Accelerating Functional Verification Coverage
Data Manipulation Using Map Reduce

Eman El Mandouh, Mentor Graphics Siemens Business
A. Gamal, A. Khaled, T. Ibrahim, Cairo University
B. Amr G. Wassal, Elsayed Hemayed , Cairo University

l/ A Siemens Business E 2017
Cairo nive i 1 DESIGN AND VERIFICATION™
accenera DV O

SYSTEMS INITIATIVE

Functional Verification : An Overview

rd

-

accellera

SYSTEMS INITIATIVE

Hardware Verificatior? is the process of checking if a design conforms to its specification of

\

¥

functionality, timing, testability, and power dissipation

1>

The Primary Goaf of Functional Verification (FV) is to establish confidence that the design intent was
captured correctly by the implementation.

Functional Specification

e e e e e e e e e e e e -
0 H H SE: H ~
', Dynamic Function Verification Y
1
- - 1
: Test-bench Simulation 1
= - > Implementation :
[13] Constraint - 1
[1 Test T est Solver Simulatoy 1
1 . Stimulus 1
— 1 Environment -
S Generation 1
= 1 " " Coverage Assertion []
1 Design . Design - N
1] - Functional e Engine Engine 1
= 1 Assertions Constraints H
t_..= 1 Coverage 1
o ‘ 7'y 1
> Y ,I
\\ o e e ——— -
o e e e =~<
s 7 Static Function Verification f - , ~
S 'l > Static Design Checks \‘
j= "rg] Clock \
5 =] Design) 1
o © Domains 1
1 Checks B
v & Crossing 1
Qo o H 1
[=3 1 Power Reset 1
E 1 Checks Check ;
]
' i
H 1
: I
: Formal Verification \ 1
1
1
1 Model Security :
: Checker Check 1
1
]
1 . Connectivity Register . Register 1
1 Specification Specification Con:::s;wty Status :
: - Check 1
! Design Design :
1 Functional i Reachability
i XCheck N 7
“ Assertions Coverage Constraints Analysis 7
S \
N e~ — ettt ———— —

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

Coverage in Functional Verification

—————_ Coverage in Functional Verification

v Is to measure the completeness of functional verification
activities by judging the final coverage achieved from the tests
execution

i aani

* Coverage Type
— Code Coverage : Simplest and Easiest to gather
e Statement, Branch, Toggle, Expression, FSM,..

— Functional Coverage
* Cover Directive, Cover Points

accellera DV N

SYSTEMS INITIATIVE

Coverage in Functional Verification

Dynamic Verification Adoption Trends Sign Off Criteria Trends

WHEN ALL TESTS DOCUMENTED IN THE
VERIFICATION PLAN ARE COMPLETE AND PASS

WHEN THE PROJECT PLAN SAYS SIGN-OFF,
ASSUMING VERIFICATION LOOKS OK

WHEN COVERAGE SAYS WE HAVE ACHIEVED A

Assertion et TARGET

» .12 i
014 WHEN THE EMULATED OR PROTOTYPED DESIGN IS
2016 WORKING IN-SITU

2007

WHEN THE RATE OF BUGS FOUND PER WEEK DROPS
2012

Functional coverage BELOW A SPECIFIED GOAL

WHEN WE CAN NO-LONGER THINK OF ANY MORE
TESTS TO WRITE

WHEN THE PROJECT PLAN SAYS SIGN-OFF,
REGARDLESS OF STATUS

Constrained-Random
Simulation

OTHER

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
ASIC/IC Design Projects Non-FPGA Study Participants

** Source Wilson Research Group Functional Verification Study

2017

DESIGN AND VERIFICATION™

accellera DV

© Accellera Systems Initiative 4
SYSTEMS INITIATIVE

Coverage Driven Verification
| \Verification

%7 Merged Coverage
] Database
Functional & Plan _ 'v — ” a
Design Specs — —

e e —

i e x o P
L

Design Regression
Tests

Coverage Databases No Reach
Revisit Verification Plan, Coverage
Goal?

