Accelerating Functional Verification Coverage
Data Manipulation Using Map Reduce

Eman El Mandouh, Mentor Graphics Siemens Business
A. Gamal, A. Khaled, T. Ibrahim, Cairo University
B. Amr G. Wassal, Elsayed Hemayed, Cairo University
Functional Verification: An Overview

Hardware Verification is the process of checking if a design conforms to its specification of functionality, timing, testability, and power dissipation.

The **Primary Goal** of Functional Verification (FV) is to establish confidence that the design intent was captured correctly by the implementation.
Coverage in Functional Verification

Coverage Type
- Code Coverage: Simplest and Easiest to gather
 - Statement, Branch, Toggle, Expression, FSM,..
- Functional Coverage
 - Cover Directive, Cover Points

Coverage in Functional Verification
- Is to measure the completeness of functional verification activities by judging the final coverage achieved from the tests execution
Coverage in Functional Verification

** Dynamic Verification Adoption Trends **

** Sign Off Criteria Trends **

** Source Wilson Research Group Functional Verification Study **
Coverage Driven Verification

Functional & Design Specs → Verification Plan → Design Regression Tests → Coverage Databases → Merged Coverage Database

- Coverage Databases
 - Coverage Databases
 - Merged Coverage Database

Revisit Verification Plan, More Tests Generation

Reach Coverage Goal?

- Yes → Done
- No → Revisit Verification Plan, More Tests Generation
Universal Coverage Data Bases

Coverage Producer
- Simulation
- Static Checks
- Formal Verification
- Emulation

Coverage Database

Coverage Consumer
- Coverage Report Generators
- Coverage Trend Analysis
- Test Plan Coverage Results Annotation
- Coverage Data Analyzers (ML,..)
Challenges in Analyzing Coverage Data

- Complex, Large HW Designs, Large Size of Coverage Data
- Multiple Coverage DBs from Different Verification Methods
Introduction to Coverage DB Data Model

- HDL scope data models
- Functional coverage data models
- Code coverage data models

** Source Unified Coverage Interoperability Standard (UCIS) V1.0
Introduction to Coverage DB Data Model

```verbatim
covergroup cg;
type_option.comment = Example;
type_option.merge_instances = 1;
option.at_least = 2; // becomes the 'goal' in the coveritems
cvpa: coverpoint a (bins a = {0});
cvpb: coverpoint b (bins b[] = {1,2}; ignore_bins c = {3});
axb: cross cvpa, cvpb (type_option.weight = 2);
endgroup
cg cv = new();
```

```verbatim
// psl default clock = rose(clk); // line 10
// psl pslcover: cover {b;a}; // line 11
sequence a_after_b; // line 12
@ (posedge clk) b #1 a; // line 13
endsequence // line 14
svacover: cover property(a_after_b); // line 15
```

** Source Unified Coverage Interoperability Standard (UCIS) V1.0
Cover Object Data: An Overview

• Coverage Database Handle
• Parent Scope
• Scope Name
• Scope Type
• File Info
• Design Unit Scope
• Count
• Attributes
• Flags
Coverage Merging Algorithms

• Merge Use Cases
 – Temporal Merge
 – Spatial Merge
 – Heterogeneous Merge

• Merge Algorithm
 – Total Merge
 – Test Association Merge
Hadoop

• It is an open-source software framework used for distributed storage and processing of dataset of big data

• Hadoop used components:
 – **Hadoop Distributed File System (HDFS)** – the Java-based scalable system that stores data across multiple machines
 – **YARN** – (Yet Another Resource Negotiator) provides resource management for the processes running on Hadoop.
 – **MapReduce** – a parallel processing software framework. It is comprised of two steps. Map step is a master node that takes inputs and partitions them into smaller subproblems and then distributes them to worker nodes.
Hadoop Distributed File System: HDFS

- HDFS is a file system written in Java
- Sits on the top of native file system
- Storage of massive amount of data across clusters
 - Scalable
 - Fault Tolerant
 - Designed specifically to Support Efficient Processing with MapReduce
- Command Line Interface or Java API
How Files are Stored in HDFS?

