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Abstract— As the size and complexity of today’s HW designs have been increased significantly, a huge amount of 

coverage information is generated during the design simulation and throughout the coverage closure cycle. Accordingly 

an efficient method for coverage data manipulation will be of great help to reduce the time and accuracy of the coverage 

data analysis process. This paper proposes the utilization of a distributed data processing technique, namely 

MapReduce, to accelerate the merging of coverage data sets from multiple simulation sessions. Inspired by the spirit 

of MapReduce, we formulate coverage data merging problem into tasks that are associated with keys and values and 

perform massively parallel map and reduce operations on distributed systems. Our coverage data manipulation 

framework is able to handle coverage data that is stored in coverage data bases or in multiple coverage reports. We 

demonstrate how the proposed approach can speed up the merging step by up to 1.8x factor with respect to other 

traditional merging techniques using real industrial designs. 
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I.  INTRODUCTION  

Functional Verification is the process of checking if the design under verification conforms to its specification 

of functionality, timing, testability and power dissipation [1]. Simulation-based verification continues to be the 

dominant verification methodology using random, constraint random or directed test generation [2]. The success 

of simulation-based verification depends heavily on the quality of the tests in use so in order to judge tests 

effectiveness, coverage is used as a metric to measure verification progress and completeness. Coverage metrics 

tell us what portion of the design has been activated during simulation and more importantly  identify the portions 

of the design that were never activated during simulation, which allows us to adjust our input stimulus to improve 

verification [3]. The coverage achieved during verification is the most important parameter in determining the 

quality of verification results [4]. Figure 1 describes a verification cycle of HW designs. Traditionally the 

verification engineers start with the design functional specifications. This is followed by building up a complete 

verification plan that lists the verification goals and identifies the exit criteria for the verification effort.  

 

 
Figure 1: Functional Verification Cycle 

During the verification process the same verification environment is executed repeatedly using different regression 

tests until the coverage goals are met. One test can differ from another by configuring or constraining the 

verification environment in a different way or merely by starting simulation with a different random seed. It is 

common to run multiple tests in parallel on compute server farms [5]. The coverage results from individual tests 

need to be merged together and annotated back onto the verification plan to form a cumulative record of progress. 

Finally the analysis of merged coverage data should be done to identify coverage holes. After analysis, features 

that still remain uncovered can be reached by adding further specific tests to verification plan. Merging of coverage 

data needs to be done efficiently in order to provide up-to-date information for verification management in a fast 
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accurate manner. Accordingly, coverage merging across tests is the fundamental operation with respect to 

coverage analysis phase. Recently merging of coverage data is getting harder with the increase of today’s HW 

designs’ size/complexity as well as the large number of cover targets that required to be captured in the final 

coverage model such as statement, toggle, branch, FSM, expression, assertion, cover-groups and cross-cover-bins. 

Additionally, coverage merging step is repeatability made during the verification life cycle until achieving the 

required coverage closure criteria. Apparently with this dramatic increase of the coverage data size any attempt 

to accelerate coverage data manipulation will be of great help to decrease the turnaround time of coverage closure 

and analysis cycle. This paper proposes the utilization of big-data analysis techniques and MapReduce distributed 

data processing framework to speed up coverage data merging step. We successfully investigated the applicability 

of MapReduce to accelerate coverage data merging. Our framework is very general in gaining massively-parallel 

computations for different cover items by extracting from each coverage data chunk the cover-items associated 

with their coverage results in “Key-Value” pairs of the map/reduce functions, while parallelization details are 

encapsulated in a MapReduce library [6]. Our framework reduces the coverage analysis time, by speeding up the 

time of consecutive coverage data merging steps during design regression run iterations. We have seen a 

substantial speedup from the experimental results.  

 

The rest of the paper is organized as follows. Section II goes through related background about coverage in HW 

verification as well as an introduction to MapReduce methods. Additionally, it briefly reviews related work in 

coverage data manipulation techniques. Section III formulates the problem and explains our proposed framework. 

Section IV demonstrates the feasibility of our approach against a group of industrial designs. Finally, conclusion 

and future work directions are given in section V. 

II. BACKGROUND AND RELATED WORK 

A. Coverage in Functional Verification 

Coverage is one of the most important metric to measure verification progress and completeness and in 

determining the quality of verification results. Broadly speaking, there are two types of coverage metrics used in 

the production of today’s industrial designs: code coverage and functional coverage [3]. Code coverage is a 

measurement of the structures, such as statement, branch, conditional, toggle or expression, within the source code 

that have been activated during simulation. Functional coverage is a user-defined metric that measures how much 

of the design specifications have been exercised. System Verilog provides two language constructs for easy 

specification of the functional coverage models which are the Cover groups and the Cover Properties [7]. 