More Tests Generation

2017

accellera DV N

SYSTEMS INITIATIVE

Universal Coverage Data Bases

Coverage Produce

{ 1
! i
! Simulation i
: L P
| I o) o Coverage Consumer
1 :] | |
1 1 5. 1 5.
i i - - | v
: : 5! <> = g Coverage Report Generators
1 - 1 . 1 . .
i Static Checks ; o = o Coverage Trend Analysis
i ! " % ! " % I | v/ Test Plan Coverage Results
i i ; ao! Coverage | oo Annotation
i i 1 §! Database I §! v’ Coverage Data Analyzers
i I - o1 "ol
i Formal : :_U_| :_u_| (ML)
' :
! Verification i
i :
1 1
1 1
1 1
1 1
' i
i Emulation i
| |
AN /‘
\." _________________ ', DESIGNANDVER%QJT?ON"
accellera - V]
© Accellera Systems Initiative 6 =1

SYSTEMS INITIATIVE

Challenges in Analyzing Coverage Data

e Complex, Large HW Designs, Large Size of Coverage Data
* Multiple Coverage DBs from Different Verification Methods

Coverage DB Size w.r.t no of Cover Bins
30

0

dacceiera - DV
© Accellera Systems Initiative W Degign Bins CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Size in GBs
= o]]
(W] o (W]

=
o

Introduction to Coverage DB Data Model

e HDL scope data models

UCIS_HDL_SCOPE

u

* Functional coverage data models

CIS_HDL_DU_SCOPE

UCIS_DU_MODULE

 Code coverage data models

UCIS_DU_ARCH

UCIS_DU_PACKAGE

A A A/ /

UCIS_DU_PROGRAM

UCIS_DU_INTERFACE

Y — \\

(L

\

UCIS_HDL_INST_SCOPR

UCIS_INSTANCE

UCIS_PROGRAM

UCIS_PACKAGE

Y Y Y Y

UCIS_INTERFACE

|
|
|
]/

** Source Unified Coverage Interoperability Standard (UC

SYSTEMS INITIATIVE

© Accellera Systems Initiative

/

\

GCIS_HDL_SUBSCOPB

[UCIS_PROCESS

UCIS_BLOCK

UCIS_FUNCTION

UCIS_GENERATE

UCIS_CLASS

|
[]
[)
[UCIS_FORKJOIN J
[|
[)

|

UCIS_TASK

q

1S) V1.0

UCIS_VERIF_SCOPE

UCIS_COV._SCOPE

u

CIS_FUNC_COV_SCOPE

UCIS_CVG_SCOPE

UCIS_COVERGROUP

UCIS_COVERINSTANCE

UCIS_COVERPOINT

UCIS_CROSS

UCIS_CVGBINSCOPE

UCIS_IGNOREBINSCOPE

UCIS_ILLEGALBINSCOPE

"

S
\

|

|

|

|

|

|
),

\

UCIS_COVER]/

>

/ ucis_ coof_cov_scc»}

UCIS_BRANCH

UCIS_EXPR

UCIS_TOGGLE

UCIS_COVBLOCK

— A A A A/

[
[
[UCIS_COND
[
[

UCIS_FSM_SCOPE

[UCIS_FSM

[UCIS_FSM_STATES]

[UCIS_FSM_TRANS

—

N

UCIS_ASSERT] { UCIS_GENERIC y

2017

DESIGN AND VERIFICATION™

NFERENCE AND EXHIBITI

Introduction to Coverage DB Data Model

covergroup cg;

type_option.comment = Example;

