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Abstract— Long simulation run times are a bottleneck in the verification process. This article presents a variety 

of methods for combating this performance issue: utilizing different tools, such as SystemVerilog properties; 

understanding of the design as a system, making changes in different levels of implementation such as 

line/block/macro level. This generally speeds up the full regression, or, in some situations, at least the debug run. The 

article also presents several tips on how to do analysis for performance issues.  
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I.  INTRODUCTION  

Long simulation run times are a bottleneck in the verification process. A lengthy delay between the start of a 

simulation run and the availability of simulation results has several implications: 

 Long turn-around times cause the code development (design and verification) and the debug process to be 

slow and clumsy. Due to the long time, some scenarios become not feasible to verify on a simulator and 

must be verified on faster platforms — such as an FPGA or emulator, which have their own weaknesses. 

 Engineers must make frequent context-switches, which can reduce efficiency and lead to mistakes.  

Coding style has a significant effect on simulation run times. Therefore it is imperative that the code writer 

examine their code, not only by asking the question “does the code produce the desired output?” but also “is the 

code efficient, and if not, what can be done to improve it?”  

Previous papers have examined the effect on simulator performance when implementing the exact same 

functionality while using different coding styles [1], or emphasize the different coding style approach that is 

needed when the traditional verification environments are migrating from Verilog to SystemVerilog and are 

implementing the widely spread UVM methodology [2].  

While this paper gives some optimizations methods based on the abilities of SystemVerilog, it is also adding 

another layer of performance optimization that comes from the understanding of the design as a system, and 

optimizations that are made specifically for debug runs purposes. 

This article also presents several tips on how to analyze for performance issues. 

TWO TYPES OF CODE MODIFICATIONS 

There are two types of code modifications that can accelerate simulations: changes in line/block level (which 

we will call micro level) and changes in the module or component level (which we will refer to as macro level). 

II. MICRO CODE MODIFICATIONS 

A. Sensitivity Lists/Triggering Events 

The key thing to remember about a sensitivity list at an always block or a trigger event at a forever block is 

that when the trigger occurs, the simulator starts to execute some code. This is trivial and fine in the functional 

sense, but when considering code efficiency, it is desirable to determine when a signal can be exempt from the 

sensitivity list or which event should be chosen for triggering.  

1) Synchronous example: 

Consider the following example (counting the number of transactions over a synchronous bus): 
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The above code is the most intuitive way to implement the counting code. It is intuitive since this is how it 

would have been written in the design. Notice, however, that during the time the clock is toggling and no 

transactions are present on the bus, the if condition is unnecessarily checked, over and over again. 

Now consider the following adjusted code: 

 
 

You can see that this code functionally counts the same thing, but much more efficiently, with respect to the 

number of calculations needed. This implementation realizes that in a system, a bus is in idle state a significant 

percent of the time, allowing us to achieve performance optimization. 

The exact speedup of this change cannot be calculated using a simple formula since it depends on several 

factors, such as the effort of a particular simulator on a given machine to execute the count++ relative to the other 

commands, and the ratio between the idle cycles and the cycles with actual transaction. Nevertheless, in order to 

get an idea on the speedup potential, when using a ratio of 1:3 transaction to idle, the result was that the “each 

cycle” code took 47% more time to be executed than the alternative code
1
. 

 

 

2) Asynchronous example: 

The following is taken from actual code found inside an actual IP. It is a BFM code of an internal PHY. For 

this example, the code has been edited to use only eight phases; the original code included 128 phases. 

                                                           
1
 All of the measurements in this article have been taken from code running on Questasim 10.4 

  initial begin 

    forever 

    begin 

      wait ((VALID == 1) && (READY == 1)) 

      count++; 

      @(posedge clk); 

    end 

  end 

  always @(posedge clk) 

  begin 

    if ((VALID == 1) && (READY == 

1)) 

    begin 

      count++; 

    end 

  end 
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Examining this code carefully shows that for each change of IN, the always block is invoked eight times. This 

is due to the cascading changes of the INx signals: IN0 changes at “t” invoke the always block that initially 

processes the case logic; then IN1 changes at “t+25” and invokes the always block again, and so on, until IN7 

invokes it at “t+175”. Remember that the code originally supported 128 phases, so for each change there where 

128 invocations. The case itself was composed of 128 options, and this module was implemented on every bit of 

the PHY’s 128-bit bus!  

This resulted in a complexity magnitude of ~M*N
2
 (where M is the number of bits in the bus, and N is the 

number of phases). 