Covergroup construct encapsulates the specification of the coverage model, it consists of a set of coverage points 

as well as cross coverage between the coverage points. It records the number of occurrences of 

variables/expressions that are specified as its coverpoints as well as cross coverage between them when it contains 

cross coverage specification. Cover properties are the other major System Verilog constructs to specify functional 

coverage models, it has the same anatomy of the hardware design properties 

Unified coverage databases, UCISs [8], have been developed to allow coverage metric interchange between 

different functional verification solutions such as simulation, formal, static checks or even emulators. The data 

model of UCIS allows the presentation of a wide range of coverage information models used in practice, this 

includes statements, FSMs, toggle, cover properties, cover-groups, and cross-cover bins to list a few. A 

standardized mapping, naming conventions and primary key management make the data objects universally 

recognizable. Besides, an API (Application-Programming Interface) was defined that standardizes the way data 

is written or queried from this data model. The API functions enable opening and closing a UCIS DB, navigating 

through scopes, extraction, and manipulation of data inside a UCIS DB. Coverage producers may use UCIS to 

generate coverage data to capture the coverage status during design execution. While coverage consumers can 

utilize UCIS APIs and the interchange format to perform analysis tasks such as combining coverage results from 

independent simulation runs or coverage report generation [9].  

B. MapReduce: An Overview 

Since being first introduced by Google in 2004 [10], the MapReduce programming paradigm has been widely 

applied to many domains such as data mining, database system, and high-performance computing [11]. 

MapReduce is a framework for processing parallelizable problems across large datasets using a large number of 

computing nodes. The processing can occur on unstructured-data that is stored in a file system or with structured 

data in databases. The main principle behind MapReduce program lies in (key-value) pairs which are generated 

and manipulated by user-defined mapper/reducer functions. MapReduce consists of three main steps: 
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 Map Step: where each computing node applies the “map function” to its local data chunk, and writes the 

output to a temporary storage. 

 Shuffle Step: where the entire computing nodes distribute data based on the output keys such that all the 

data belonging to one key is located on same computing node. 

 Reduce Step: where computing nodes process each group of output data per key in parallel 

MapReduce operations start with some large coverage data set. This data are divided into chunks that are 

distributed across multiple computing nodes. The mapper at each node performs parallel processing for its 

assigned data chunk and emits a (key-value) pairs. For example, every cover-item associated with its hierarchal 

scope and its RTL source information constitutes a unique key that is mapped to its achieved coverage scores 

captured in every coverage database. So same cov_item_key may appear multiple times in the same operating 

node as well as across multiple operating nodes with its associated coverage scores. During the shuffle phase, 

every (key, value) pair is assigned to a computing node such that all the occurrence of specific key is assigned to 

the same node so this phase ends up by having unique keys on every machine. During the Reduce phase an 

aggregation function operates on all coverage counter-values/Flags associated with a specific key followed by 

saving of aggregated results to disk. There are many state-of-the-art libraries to automatically schedule parallel 

map and reduce operations to handle the input data on a distributed system, our approach utilizes Apache Hadoop 

[6]. 

C. Related Work 

Many EDA vendors for functional verification solutions deploy the merging capability as part of their coverage 

analysis engine [12] [13] [14]. The coverage data contained in the merged coverage DB are a union of the items 

in the coverage DBs being merged. The merge algorithm is a union merge. Cover-items of the same type which 

are associated with same RTL line numbers are merged together. For the cover-items that have no source 

information (FSM, Toggle), objects with the same name are always merged together [12]. Speeding up of 

functional verification coverage data merging has recently been improved by supporting parallel merge that allows 

merging subset of input coverage DBs which is then merged into higher level merged coverage DBs and so on 

until a final result is produced. It is a process that benefits from the ability to run merges in parallel, thereby 

improving the overall merge time.  

III. PROPOSED FRAMEWORK 

 

Figure 2.  Proposed MapReduce Coverage Data Merger 

Figure 2 demonstrates the proposed framework. The coverage Data Reader reads the input coverage DBs using 

read-streaming mode [8]. The coverage DBs are then converted into an intermediate text format which is 

appropriate for Hadoop Distributed File System (HDFS) operations [15] [16]. For MapReduce parallel operations, 

the design coverage-data must be presented in a fully independent format. Accordingly, each functional/code 

cover-item is presented independently from all other items to allow its further individual processing. All the 

required cover-item associated information must be attached to it, such as its hierarchical scope path or its RTL 

source information. Additional pre-processing of the input coverage files is performed to optimize their structure 

for better further MapReduce module operation as will be illustrated below. The coverage text files are then 

uploaded to Hadoop Distributed File System, HDFS.  

The MapReduce starts operation by splitting these coverage text data into chunks, a chunk for each mapper task. 

Each mapper reads its chunk line-by-line, maps the bins with their path, name, line and values to generate a key-

value pair for each design cover-item. Multiple mappers run in parallel and the output pairs are then sorted in 

order to group the pairs with same key together and to be sent to the reducers, i.e. shuffling the bins such that each 

group has cover-items with the same key. Each reducer handles a key and the group of values associated with it. 