• Large Data Files are Split into Blocks (64MB, 128MB)
• File Blocks are Distributed to Data Nodes
• Each Block is Replicated on Multiple Nodes (Default 3x), Fault Tolerant
• Name Node (Master Node) stores metadata about Data Nodes, files, blocks
Anatomy of Hadoop Cluster

- Hadoop Cluster is a group of machines/nodes that work together to process map-reduce jobs.
- Each Cluster has:
 - Group of **Data-Nodes (Slaves)**, which hold data blocks of HDFS files and process map/reduce actual tasks (Task Tracker).
 - HDFS Master Node **Name Node**, which keeps metadata about cluster data nodes, files, and blocks.
 - MapReduce Master Node **Job Tracker** manage MapReduce tasks, identify individual tasks in MapReduce job, and run them across slave nodes.
 - Each cluster should maintain an *(active-standby)* version of Master Data Node and Master Job Trackers.
Hadoop MapReduce

How Data is Possessed within Hadoop?

• **Mapper**
 – Maps are the individual tasks that transform input records into intermediate records
 – Each Map Task Typically Operates on single HDFS Block
 – Map Tasks run usually on nodes where data block is stored

• **Sort and Shuffle**
 – Hadoop does it automatically to run map tasks across resulted data from mapper.
 – i.e sort and consolidate intermediate data from all mappers and before reduce tasks start.

• **Reducer**
 – Operates on sorted/shuffled intermediate data
 – Do Final Processing to collect all results and produce final output.
Hadoop Map Reduce

Map Phase
(Key1, Val1)
(Key2, Val2)
(Key3, Val3)
(Key4, Val4)

Shuffle Phase
(Key1, Val1)
(Key2, Val2)
(Key3, Val3)
(Key4, Val4)

Reduce Phase
(Key1, Val1)
(Key2, Val2)
(Key3, Val3)
(Key4, Val4)

Big Input Data
Split Data Across Nodes
(Data Save to Disk)

Same Key appears on two or more nodes

Unique Key on Every Node
MapReduce Example:

Word Occurrence Count in Log file

- Start by writing map function takes each line do some function, count # word occurrence
MapReduce Example:

Word Occurrence Count in Log file

- Sort/Shuffle: Hadoop takes o/p of Mapper, long list of words with single occurrence, not adding them but sort and consolidate them across all Mappers output.
MapReduce Example:

Word Occurrence Count in Log file

- Reducers: run in parallel by performing reduce function (sum reduce, avg, min, max,..) on the intermediate data resulted from sort and shuffle step.
MapReduce: Example 2 Analyzing Logfiles

Input Data

2013-03-15 12:39 - 157.166.255.18 /catalog/cat1.html 891ms - 1211
2013-03-15 12:41 - 64.69.4.150 /common/promoex.jpg 3992ms - 2326

FileTypeMapper output

... ...
gif 1231
html 891
gif 1992
jpg 3992
html 788
gif 3997
... ...

Intermediate Data after Shuffle and Sort

<table>
<thead>
<tr>
<th>FileType</th>
<th>Intermediate Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>html</td>
<td>891,788,344,2990...</td>
</tr>
<tr>
<td>gif</td>
<td>1231,1992,3997,872...</td>
</tr>
<tr>
<td>jpg</td>
<td>3992,7881,2999...</td>
</tr>
<tr>
<td>png</td>
<td>919,890,3441,444...</td>
</tr>
<tr>
<td>txt</td>
<td>344,325,444,421...</td>
</tr>
</tbody>
</table>

AverageReducer output

<table>
<thead>
<tr>
<th>FileType</th>
<th>AverageReducer output</th>
</tr>
</thead>
<tbody>
<tr>
<td>html</td>
<td>888.6</td>
</tr>
<tr>
<td>gif</td>
<td>1886.4</td>
</tr>
<tr>
<td>jpg</td>
<td>888.6</td>
</tr>
<tr>
<td>png</td>
<td>1201.0</td>
</tr>
<tr>
<td>txt</td>
<td>399.1</td>
</tr>
</tbody>
</table>
Coverage Data Merging Using Map Reduce

Coverage Reports

Coverage DB/Reports Reader

Data Analyzer

Map-Reduce Merger

Coverage DB/Reports Writer

Merged Coverage Database/Report
Coverage DB Reader

• **Read-streaming model versus in-memory model**
 - Read-streaming mode allows limited-access to a narrow window of the coverage database as it is traversed.
 - Read-Streaming DB access mode has been selected because aligned with the need to handle DBs chunks by Hadoop Distributed File System that splits the file into 128 MB blocks.
 - Read-streaming mode doesn’t have a big memory footprint and it can be used to stream the data to the mappers easily with some modifications on its source code to be compatible with HDFS.
 - Additionally, all merging related data can be accessed in this mode.
Coverage Data Merging Proposed Algorithm