, . UCIS_INSTANCE
type_option.merge instances = 1; [“top”]
option.at_least = 2; // becomes the ‘goal’ in the coveritems +
cvpa: coverpoint a {bins a = {0}; }
cvpb: coverpoint b {bins b[] = {1,2}; ignore_bins c = {3}; } [UCE—CQ¥§BGROUP]
axb: cross cvpa, cvpb {type_option.weight = 2; } I

cg cv = newl();

endgroup h 3 v ¥
[UCIS_COVERPOINT] [UCIS_COVERPOINT] [UCIS_CROSS]

“ovpa® ovpb” -
! 4,
HEIS_CVEBIN eIS EeE ucis_icnoresiN | [ucis_cveain
= (1 “c” “<a,b[1]>"
UCIS_CVGBIN
T UCE; f,?;ff'“
// psl default clock = rose(clk); // line 10 UCIS_INSTANCE
// psl pslcover: cover {b;al; // line 11 “top”
sequence a_after_b; // line 12
@ (posedge clk) b ##1 a; // line 13 _ 'L . l
endsequence // line 14 UCIS_COVER UCIS_COVER
svacover: cover property(a_after_b); // line 15 L “pslcover”) “svacover”
** Source Unified Coverage Interoperability Standard (UCIS) V1.0 UCIS_COVERBIN UCIS_COVERBIN 2017
accellera “coverbin’ “coverbin® Vil
© Accellera Systems Initiative — e e S oy

SYSTEMS INITIATIVE

Cover Object Data: An Overview

* Coverage Database Handle
* Parent Scope

* Scope Name

* Scope Type

* File Info

* Design Unit Scope

* Count

e Attributes

* Flags

accellera o V]
© Accellera Systems Initiative 1 A
SYSTEMS INITIATIVE

Coverage Merging Algorithms

Temporal Merge

* Merge Use Cases

— Temporal Merge

— Spatial Merge

— Heterogeneous Merge
* Merge Algorithm

— Total Merge

— Test Association Merge

accellera © Accellera Systems Initiative

SYSTEMS INITIATIVE

_— Data Merge and
T Reporting

Spatial Merge _:'f""‘

e =
M

Simulation run
7 BLKC /

II 1
Simulation run DUT |'

Heter ogeneous Merge '|‘ \'-.
1
|
R
- |
. Emulation BLKC

—
—
BLK =
C

L

2017

DESIGN AND VERIFICATION™

h DIDZ,D)

* Itis an open-source software framework used for distributed
storage and processing of dataset of big data

 Hadoop used components:
— Hadoop Distributed File System (HDFS) — the Java-based scalable system
that stores data across multiple machines

— YARN — (Yet Another Resource Negotiator) provides resource
management for the processes running on Hadoop.

— MapReduce — a parallel processing software framework. It is comprised
of two steps. Map step is a master node that takes inputs and partitions
them into smaller subproblems and then distributes them to worker

nodes.

Hadoop

2017

DESIGN AND VERIFICATION™

accellera . P DVCOIR]
Guiding the Analysis of Functional Verification Results Using Big Data 'Izec niques

SYSTEMS INITIATIVE

Hadoop Distributed File System : HDFS

 HDFS is a file system written in Java
* Sits on the top of native file system
* Storage of massive amount of data across clusters

— Scalable
— Fault Tolerant
— Designed specifically to Support Efficient Processing with MapReduce

e Command Line Interface or Java API

¥ |
=-Iq-"*h-—--'_j-*“P"':'r I)
=0 JEIEE)

2017

§
- -
-
= B - == -

E] =S =S == SRS

R E =23 =3 =22 £S5z

e e sa=l e EE. sEsl

- - - | - - - - - L - - - -

- - - - - - - - - -

z 2 - | |
ll DESIGN AND VERIFICATION™
CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

How Files are Stored in HDFS?

