for port-level checks .

• System Monitor: system-level checks, coherency
checks and data integrity checks.

• Configurable coverage model

• Used in conjunction with ACE Verification Planner

Using UVM Based VIP to address
challenges

UVM Stimulus Generation
Infrastructure

uvm_object

uvm_report_object

uvm_component

uvm_driver
req, rsp

uvm_sequencer

uvm_sequencer_base

uvm_sequencer_param_base

req, rsp

uvm_transaction

uvm_sequence_item

uvm_sequence

uvm_sequence

uvm_sequence
uvm_driver

req, rsp
uvm_sequencer

pre_start()

pre_body()

body()

post_body()

m_sequencer

Virtual Sequence Virtual Sequencer

post_start()

A

B

seq_item_port

rsp_port

seq_item_port

rsp_port

Separates the stimulus

generation from the test

bench

Normal sequence on

normal sequencer

Virtual sequence on virtual sequencer

Base class for transactions

callback

tasks

UVM Stimulus Generation
 – Basic Sequence

11

class axi_basic_readclean extends uvm_sequence;

`uvm_object_utils(axi_basic_readclean)

 //Constructor

virtual task pre_start();

 if(strating_phase != null)

 starting_phase.raise_objection(this);

endtask

virtual task body();

 `uvm_do_with(req,{

 xact_type == svt_axi_transaction::COHERENT;

 coherent_xact_type == axi_transaction::READCLEAN;})

endtask

virtual task post_start();

 if(strating_phase != null)

 starting_phase.drop_objection(this);

endtask

endclass: axi_basic_readclean

pre_body

pre_start

body

post_body

post_start

Nested/Virtual Sequence

12

Examples of a Typical Sequence:

ReadClean Coherent Command

OR

ReadClean

from

specified

master

Cacheline

initialization

Basic

ReadClean

Cacheline

invalidation

Basic MakeUnique

from Initiating

master

Basic ReadShared

from peer master

Basic Writeback

Basic Evict

M0

M0

M1

M0

Grouping of sequences

and nested scenarios

cache_init_sequence

cache_invalidate_sequence

basic_readclean_sequence

axi_master_virtual_sequence

 cache_init_sequence seq1;
 cache_invalidate_sequence seq2;
 basic_readclean_sequence seq3;
task body();
 `uvm_do(seq1)
 `uvm_do(seq2)
 `uvm_do(seq3)
endtask

extends uvm_sequence

Virtual Sequencer
 – Enables Orchestration

• Stimulus control across multiple masters in an environment.

– In specific order, using individual sequencers

• Actual Sequencers  Virtual Sequencers

– Instantiated & connected in agent/env

13

 axi_env extends uvm_env;

basic_MakeUnique_sequence

basic_ReadShared_sequence

axi_master0_sequencer

axi_master1_sequencer

 axi_master_virtual_sequencer
 axi_master0_sequencer
 axi_master1_sequencer

extends uvm_sequencer

virtual_sequence runs on
virtual_sequencer

M0

M1

M0

M1

Reside in respective
agents

Creating Configurable Sequences

• UVM configuration mechanism for added
configurability

• Allows sequences to reconfigure themselves

– Help Model Dynamic scenarios

• More granular control for virtual sequences
14

virtual task body();

 bit status;

 axi_operation_type op_type;

 status = uvm_config_db#(axi_operation_type)::get(null,

 get_full_name(), “op_type", op_type);

if(op_type == axi_transaction::ACE_EVICT)

 `uvm_do(axi_basic_evict_seq)

else

 `uvm_do(axi_basic_writeback_seq)

endtask

Sequence Library Infrastructure

• Grouping of sequences & virtual sequences

– complex hierarchical scenarios from atomic sequences

Extend the

uvm_sequence_library

Build the library

infrastructure

Allow the registration

of sequence in the

library

Extend uvm_sequence –

raise/drop objection

Extended sequence for basic

transaction generation

Register sequence

with library

class my_seq_lib extends

 uvm_sequence_library#(my_item);

 `uvm_object_utils(my_seq_lib)

 `uvm_sequence_library_utils(my_seq_lib)

 function new(string name="");

 super.new(name);

 init_sequence_library();

 endfunction

endclass

class uvm_sequence_library #(type REQ=int,RSP=REQ) extends uvm_sequence #(REQ,RSP);

class my_seq1 extends my_seq;

 `uvm_object_utils(my_seq1)

 `uvm_add_to_seq_lib(my_seq1,my_seq_lib)

endclass

System Level Checks

System Checks: A snapshot

•Building system monitor

• UVM event pool

• UVM Resource DB

• TLM-1.0/2.0 ports help

 redirect transaction.

• Enables checks related to

• Data Integrity

• Coherency

• Scheduling

• Correctness of System

• Performance

Reusability Aspects

• Hierarchical and Distributed Phasing

 Allows different ACE components to go out of phase

 Use of UVM domains enables to mimic independent flows in a
single simulation

 Relevant for Power aware components : allows
‘catching up’ when Restored from a Powered down state

 UVM phase jumps, sync/unsync mechanism aids

• Coverage Model shaped by Current Configuration

• Enables Debug at different levels of abstraction

 Logging , recording etc….

17

UVM Enabled Debug of a Cache
Coherent System

Browse Protocol
Transaction Activity

View transcript files

View Docs and Class

Reference Hierarchy

Quickly identify
problems and causes

Protocol

Class

Reference

Window

AXI/ACE Transactions

Detailed Transaction

Information Display

Child Objects

Browser Transcript

Full Trace

SUMMARY

• Protocol extensions like ACE help meet the increasing
processing requirements

• Added Complexity brings advanced challenges in
Verification

• Verification Methodologies provide the framework to design
environments to address these challenges

• Effective Verification Planning Methodology and native
System Verilog VIP key for success in such efforts

• Stimulus Generation Infrastructure, UVM resource
Mechanism, Distributed Phasing can be harnessed for best
results