Map Phase:
- Block1: {Top.Inst1.mod1.covbin_1, 3}, {Top.Inst2.mod2.stmt_1, 1}, {Top.Inst2.mod2.exp_1, 2}, {Top.Inst1.mod1.covbin_1, 1}
- Block2: {Top.Inst2.mod2.stmt_1, 2}, {Top.Inst2.mod2.exp_1, 4}, {Top.Inst1.mod31.toggle_1, 4}, {Top.Inst4.mod1.covbin_1, 1}, {Top.Inst3.mod1.toggle_1, 1}
- Block3: {Top.Inst2.mod2.stmt_1, 2}, {Top.Inst4.mod1.covbin_1, 2}, {Top.Inst4.mod4.stmt_1, 1}, {Top.Inst4.mod5.exp_1, 7}, {Top.Inst4.mod4.stmt_1, 5}

Shuffle Phase:
- Block1: {Top.Inst1.mod1.covbin_1, 3}, {Top.Inst2.mod2.stmt_1, 1}, {Top.Inst1.mod1.covbin_1, 1}, {Top.Inst3.mod1.toggle_1, 4}
- Block2: {Top.Inst2.mod2.stmt_1, 1}, {Top.Inst2.mod2.stmt_1, 2}, {Top.Inst2.mod2.exp_1, 2}, {Top.Inst2.mod2.exp_1, 4}
- Block3: {Top.Inst4.mod1.covbin_1, 1}, {Top.Inst4.mod1.covbin_1, 3}, {Top.Inst4.mod4.stmt_1, 1}, {Top.Inst4.mod4.stmt_1, 5}, {Top.Inst4.mod5.exp_1, 7}

Reduce Phase:
- Block1: {Top.Inst1.mod1.covbin_1, 4}
- Block2: {Top.Inst2.mod2.stmt_1, 7}, {Top.Inst2.mod2.exp_1, 6}
- Block3: {Top.Inst4.mod1.covbin_1, 5}

Final Merge DB:
- Top.Inst1.mod1.covbin_1, 4, Top.Inst3.mod1.toggle_1, 5, Top.Inst2.mod2.stmt_1, 5, Top.Inst4.mod4.stmt_1, 6, Top.Inst4.mod5.exp_1, 7
Coverage Data Merging Proposed Algorithm

Algorithm 1. Coverage-Data Merging Map-Function

Inputs: Cover-Item Record, Cov_Rec
Outputs: (Key, Val) Pairs for every Cover-Item in Coverage DB

// Input Cov_Rec consists of Cover Item:
// Hierarchical Scope Path, Name, Source Info,
// Coverage DB File Path, Coverage Count, Type
// Tag associated with it and the Flags
1. Key << Concatenate [Hier Path, Type, Name, Source Info, Tag]
2. Val << Concatenate [Count, Flags, DB File Path]
3. Emit (Key, Val)

Algorithm 2. Coverage-Data Merging Reduce-Function

Inputs: P (Key, Val) Cover-Items with Unique Key Value from Map Function
Outputs: (Key, Total_Cov_Val) Pairs for every Cover-Item in Coverage DB and the final aggregated merged Coverage Count/Flags

1. Cov_Count_Sum <- 0
2. Cov_Aggregated_Flags <- 0
3. **foreach** item ∈ P **do**
 4. {Cov_Count, Cov_Flags, Cov_Path} <- Split (item.Cov_Val)
 5. Cov_Type <- Split (item.Key)
 6. If (Cov_Type in (Assert,)) **then**
 7. Cov_Count_Sum = Logical_OR(Cov_Count_Sum, Cov_Count)
 8. **else**
 9. Cov_Count_Sum += Cov_Count
10. **endif**
11. Cov_Aggregated_Flags <- MergeFlags(Cov_Flags)
12. **end**
13. Total_Cov_Val <- Concatenate (Cov_Count_Sum, Cov_Aggregated_Flags, Cov_Path)
14. Emit (Key, Total_Cov_Val)
Coverage DB Writer

- The coverage DB writing starts by picking up a master DB, i.e. Largest DB from the input DBs that contains the largest number of cover-items.

- This class is the base class to which the merged values from UCTB is annotated.

- For any missing items or scopes, a clone is triggered for them from their source coverage DB file, as the path of the file is stored in the value emitted by the reducer operation, this is followed by the annotation of the merged coverage value from UCTB file.
Experimental Results

• List of Designs with Branch, Expression, Statement, Toggle, Assertions Cover Items
• The MapReduce merge results is compared against Totals Merge Algorithm
• The correctness and completeness of coverage merging results is checked by comparing the coverage data from MapReduce merger vs traditional resulted merged coverage DB from simulation.