* Large Data Files are Split into Blocks (64MB, 128 MB)

* File Blocks are Distributed to Data Nodes

* Each Block is Replicated on Multiple Nodes (Default 3x), Fault Tolerant

* Name Node (Master Node) stores metadata about Data Nodes, files, blocks

> ok 1
—
Block 1 / . \
| | F* Block 1 Node
Very Block 2 '
Large Block 2 Metadata:
Eil information
Data File about files
and blocks
Block 3 fei \)
- *| Slock 1

. =l . DESIGN AND VER%QJTZON"
accellera DV

SYSTEMS INITIATIVE

Anatomy of Hadoop Cluster

* Hadoop Cluster is group of machines/nodes work together to processes map-reduce jobs.

* Each Cluster has
— Group of Data-Nodes (Slaves) , Holds Data Blocks of HDFS File and Processes Map/Reduce actual Tasks (Task Tracker)
— HDFS Master Node Name Node, keeps metadata about cluster data nodes, files, blocks
— MapReduce Master Node Job Tracker manage MapReduce tasks, identify individual tasks in MapReduce job, running them across slave nodes.
— Each cluster should maintain (active-standby) version of Master Data Node and Master Job Trackers

HDFS

Name * Manages data storage

Master

Nods Node * Holds metadata

.
= N Y 3

Slave |DataNode ﬂ DataNode DataNode i DataNode “

Nodes |rtaskTracker TaskTracker TaskTracker TaskTracker
* Manages MR jobs
MapReduce & s

Submits MR Job
DV
CONFERENCE AND EXHIBITION

Master * Distributes tasks to | Job
accellera aster e Job

SYSTEMS INITIATIVE) -

Hadoop I\/IapReduce'

How Data is Possessed within Hadoop?
* Mapper

— Maps are the individual tasks that transform input records into
intermediate records

— Each Map Task Typically Operates on single HDFS Block
— Map Tasks run usually on nodes where data block is stored

e Sort and Shuffle

— Hadoop does it automatically to run map tasks across resulted
from mapper.

— i.e sort and consolidate intermediate data from all mappers and
before reduce tasks start.

 Reducer
— Operates on sorted/shuffled intermediate data
— Do Final Processing to collect all results and produce final output.
2017

accellera DV N

SYSTEMS INITIATIVE

Reduce

Hadoop Map Reduce

Map Phase Shuffle Phase Reduce Phase
TN ol
_—/ _—/
—(Key1, Val1)— —-éKey1 , Val1
(Key2, Val2 Key2, Val2
/ N——— (Key3, Val3) N~———
© 2 (Key4, Val4)\ x
© (N () R
8 5 ~— R o
EA TN O /2 e :
= ® O ; ’ =
= a (Key3, Val \\ z
m = (Key4, Val4 Y s
() N N cDU
— (Key1, Val1 —(Key2, Val2)
(Key2, Val2

(Key3, Val3
" ey4, Val4)

[
o €8
> S g4 N\y . > © >
o5y W Z 2>
og ET " Dx @
% s 8 ~ Ll
N %E
7’
(Key1, Val1y (Key4, Val4)
Key2, Val2)— —(Key6, Val6)
(Key3, Val3)
(Key4, Val4)

oo 217
accellera DV

SYSTEMS INITIATIVE

MapReduce Example :

Word Occurrence Count in Log file

e Start by writing map function takes each line do some
function, count # word occurrence

WordCountMapper

output
The 1

o the

| The cat sat on the mat |
| The aardvark sat on the sofa)

cat

sat

mat

1
1
1
1
1
The 1
1
1
1
1
1

aardvark

sat

____._l-l-—._-_

on

the

sofa

oo 217
accellera =V]

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

MapReduce Example :

Word Occurrence Count in Log file

* Sort/Shuffle: Hadoop takes o/p of Mapper, long list of words with single
occurrence, not adding them but sort and consolidate them across all Mappers
output.

