
Accelerating SOC Verification Using Process Automation and Integration

Seonghee Yim1 Hanna Jang1 Sunchang Choi1 Seonil Brian Choi1

1Samsung Electronics, Hwaseong, Korea.

({sh.yim, hn01.jang, s86.choi, seonilb.choi}@samsung.com)

Abstract:

As a competition in the smart device industries is getting fierce, the importance of TAT (Turn Around Time)

reduction in SoC (System on a Chip) development increases dramatically. The proposed system could combine

cross-disciplinary workflows together, automate execution, explore test results and check if design/verification

issues are satisfied with the required criteria. The system enables users to manipulate and configure process steps

with parametric input/output data and automates multiple simulations/emulation scenarios, and as a result, it is

expected to greatly improve efficiency of SoC development process by reducing manual errors and accelerate

product design.

1. Introduction:

While TAT reduction gets more important and difficult, the size and complexity of SoC increase as well,

meaning it is getting harder to meet TAT on time. In order to meet TAT on time, SoC is broken into sub-blocks. In

addition, the overall SoC development process is divided into 3 sub-processes: the first stage is an IP-level

design/verification, the second stage is a block-level which includes various design/verification stages and the last

stage is a top-level, full SoC-level design/verification stage. As a SoC project and the development process are

divided into sub-parts, more manpower and efforts are required in the SoC project. In general, test benches are

developed for functional verification in every design/verification stages. Regression tests are followed by functional

verification. Suitable input and output data are produced while regression tests are performed. Design/verification

engineers who are in charge of their own blocks develop and run their own scripts and application in order to

automate design/verification processes. The script files and applications are developed and tested in users’

development environments as described in Figure 1. As the complexity of SoC design increases, it is becoming more

difficult and tricky job to manage the increasing number of user-specific development environments.

Figure 1: Various Scenarios by Designers, Verification Engineers, Projects and Teams

In this paper, a system for design/verification process automation and integration is proposed to improve

efficiency in a collaborative work process in SoC development.

2. Related Works:

a. Continuous Integration

In a collaborative project, there are source codes files generated by developers involved in the project. When

source codes developed by a developer are merged into a project, there may be some critical problems: the project

may not be executed successfully because of inconsistent development environments throughout the developers.

mailto:seonilb.choi%7d@samsung.com

Another problem is an inconsistent version control. Continuous integration is a concept to prevent the inconsistent

development environment and version control problems. The most commonly used tool is Jenkins.

Figure 2: Continuous Integration Flow of Jenkins

The continuous integration flow with Jenkins is shown in Figure 2. First, all developers share source codes

through version control system or other configuration management tools. Jenkins takes the codes from version

control system, checks failures and errors and downloads relevant libraries from the repositories. And then Jenkins

run test scenarios to check if source codes are correctly programmed. Only if the test scenarios are done successfully,

the source codes are released to the operating servers.

b. Triage

Triage is a military medical term, which means a process of classifying and scheduling patients by their injury

severity. Nowadays, this term, triage, has been widely used in IT (Information Technology) and business industries.

For example, an IT operation department triages issues to decide which problems are urgent most. The top priority

issues are handled as soon as they arise, and the issues in a medium-priority arise when there is no issue with a

higher priority than themselves. If there is no medium-priority issue, low-priority issues are handled. However, in

the worst cases, the low-priority issues might not be dealt unless their priorities are reassessed as a higher priority

level. It's crucial to deal with high-priority requirements as soon as possible to meet the project plan on time. In agile

software development, requirements are typically triaged at the start of each iteration. Because an iteration is a short

development cycle, it's crucial to deal with high-priority requirements quickly to ensure that they are satisfied in

time. In this paper, the term, triage, is used for priority of failures and errors. Failures and errors are triaged by some

criteria, and debugging failures is performed based on the priority which is a result of triage.

c. SoC Design and Verification Flow

The design/verification of the SoC HW (Hardware) starts at the SoC specification stage as shown in Figure 3. It

proceeds in a sequence of IP development, block development, and SoC integration. Not all progresses are

performed in a strict sequence manner, meaning the order is not a tail-to-tail sequence. Instead, some progresses can

be overlaid and proceeded in parallel.

The development of IP is carried out in accordance with SoC's development schedule. As the IP development

begins, the verification of the IP starts, which IP will be used in the progress of determining the specification of SoC,

and which version will be used in the SoC. In addition, block configuration is determined according to SoC

specification, and block development is started. Block design/verification includes an Inter-IP connection in the

block and functionalities of the block. In parallel with this, inter-block connection starts at the top SoC perspective.