Now, consider this adjusted code: 

 

 

  wire             IN0 = IN  &&  (DELAY_SEL=='d0); 

  wire #(25)   IN1 = IN  &&  (DELAY_SEL=='d1); 

  wire #(50)   IN2 = IN  &&  (DELAY_SEL=='d2); 

  wire #(75)   IN3 = IN  &&  (DELAY_SEL=='d3); 

  wire #(100) IN4 = IN  &&  (DELAY_SEL=='d4); 

  wire #(125) IN5 = IN  &&  (DELAY_SEL=='d5); 

  wire #(150) IN6 = IN  &&  (DELAY_SEL=='d6); 

  wire #(175) IN7 = IN  &&  (DELAY_SEL=='d7); 

 

  always @(*)  

  begin 

    case (DELAY_SEL) 

      4'd0 : OUT = IN0 ; 

      4'd1 : OUT = IN1 ; 

      4'd2 : OUT = IN2 ; 

      4'd3 : OUT = IN3 ; 

      4'd4 : OUT = IN4 ; 

      4'd5 : OUT = IN5 ; 

      4'd6 : OUT = IN6 ; 

      4'd7 : OUT = IN7 ; 

    endcase 

  end 

  wire           IN0 = IN; 

  wire #(25) IN1 = IN0;  

  wire #(25) IN2 = IN1; 

  wire #(25) IN3 = IN2; 

  wire #(25) IN4 = IN3; 

  wire #(25) IN5 = IN4; 

  wire #(25) IN6 = IN5; 

  wire #(25) IN7 = IN6; 

 

  always @(*)  

  begin 

    case (DELAY_SEL) 

      4'd0 : OUT = IN0 ; 

      4'd1 : OUT = IN1 ; 

      4'd2 : OUT = IN2 ; 

      4'd3 : OUT = IN3 ; 

      4'd4 : OUT = IN4 ; 

      4'd5 : OUT = IN5 ; 

      4'd6 : OUT = IN6 ; 

      4'd7 : OUT = IN7 ; 

    endcase 

  end 
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Based on the system assumption that the delay configuration is not configured simultaneously with the 

modules’ functional data flow, we have reduced the code complexity to M*N. Actually, if we do not care in our 

simulation about the “analog delay” on the bus, we can simply write OUT=IN and reduce the complexity to M 

only. 

To emphasize the importance of being efficiency aware, this simple code change alone, having reduced the 

calculation complexity to M*N, accelerated some full-chip tests (SoC of ~40M gates) by a factor of two! 

 

B. Wrong or inefficient modeling: 

The following code is a small part of a memory model. 

 

 

This example code seems fine, but it can actually be optimized as well. 

 

This is a large array and looping over one million entries will take a long time. Fortunately, this time can be 

saved during the initial reset of the chip (before the memory is filled) by masking the first reset negedge — as the 

array is already filled with zeros. Beyond that, however, a different approach can be applied. Using an associative 

array instead of a fixed array enables the array to be nullified with one command, instead of by using a loop: 

 

 

Even with a relatively small memory with 256 entries, the efficiency of the implementation with an 

associative array code is 10 times better.  

 

C. Time tracking: 

Many times we want to execute code after some time has passed from a previous event. There are two options 

to keep track on the time that have passed. The first option is by using explicit delays by the ‘#’ operator. This 

approach has one major drawback – what if the clock’s frequency is not known in advance, or can be different in 

a future project? Therefore, instead, the clock cycles counter is usually used: 

  logic [31:0] mem[*]; 

   

  always @( negedge rst_n) 

  begin 

    if (!(rst_n)) 

      mem= {}; 

  end 

  logic [31:0] mem [(2<<20)-1:0]; 

   

  always @( negedge rst_n) 

  begin 

    if (!(rst_n)) 

      for ( i=0 ; i < (2<<20) ;  i++ ) 

        mem[i] = 0; 

  end 
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However, this is very wasteful manner to track time, since a code is being executed each clock cycle. Instead, 

consider the following code using a more sophisticated way of using the ‘#’ operator: 

 

 

 

Using this delay method consumes only a tiny fraction of simulator resources compared to the cycle count 

method.  

III. MACRO CODE MODIFICATIONS 

A. Using Different Code for Development and Debug 

In a design or a verification environment that is composed of many different components, where not all of 

them must be active at all times, it may be beneficial to eliminate parts of the code that are not essential for the 

majority of the tests. 

If the code is a module in the design itself, a “stub” or a simple BFM can be created to replace that module, 

and then a generate if block with an else option is added. Depending on the global parameter added during 

simulation time, the simulator will generate the real code or the simplified code. Engineers can decide when to 

use which option. If they want a specific test to always use the simplified code, set the parameter at the regular 

run command. Alternatively, if they want to support a simplified model during “debug mode” only, the parameter 

is set only when debugging or developing, but not when running the full regression. 

Code example for using a generate if block: 

  int cycleDelay=100; 

  realtime samplePosedge1, samplePosedge2, period; 

  event startDelay; //triggered by some logic 

   

  initial 

  begin 

    @(posedge clk); 

    samplePosedge1 = $realtime; 

    @(posedge clk); 

    samplePosedge2 = $realtime; 

    period = samplePosedge2 - samplePosedge1; 

    -> startDelay; 

  end 

   

  initial 

  begin 

    @(startDelay); 

    #( period * ( cycleDelay – 2 ) ); //since 2 clocks were "wasted" on the sampling 

    $display("%t %0d * delay", $realtime, cycleDelay); //just some action 

  end 

  int cycleDelay=100; 

  event startDelay; //triggered by some logic 

   

  initial 

  begin 

    @( startDelay); 

    repeat (cycleDelay) @(posedge clk); 

    $display("%t %0d count", $realtime, cycleDelay); //just some action 

  end 
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Please note that each begin-end pair is named differently, so the module path will be different depending on 

the parameter value. This is relevant when probing into that module, so the probing path should be also depended 

on the parameter value. 