Mapper Output

The 1

cat 1 .
Intermediate Data

sat 1

o 1 aardvark 1

the 1 cat 1,1

mat 1 mat 1

The 1 on 1,1

aardvark 1 sat JE |

sat 1 sofa 1

on 1
the 1111

the 1

sofa 1 2017

accellera DV N

SYSTEMS INITIATIVE

MapReduce Example

Word Occurrence Count in Log file

 Reducers : run in parallel by performing reduce function (sum reduce, avg,
min, max,..) on the intermediate data resulted from sort and shuffle step.

Intermediate Da

Reducer Output

aardvark 1

cat
mat
on
sat
sofa
the

1,1
2,1

1,1,1,1

Final Result

/m_ =

5 “—

sat

sofa

aardvark 1
cat 1
mat 1
on 2
sat 2
sofa 1
the 4

SYSTEMS INITIATIVE

the

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

MapReduce : Example2 Analyzing Logfiles

Input Data

2013-03-15 12:39
2013-03-15 12:39
2013-03-15 12:40
2013-03-15 12:41

74.125.226.230 /common/logo.gif 1231ms - 2326
157.166.255.18 /catalog/catl.html 891ms - 1211
65.50.196.141 /common/logo.gif 1992ms - 1198

64.69.4.150 /common/promoex.jpg 3992ms - 2326

FileTypeMapper

output
gif 1231
html 891
WET gif 1992
Irg 3992
htmi 788
gif 3997

SYSTEMS INITIATIVE

Intermediate Data

after Shuffle and Sort
html 891,788,344,2990...
gif 1231,1992,3997,872...
PR 3992,7881,2999...
png 919,890,3441,444..
txt 344,325,444,421...

AverageReducer
output

html 888.6

gif 1886.4

ipg 888.6

png 1201.0

txt 399.1
DESIGN AND VER2IFQJTI70N"'
DV I

CONFERENCE AND EXHIBITION

Coverage Data Merging Using Map Reduce

Coverage

|

Reports
J_

SYSTEMS INITIATIVE

Coverage
mmmmd DB/Reports
Reader

N

’________

Map-Reduce Merger

Merged Coverage
Database/Report

Coverage
DB/Reports =
Writer

_—__’

2017

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Coverage DB Reader

* Read-streaming model versus in-memory model

* Read-streaming mode allows limited-access to a narrow win !
the coverage database as it is traversed. -

 Read-Streaming DB access mode has been selected because "
aligned with the need to handle DBs chunks by Hadoop Distributed
File System that splits the file into 128 MB blocks.

* Read-streaming mode doesn’t have a big memory footprint and it
can be used to stream the data to the mappers easily with some
modifications on its source code to be compatible with HDFS.

e Additionally, all merging related data can be accessed in this mode

2017
accellera o DVLCOIN
© Accellera Systems Initiative 23 . CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

COV_DB1

COV_DB2

Coverage DBs are Split into 128M Blocks

COV_DB3
\/
\

COV_DB4

Coverage Data Merging Proposed Algorithm

Block1

{Cov_DB1}
{Cov_DB2}

Block2
{Cov_DB2}
{Cov_DB3}

7 {Cov_DB4}

Block3
{Cov_DB4}
{Cov_DB2}

accellera

9

SYSTEMS INITIATIVE

(Top.Inst2.mod2.stmt_1,2)

Map Phase

Shuffle Phase

(Top.Instl.mod1.covbin_1,3) ——
(Top.inst2.mod2.stmt_1, 1)
(Top.inst2.mod2.exp_1, 2)
(Top.Instl.mod1.covbin_1, 1)

(Top.Instl.mod1.covbin_1, 3)
(Top.Instl.mod1.covbin_1, 1)
(Top.inst3.mod1.toggle_1, 4)
(Top.inst3.mod1.toggle_1, 1)

Reduce Phase

(Top.Instl.mod1.covbin_1, 4)
(Top.inst3.mod1.toggle_1, 5)

Final Merge

D)