During the connection of inter-block, design of SoC top module functionalities are followed. Figure 3 shows this

process over time. This paper defines verification steps for each development stage and defines them as Verification

Level (VL). In VL1, IP-level design/verification is performed, and block-level design/verification is started

following. In VL2, IP-level design/verification and block-level design/verification are mainly performed, and design

and verification for SoC top is started. IP-level design/verification is done before VL3. In the VL3 and VL4, the

design/verification of blocks and SoC is mainly performed. The difference between VL3 and VL4 is regression test.

In VL4, regression test for blocks and SoC is performed mainly.

Version control
system

Figure 3: SOC Development/Verification Flow (Level).

3. Proposed System:

This paper proposes the integration of the verification environment and its processes. There are three methods to

integrate design/verification processes: a top-down method, a bottom-up method and a hybrid method of top-down

and bottom-up method. The top-down method is forcing current environments and processes to be integrated into a

unified one, and the bottom-up method creates an interface to unify various kinds of environments and processes

while preserving the current development ones. The hybrid method is a mixed one of the top-down and bottom-up

method. The ultimate method of integration is the last third method. On the first trial of integration, it is hard to step

into the first and third methods directly because of verification stability and risk. For that reason, this paper adopts

the second method that is based on bottom-up way. Another reason is that the current verification environment has

long been optimized for each verification engineer and each verification unit. The environments are already

optimized in many parts of each unit but there still remain inefficient parts. It is expected that many of the remaining

inefficient parts can be efficient as they are integrated into the platform proposed in this paper.

Another main idea of this paper is automation. While the basic processes of current design/verification are

preserved, the proposed system maximizes the efficiency of building environment for design verification by

automating manual tasks. The quality of verification environments can be maintained high and can be built quickly

by removing errors which are caused by human errors. In addition, if the flow needs to be changed, the change can

be handled more flexibly. The proposed system could be settled down as a new standard workflow, out of the

traditional verification methodology guidance. In this paper, the system is focused on each verification level of SoC

verification.

Many design/verification environments are diverse in each design stage such as IP, block and SoC level in actual

SoC projects. Each design unit and design team has their own well-structured workspaces such as directory

structures and verification types. In the same design stage, some standardized workspace structures can be created,

however, it is very difficult to standardize workspace structures in different design stages. In order to integrate the

design/verification environment, it is preferable to support all environments rather than formalizing all stages of

environment. In this paper, 5 modules were developed as shown in Figure 4 to integrate and automate various

verification environments. The first module is a flow controller.

Figure 4: Integrated Platform and Internal Queue for Automation and Verification

1) Flow controller

Flow controller system is that can unify and automate work flow that exists in each team and step of verification

stage. And it is similar to the existing Continuous Integration (CI [https://jenkins.io/]) services while the

controllability of workflow has been improved. This is because during the SOC verification period various

workflows are integrated into the proposed automation system. The proposed system treats each workflow as a unit

of work. A workflow consists of a sequence of steps where a step is pre-defined execution commands or operations.

A sequence of steps is defined as scenario. A scenario starts from start-step and ends at end-step. There may be

several steps between start-step and end-step, which are defined as normal step. Each step has a link information

(head IP, tail ID) that connects to each other. Furthermore, each step is divided into three steps of pre, body and

post-step. On the outside, only the body of step is visible, and pre/post-step is responsible for the operation to

supplement body-step. The scenarios and the steps are reusable, and the operation of each step can be determined at

the time the work flow applied to the action is executed. So, we can insert various conditional input set Even if using

the same step and scenario. Figure 5 is an example of the actual step and scenario used.

Figure 5: Verification automation scenario and step

2) Regression Manager

Regression Manager is system of regression test cases for managing and control and leverages internally

developed queues and commercial regression tools. Currently, a thirty party tool used in Samsung has been

integrated. In the IP stage, the regression environment is configured as a script, and information on this part is

reported through meta data. In the IP-level design stage, the regression environment is configured by a script, and

information on this is reported through meta data. A large amount of jobs provided by regression managers and

information of their status and results can be checked at a glance because those information can be connected by

data structures managed for each scenario.