If the code is not in the design, engineers can use the generate if method as well, or simply add a parameter 

that interacts with the testbench component directly to disable the component. Alternatively, if the code is of a 

class type, the parameter may be used to prevent the component creation. 

For example, in the universal verification methodology (UVM), the configuration object of an agent should 

hold variables indicating whether to create subscribers for the monitor, and even indicating whether to run or 

disable the monitoring of the monitor itself. 

By using these types of methods we have managed, with minimal effort, to speed up a SoC (10M gates) 

environment by a factor of 10. 

B. System Modes 

In some cases, leaving some modules in a reset state, or with no clock, is a valid design mode. Even when it is 

not a valid system mode, if the test(s) are not affected by it, forces can be used to override the normal behavior. 

Again, this can be controlled by a parameter. 

In a design with a complex clock scheme, engineers may try to find the best clock ratios that are relevant for 

that type of test. If the test depends on cores, it may help to increase the core clock frequency. If the test depends 

on DMA activity, the core frequency can be reduced when the core is idle. It is good practice to choose ratios that 

are used by default for most of the tests and make adjustments to only specific ones. 

IV. PERFORMANCE ANALYZING TOOLS 

A problem with trying to optimize the performance of a simulator is that it is often impossible to know exactly 

where the bottlenecks are and what is slowing it down. As shown in the code examples above, sometimes even 

small – almost negligible – code changes can have a large effect on the entire simulation. How can one find this 

code among millions of code lines and inside of IPs, especially if others wrote them? 

Performance analyzing tools, provided by simulator vendors, are used to identify the  parts of the code that 

consume the most cycles of the simulator. As a side note, since there is a correlation between the usage of the 

  generate if ( ! CLKDIV_DIGRF_SIMPLIFIED_MODEL ) 

  begin :package_model //simulation will take longer time 

    clkdiv_digrf   u_pll_clkdiv  

    ( 

      .CKOUT_624M  (CKOUT_624M), 

      .CKOUT_499M  (CKOUT_499M), 

      .CKOUT_416M  (CKOUT_416M), 

      .CKOUT_312M  (CKOUT_312M), 

      .CLKIN       (CLKIN) 

    ); 

  end 

  else 

  begin : simplified_model 

    clkdiv_digrf_simplified   u_pll_clkdiv  

    ( 

      .CKOUT_624M  (CKOUT_624M), 

      .CKOUT_499M  (CKOUT_499M), 

      .CKOUT_416M  (CKOUT_416M), 

      .CKOUT_312M  (CKOUT_312M), 

      .CLKIN       (CLKIN) 

    ); 

  end 

  endgenerate 
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simulator calculation resources and the power consumption of the chip, it is sometimes possible to find design 

bugs in the early stages of the project. 

A. Simulation Phases 

When using analysis tools, it is best to perform different analysis for the different stages of the simulation 

(i.e., different time-frames). These stages include the out-of-reset phase, the configuration phase, and the run 

phase (which can be further sub-divided). Using small time frames produces more accurate analysis per 

simulation stage, since different parts of the design are active at these different stages; thereby consuming 

different simulator resources. Conversely, examining the simulation run globally makes it harder to analyze the 

design for anomalies. 

B. Acceleration Measurements  

After finding the critical components in the code that affect simulation time and finding the right solution for 

them, it is recommended to measure the benefit from those optimizations. Here are some tips regarding those 

measurements: 

 When measuring, know exactly what is being measured. For example, when measuring simulation run 

time, do not include the time required to load the simulator software and do not include the time taken to 

load the design code into the simulator. These times may be important, and may be optimized as well, but 

they are irrelevant for this type of calculation. 

 Make real comparisons: compare A to A, not A to B. 

o Random elements Usually, engineers disable random elements by using the same random seed 

to simulate the same scenario. However, there are cases where the change itself is the cause of a 

different random generation result. For such cases, using the same seed is not recommended; 

instead, continue using random seeds along with a statistical analysis method as described 

below. 

o Statistical analysis The run-time can be affected by external things, beyond the content of the 

code, such as, server usage by other processes or data in the server’s cache. For a good 

comparison, run the compared test several times (20–30), with and without the change, and 

compare the average times. Also check that the standard deviation is reasonable (around 20% 

of the average). If there are abnormal measurements, restart the process or throw away specific 

“off the chart” measurements that may be the result of some specific server problem. 

V. CONCLUSION 

Slow simulations are not necessarily decreed by fate. Engineers as well as managers should pay attention to 

the importance of coding efficiently for simulation as well as the different ways to analyze simulations and tackle 

simulation bottlenecks. 
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