Grop.lnstl.mod 1.covbin_1, 4)\

(Top.Inst2.mod2.stmt_1, 2)
(Top.inst2.mod2.exp_1, 4)
(Top.inst3.mod1.toggle_1, 4)
(Top.Instd.modl.covbin_1,3) — ——
(Top.inst3.mod1.toggle_1, 1)

(Top.inst2.mod2.stmt_1, 1)
(Top.Inst2.mod2.stmt_1, 2)
(Top.Inst2.mod2.stmt_1,4)
(Top.inst2.mod2.exp_1, 2)
(Top.inst2.mod2.exp_1, 4)

(Top.inst2.mod2.stmt_1, 7)
(Top.inst2.mod2.exp_1, 6)

(Top.inst3.mod1.toggle_1,5)
(Top.inst2.mod2.stmt_1,7)
(Top.inst2.mod2.exp_1, 6)

(Top.Inst4.mod1.covhin_1,5)
(Top.inst4.mod4.stmt_1, 6)

\(Top.inst4.mod5.exp_1, 7))

(Top.Inst4.mod1.covbin_1, 2)
(Top.instd.mod4.stmt_1, 1)
(Top.inst4d.mod5.exp_1, 7)

(Top.Instd.mod4.stmt_1,5) —

(Top.Inst4.mod1.covbin_1, 2)
(Top.Instd.mod1.covbin_1, 3)
(Top.inst4.mod4.stmt_1, 1)
(Top.Instd.mod4.stmt_1, 5)
(Top.instd.mod5.exp_1, 7)

| (Top.Inst4.mod1.covbin_1, 5)

(Top.instd.mod4.stmt_1, 6)
(Top.instd.mod5.exp_1, 7)

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

Coverage Data Merging Proposed Algorithm

Algorithm 1. Coverage-Data Merging Map-Function

Inputs: Cover-Item Record. Cov_Rec

Outputs: (Key, Val) Pairs for every Cover-Item in Coverage DB
//Input Cov_Rec consists of Cover Item :

// Hierarchal Scope Path, Name, Source Info,

//Coverage DB File Path, Coverage Count, Type

//Tag associated with it and the Flags

1. Key <- Concatenate { Hier Path, Type, Name, Source Info, Tag}
2. Val <- Concatenate {Count, Flags, DB File Path)

3. Emit (Key, Val)

SYSTEMS INITIATIVE

Algorithm 2. Coverage-Data Merging Reduce-Function
Inputs: P (Key, Val) Cover-Items with Unique Key Value from Map Function
Outputs: (Key, Total Cov_Val) Pairs for every Cover-Item in Coverage DB and the final
aggregated merged Coverage Count/Flags
Cov_Count_Sum <-0
Cov_Aggregated_Flags <- 0
foreach iteme P do
{Cov_Count, Cov_Flags, Cov_Path} <- Split (item.Cov_Val)
Cov_Type <- Split (item.Key)
If (Cov_Type in (Assert,)) then
Cov_Count_Sum = Logical OR(Cov_Count_Sum, Cov_Count)
else
Cov_Count_Sum += Cov_Count
10. endif
11. Cov_Aggregated_Flags <- MergFlags(Cov_Flags)
12. end
13. Total_Cov_Val <- Concatenate (Cov_Count_Sum, Cov_Aggregated_Flags , Cov_Path/
14. Emit (Key, Total_Cov_Val)

O %0 Nk W~

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

Coverage DB Writer

 The coverage DB writing starts by picking up a master DB,
i.e. Largest DB from the input DBs that contains the largest

number of cover-items.

* This class is the base class to which the merged values
from UCTB is annotated.

* For any missing items or scopes, a clone is triggered for
them from their source coverage DB file, as the path of the
file is stored in the value emitted by the reducer operation,
this is followed by the annotation of the merged coverage
value from UCTB file.

accellera - V]
© Accellera Systems Initiative 26 coNEReRcEAND SR TON

SYSTEMS INITIATIVE

Experimental Results

* List of Designs with Branch, Expression, Statement, Toggle, Assertions Cover ltems
« The MapReduce merge results is compared against Totals Merge Algorithm

* The correctness and completeness of coverage merging results is checked by
comparing the coverage data from MapReduce merger vs traditional resulted

merged coverage DB from simulation.