3) Job Scheduler

Job Scheduler is to schedule jobs based on a priority or reserve the time to execute (reservation time). It is

internally developed. In the job scheduler developed in this paper, the basic unit of job is composed of scenario. One

job is submission to the job queue with one scenario. A job is performed when certain conditions are satisfied. The

unit of execution of each job is a group of each entity called Actor and is parallel for load balancing of service group

or daemon. Several daemons will perform a job coming into their actor group. All jobs are performed while the

start-step and end-step of the scenario are continuously managed during the execution. Each job has the status

information of scenario and the status information of each step and controls life time of job with the status

information. Figure 6 shows the real time status of various types of scenario which is managed through the system

proposed in this paper.

Figure 6: Job status managed through automation system

4) Triage Scenario

Triage Scenario (TS) module is to classify issues or failures based on data generated from Regression. For

example, if a bug or a failure occurs while any jobs are executed, TS have several algorithms to narrow down a

region or target range of possible issues dynamically. It also re-runs if necessary to provide sufficient information

for designers or verification engineers for rapid debugging. In the current version, binary search algorithm and

machine learning based clustering are implemented. Our proposed system collects many regression test results and

creates clustering data for each blocks by density-based clustering technique which can re-ordering the bunch of test

cases for efficient verification. It has a test schedule to re-order the test list for error cases per cluster. The reasons to

why we are applying those solutions are two things. Firstly, when design data changes; it makes too many tests to

perform every particular period of time and resources inefficiently. Secondly, since the test cases for verification of

each change block are connected to different blocks and affect each other, the error case that occurs is not only a

failure of the test case but also a potential error element. If you connect it to a strategy to verify it in advance, you

can expect to improve efficiency and verification speed.

5) Data Manager

Data manager collects all data while every job execution and uses them for further analysis. For example, all

design changes (especially RTL changes) are collected over the SOC development cycle and are used to correlate

with any simulation failures to assist verification engineers to debug those failures. The data manager implemented

in this paper can integrate the verification information for each IP, block. SoC verification stage and interwork with

the verification information for each stage. A verification can be efficient through interworking of verification

information. The information that is integrated in the data manager is the verification task for each verification step

and the result information for each verification operation. These data are formatted and stored in a database, and

user input information and log information for each step are stored in a disk in the form of a file. The meta

information for the abnormal data is formulated and managed. The formalized meta information is summarized

using mutual relationship. The verification information accumulated in this way can be used in different verification

stages, and the linked information leads to the high efficiency of verification. The verification status of each stage is

transferred to the verification manager through the dashboard system or mail alarming service. Figure 7 shows the

dashboard system and e-mail reporting service.

Figure 7: Dashboard and Mail service

In addition, the ongoing research is informatizing the amount of change in the design information for each stage

of development. It is expected to shorten the verification period and increase the verification quality by linking this

to verification information.

Experimental Results: The integrated platform is applied to our design verification to automate the regression.

The experimental results is shown as below

Until now, verification work for each project has been classified as a role of each level’s verification engineer. In

other words, the work was independent of each other. Verification for each IP and block level was repeated or added

every time the development version was changed, and it was being progressed separately because it was not

synchronized with the top level verification. Automation and information integration of each verification phase can

optimize the verification flow and test for each event. In order to calculate the effect, a number of verification

efficiency generated by each verification step was written and viewed. It, Of course, will be different for each IP,

Block, and SOC product, but the verification time according to the complexity has been quantified by referring to

the results of the actual project.

Table 1 shows experimental numbers of comparative results of verification time between existed method and the

proposed platform. A, B, and C mean the verification time for each verification target. A1 is the verification time

in the existed IP-level verification. The verification time of the proposed platform can be defined as the maximum

value of A1 or B1 or verification time used for failed cases in IP verification or verification time used for failed

cases in block verification. At the VL1, A1 is defined as 4T and B1 is defined as 16T, the existing verification time

becomes 20T, and the proposed platform application result could be 16T when fail cases are not happening in IP or

Block level. At the VL2, all of levels verification test should be conducted, so the verification time could be reduced

to max run time among the A2, B2 and C2 test running time compared to the previous sum of each level. At the VL3

and VL4, verification time is reduced by max run time of each level. Analyzing the time for failure occurrence as

statistical probability is not clear from differences in distribution by verification level. Thus, It will be interpreted as

an approximation through actual application.