<table>
<thead>
<tr>
<th>Design Name</th>
<th>DB_Test1</th>
<th>DB_Test2</th>
<th>DB_Test3</th>
<th>DB_Test4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage DB Size in (MBs)</td>
<td>2.5</td>
<td>17</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>Total Numbers of input Coverage DBs</td>
<td>1000</td>
<td>120</td>
<td>120</td>
<td>52</td>
</tr>
<tr>
<td>Total Size of Coverage DBs in (GBs)</td>
<td>2.5</td>
<td>2.04</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>No. of Assertions Bins</td>
<td>N/A</td>
<td>803</td>
<td>803</td>
<td>978</td>
</tr>
<tr>
<td>No. of Statement Bins</td>
<td>N/A</td>
<td>621,406</td>
<td>621,406</td>
<td>13,105</td>
</tr>
<tr>
<td>No. of Branches Bins</td>
<td>N/A</td>
<td>383,861</td>
<td>383,861</td>
<td>5,501</td>
</tr>
<tr>
<td>No. of Toggle Bins</td>
<td>N/A</td>
<td>0</td>
<td>3,097,204</td>
<td>13,646</td>
</tr>
<tr>
<td>No. of Focused Expression Coverage Condition Bins</td>
<td>N/A</td>
<td>33,831</td>
<td>33,831</td>
<td>1,815</td>
</tr>
<tr>
<td>No. of Focused Expression Coverage Expression Bins</td>
<td>N/A</td>
<td>858,673</td>
<td>858,673</td>
<td>10,917</td>
</tr>
<tr>
<td>No. of FSM States</td>
<td>N/A</td>
<td>5,013</td>
<td>5,013</td>
<td>0</td>
</tr>
<tr>
<td>No. of FSM Transitions</td>
<td>N/A</td>
<td>15,457</td>
<td>15,457</td>
<td>0</td>
</tr>
<tr>
<td>No. of CoverPoints Bins</td>
<td>524,288</td>
<td>0</td>
<td>0</td>
<td>754,154</td>
</tr>
<tr>
<td>Total No. of Cover Items</td>
<td>524,288</td>
<td>1,919,044</td>
<td>5,016,248</td>
<td>800,116</td>
</tr>
</tbody>
</table>
Experimental Results
Coverage Data Conversion, Merging and Writing-back Times

DB_Test1 Reading-Merging-Writing Results

DB_Test2 Reading-Merging-Writing Results

DB_Test3 Reading-Merging-Writing Results

DB_Test4 Reading-Merging-Writing Results
Experimental Results

MapReduce Coverage Merger with Traditional Simulation Merging Approach

1. **DB_Test1 Map-Reduce Merge vs Simulation Merge**
 - Merging Time Using Map-Reduce (in Secs)
 - Total Time in (Secs)
 - Ref Merging Time in (Secs) [12]

2. **DB_Test2 Map-Reduce Merge vs Simulation Merge**
 - Merging Time Using Map-Reduce (in Secs)
 - Total Time in (Secs)
 - Ref Merging Time in (Secs) [12]

3. **DB_Test3 Map-Reduce Merge vs Simulation Merge**
 - Merging Time Using Map-Reduce (in Secs)
 - Total Time in (Secs)
 - Ref Merging Time in (Secs) [12]

4. **DB_Test3 Map-Reduce Merge vs Simulation Merge**
 - Merging Time Using Map-Reduce (in Secs)
 - Total Time in (Secs)
 - Ref Merging Time in (Secs) [12]
Experimental Results
Conclusion & Future Work

• Our approach demonstrates up to 1.8x speedup in the merging time of big coverage data.

• Using Big-Data Method with Coverage Data is a concept still valid to accelerate other coverage data processing steps like coverage report generation or mining coverage data for coverage trend construction.

• Having a flattened unified coverage format, that inherits the storage optimizations of UCIS representation, but at the same time allows independent proceeding for the cover-items, should be the next step in coverage data presentation.

• Our future work aims to explore how the unified coverage DBs can be proceed directly as HDFS file.

• Another direction for our future work is to extend the system to include data analyzing and mining that can result useful conclusions about the coverage data and hence help further analysis of coverage information.
Questions

Finalize slide set with questions slide