Design MName DB _Testl DB _Test2 DB _Test3 DBE_Testd
Coverage DB Size in (MBs) 2.5 17 20 a4
Total Numbers of input Coverage DBs 1000 120 120 52
Total Size of Coverage DBs in (GBs) 2.5 2.04 2.4 2.3
MNo. of Assertions Bins N A 803 803 o978
MNo. of Statement Bins N A 621,406 621,406 13,105
Mo, of Branches Bins M A 383,861 383,861 5,501
MNo. of Toggle Bins N A O 3,097,204 13,646
MNo. of Focused Expression Coverage Condition Bins N A 33,831 33,831 1,815
Mo. of Focused Expression Coverage Expression Bins N A 858,673 858,673 10,917
Mo. of FSM States N A 5,012 L,01= 8]
MNo. of FShM Transitions W 15,457 15,457 O
Mo, of CoverPoints Bins 524,288 8] 8] 754,154
Total Mo, of Cover l[tems 524,288 1,919,044 ,016,248% 200,116
esron o vt e D on
accellera - DV
© Accellera Systems Initiative 27 e S T

SYSTEMS INITIATIVE

Experimental Results

Coverage Data Conversion, Merging and Writing-back Times

DB_Testl Reading-Merging-Writing Results

DB_Test2 Reading-Merging-Writing Results

1200 800
1000 700
600
800 500
600 400
400 300
200
200 100
0 L \ 4 \ 4 O 0 = & @]
Experiement_1 Experiement_2 Experiement_3 Experiement_4 Experiement_1 Experiement_2 Experiement_3 Experiement_4
—@— Merging Time Using Map-Reduce (in Secs) == Nerging Time Using Map-Reduce (in Secs)
=@ Flatten UCTB Creation Time (in Secs) =@ Flatten UCTB Creation Time (in Secs)
=@ \Writing UCDB Time (In Secs) =@ \Writing UCDB Time (In Secs)
DB_Test3 Reading-Merging-Writing Results DB_Test4 Reading-Merging-Writing Results
1000 700
200 600
500
600 400
400 300
200
200
o= 100 - o]
- *— —o— et
0 L o o o 0

Experiement_1 Experiement_2 Experiement_3 Experiement_4

—@— Merging Time Using Map-Reduce (in Secs)
=@—Flatten UCTB Creation Time (in Secs)
el \Writing UCDB Time (In Secs)

accellera
__~

SYSTEMS INITIATIVE

Experiement_1 Experiement_2 Experiement_3 Experiement_4

—@— Merging Time Using Map-Reduce (in Secs)
=@—Flatten UCTB Creation Time (in Secs)

=l \Writing UCDB Time (In Secs) 20] ?

UESIGN AND Vi ICATION™

DV O

CONFERENCE AND EXHIBITION

Experimental Results

MapReduce Coverage Merger with Traditional Simulation Merging Approach

DB_Testl Map-Reduce Merge vs Simulation DB_Test2 Map-Reduce Merge vs Simulation
Merge Merge
2000 2500
1500 2000
1500
1000
1000
500 / o _’—’__—'__.
0 0 ——
Experiement_1 Experiement_2 Experiement_3 Experiement_4 Experiement_1 Experiement_2 Experiement_3 Experiement_4
—&— Merging Time Using Map-Reduce (in Secs) —@— Merging Time Using Map-Reduce (in Secs)
—@—Total Time in (Secs) =@ Total Time in (Secs)
=—@—RefMerg Time in (Secs) [12] == Ref Merging Time in (Secs)[12]
DB_Test3 Map-Reduce Merge vs Simulation DB_Test3 Map-Reduce Merge vs Simulation
Merge Merge
3000 5000
2500 4000
2000 3000
1500
1000 2000
500 / 1000 -
.. —'_7
0 0 = o & J
Experiement 1 Experiement 2 Experiement 3 Experiement_4 Experiement_1 Experiement_2 Experiement_3 Experiement_4
=@ Nerging Time Using Map-Reduce (in Secs) —@— Merging Time Using Map-Reduce (in Secs)
—@—Total Time in (Secs) —@—Total Time in (Secs)
—@—Ref Merging Time in (Secs) [12] —@— Ref Merging Time in (Secs) [12] ,O-I 7