Table 1: Verification time by each verification step

Verification

Level

Change events

VL 1 VL 2 VL 3 VL 4

Before After Before After Before After Before After

IP level change A1 Max(A1,B1)

OR A1_IP_fail

OR B1_Block_fail

A2+ B2+C2 Max(A2,B2,C2)

OR A2_IP_fail

OR B2_Block_fail

Block level change B1 B1 B2+ C2 Max(B2, C2)

OR B2_Block_fail

B3+C3 Max(B3,C3)

OR B3_Block _fail

B4+C4 Max(B4,C4)

OR B4_Block_fail

SOC level change C2 C2 C3 C3 C4 C4

* AN = 4T, 6T, 0, 0 (N : number of verification level, T: unit time), BN = 16T, 20T, 24T, 20T, CN=0, 60T, 90T, 120T

Figure 8 shows the results applied to the actual project. This result shows efficiency for the verification time

before and after each verification step. For reference, it has not been applied to the overall verification of the actual

project, has been applied to some IPs and corresponding blocks, and in the top level of SOC, has all been applied.

At the VL1, as mentioned above, verification time is reduced by around 35% and the verification time is reduced by

43% at the VL2. At the VL3 and VL4, verification time is reduced by 28% and 27% separately. The verification

time reduction in VL3 and VL4 is less than that in VL1 and VL2 because it does not includes the time reduction

effect of IP-level verification. The verification time for each step was decreased by up to 43%, when the triage flow

in the integrated platform applied to test failure cases at each verification stage as Figure 8 shows.

Figure 8: Reduction of verification time by each verification step

Conclusion: In order to provide verification environment, which is optimized for complex SOC, each verification

workflow process is being automated for each target design level. Furthermore, verification time can decrease and

verification quality can increase as these processes are integrated into automation environment

The main idea is to integrate existing workflows and verification environments so that they can be reused in the

form of platforms. This integrated platform can enable verification environment setup rapidly and can unify

scattered information of each verification level. Furthermore, the unified information can enable to optimize

verification environment.

In this paper, a platform for automating and integrating workflow scattered by stage for each verification target

was proposed to shorten the verification time. In the actual flag ship mobile AP SoC design project, many local

workflows from IP verification to block and SoC verification were integrated into the proposed platform to verify

the maximum 43% of the verification time per step. To this end, some of the existing un-automated workflows have

been automated and verification data has been linked to the integrated system, but the integration of each department

has not been proceeded. In addition to the part where each verification phase information is linked and efficient As

the number of tests was reduced by automating the execution of the processes in Workflow and applying the

proposed triage ratio to the cases where the verification status and information were integrated, the verification time

could be greatly reduced. This reduced time has helped improve the quality of verification because it can be used for

additional verification. Moreover, the proposed system has greatly reduced efforts to create an integrated platform

because it can re-use the existing workflow, the verification environment, and the existing system. In conclusion, the

verification information distributed and produced at each verification stage could be integrated into one view

through the proposed data manager, and the integrated information could be analyzed and utilized to optimize the

verification environment. These results resulted in reduced verification time and improved verification quality.

Through additional research, we plan to re-order the test list of error cases by clustering each block by density-

based clustering using a lot of regression test result information for each verification phase. In addition, we would

like to consider using the classification model to determine the group of sanity test for error cases. In addition, we

expect that by additionally applying the dynamic distributed structure technique of job scheduling algorithm, the

verification system will be improved to shorten the verification time.

References:

[1] A. MOLINA, O. CADENAS, "FUNCTIONAL VERIFICATION: APPROACHES AND CHALLENGES",

Computer Architecture Department, Universitat Politècnica de Catalunya, Barcelona, Spain,2007

[2] Design and Verification Gaps information is at https://www.researchgate.net/figure/Design-and-Verification-

Gaps-Design-productivity-growth-continues-to-remain-lower-than_fig3_237116903

[3] continuous integration constraint information is at https://www.ionos.com/digitalguide/websites/web-

development/continuous-integration/

[4] Fine, S. and A. Ziv, “Coverage directed test generation for functional verification using bayesian net-works,”

Proc. 40th Design Automation Conf. (DAC), Anaheim, CA, USA, 286-291 (2003).

[5] G. Rothermel, R.H. Untch, Chengyun Chu, M.J. Harrold, “Prioritizing test cases for regression testing”, IEEE

Transactions on Software Engineering (Volume: 27 , Issue: 10 , Oct 2001)

[6] Validation of deep-learning-based triage and acuity score using a large national dataset is at

https://doi.org/10.1371/journal.pone.0205836 (2018)

[7] Zissis Poulos , Student Member, IEEE, and Andreas Veneris, Senior Member, IEEE, “Failure Triage in RTL

Regression Verification”, IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018 1893