FICATION™

DV

CONFERENCE AND EXHIBITION

accellera

SYSTEMS INITIATIVE

Experimental Results

Map Reduce vs Simulation Total Merge Algorithm[12] Mering Time in Secs (Reading + Map_Reduce Merging + Writing Coverage DB Time vs Simulation Total Merge
500 Time)

2000 4500

4000
3500

3500
3000

3000
2500

2500

2000
2000
1500

1000 1000
== il II =i -I | I o | lII 1 N _n . o Hm I. il II lll nl 1 I

0

1500

=
=

DB Testl DB Test2 DB Test3 DB Test3 DB_Test1 DB_Test2 DB_Test3 DB_Test3
B Merging Time Using Map-Reduce (inSecs) I Ref Merging Time in (Secs) [12] W Total Time n (Secs) M Ref Merging Time n (Secs) [12]

accellera DV
i EURDOPE

SYSTEMS INITIATIVE

Conclusion & Future Work

 QOur approach demonstrates up to 1.8x speedup in the merging time of big coverage
data.

* Using Big-Data Method with Coverage Data is a concept still valid to accelerate other
coverage data processing steps like coverage report generation or mining coverage
data for coverage trend construction.

* Having a flattened unified coverage format, that inherits the storage optimizations
of UCIS representation, but at the same time allows independent proceeding for the
cover-items, should be the next step in coverage data presentation.

e QOur future work aims to explore how the unified coverage DBs can be proceed
directly as HDFS file.

* Another direction for our future work is to extend the system to include data
analyzing and mining that can result useful conclusions about the coverage data and
hence help further analysis of coverage information.

DESIGN AND VER%’QJTIZDN"
accellera - p
© Accellera Systems Initiative 3 . CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Questions

Finalize slide set with questions slide

accellera (2017

SYSTEMS INITIATIVE ELUROPE

	Accelerating Functional Verification Coverage Data Manipulation Using Map Reduce�
	Functional Verification : An Overview
	Coverage in Functional Verification
	Coverage in Functional Verification
	Coverage Driven Verification
	Universal Coverage Data Bases
	Challenges in Analyzing Coverage Data
	Introduction to Coverage DB Data Model
	Introduction to Coverage DB Data Model
	Cover Object Data: An Overview
	Coverage Merging Algorithms
	Hadoop
	Hadoop Distributed File System : HDFS
	How Files are Stored in HDFS?
	Anatomy of Hadoop Cluster
	Hadoop MapReduce�How Data is Possessed within Hadoop?
	Hadoop Map Reduce
	MapReduce Example : �Word Occurrence Count in Log file
	MapReduce Example : �Word Occurrence Count in Log file
	MapReduce Example : �Word Occurrence Count in Log file
	MapReduce : Example2 Analyzing Logfiles
	Coverage Data Merging Using Map Reduce
	Coverage DB Reader
	Coverage Data Merging Proposed Algorithm
	Coverage Data Merging Proposed Algorithm
	Coverage DB Writer
	Experimental Results
	Experimental Results�Coverage Data Conversion, Merging and Writing-back Times�
	Experimental Results�MapReduce Coverage Merger with Traditional Simulation Merging Approach��
	Experimental Results
	Conclusion & Future Work
	Questions