It generates a single key-value pair, i.e. it reduces the same bins to one bin with final merged coverage value. 

Finally, in the last stage the output file from the MapReduce is written to the final coverage DB. This is done by 
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starting with a single coverage DB file with the most cover items as a base file and writing the correct merged 

values into that file. For any missing items or scopes it can be cloned directly from its source coverage DB file.  

The main building blocks of the proposed framework are described in details in the following sections:  

A. Coverage Data Reader 

The Coverage Data Reader operations start by traversing all the scopes in the coverage database in Read-

Streaming Mode [8]. Recall that the coverage data can be retrieved from coverage DB by In-memory or Read-

Streaming modes of operation. During In-memory mode, the entire DB image is loaded into the memory for fast 

read and write access. While Read-streaming mode allows limited-access to a narrow window of the coverage 

database as it is traversed. At any time the visibility is limited to the iterated coverage object and the ancestral 

objects of the current object only. Once the reading is moved forward, access to earlier parts of the DB is not 

doable. Some types of data are maintained globally, but the goal of this mode is to minimize the memory profile 

of the reading application by keeping only a small “window” of data in memory. 

Read-Streaming DB access mode has been selected because it is aligned with the need to handle DBs chunks by 

Hadoop Distributed File System that splits the file into 128 MB blocks; hence in-memory mode cannot operate 

with chunks of the database instead of the complete file and it can’t provide enough information for merging 

process. The merging process can’t rely on statistical coverage data without detailed information about the cover 

items. The most appropriate mode for HDFS operation is the read-streaming mode because it doesn’t have a big 

memory footprint and it can be used to stream the data to the mappers easily with some modifications on its source 

code to be compatible with HDFS. Additionally, all merging related data can be accessed in this mode. 

The traversal of coverage DB is followed by the extraction of all required information for every single cover item, 

such as its scope and attributes. The extracted cover-items list associated with their attributes are directed to a text-

format file that contains most of the information required for the merging operations, in our work we give this file 

a terminology of Unified Coverage Text Base UCTB. Additionally, this file contains extra information needed to 

write back the final merged data into the resulted coverage DB file. Cover-items’ attribute data-fields are carefully 

chosen to build a composite key to guarantee collision-free merging for the coverage count values. Further 

optimizations are applied to the generated text coverage data to reduce the impact of redundant information that is 

stored per every cover-item to allow its independent processing during the map and reduce functions. The hierarchal 

path of the design cover points is replaced with numerical indices using hashing techniques. This is followed by 

further compression of the coverage input files in order to shrink their sizes for better utilization of the storage disk 

and faster processing time. LZO [17] is chosen for data compression at this step. Using LZO 

compression in Hadoop allows for reduced data size and shorter disk IO read times. 

B. MapReduce Coverage Data Merger 

 
Figure 3. MapReduce Operations with Coverage DBs 

 In order to develop a MapReduce program, computations that can be issued to parallel map and reduce 

operations must be exploited from our problem. Merging cover-items from simulation coverage data is a parallel 

operation with nature. The MapReduce step consists of three main steps: Mapper Function, Shuffle Step and 

Reducer Functions as illustrated in Figure 3.  MapReduce starts by dividing large data files into blocks of 128Mbs 
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each, every data block is assigned a computing node. Each map task typically operates on a single HDFS block. 

The map function processes each individual line in the input Unified Coverage Data Text Base (UCTB) trying to 

extract from every line (Key, Val) pair that represents for every cover-item a unique key associated with its coverage 

data.  The cover-item unique key is decomposed from the concatenation of its scope hierarchal path in the coverage 

DB, type, name, source information (file, line number, and token number). The value associated with this key is 

built from the cover-item, counters (coverage results holder), flags and path of coverage database to which this 

cover-item originally belongs. The map step is followed by shuffle step that Hadoop does automatically to sort and 

consolidate intermediate data from all mappers and before reduce tasks start. During this step every (key, value) 

pair is assigned a computing node such that all the occurrence of specific key lands on the same node, For example, 

in Figure 3, all the occurrences of cover-item “Top.inst2.mod2.exp_1” has been assigned to node2. The final step 

is the Reduce step, where the aggregation operation is done to collect all the coverage data associated with the 

specific cover-item and to produce final coverage results. The actual merging is done in the Reduce function, our 

work uses a union merge algorithm [12] in which the merging of cover-item instances with numerical coverage 

count is done by summing them up. While the merging of cover-item instances with binary coverage data 

(Assertions and Cover Directives) is done by applying a logical-or operator. Another part of the merging algorithm 

is the flags merging, the exclusion flags are AND-ed together while the rest of the flags are OR-ed together. 

Algorithms 1 and 2 explain the map-reduce functions in our proposed framework.  

 
The communication load is a non-negligible cost for a MapReduce program in particular during the collate 

operation. During the MapReduce operations, a huge amount of string data-pairs are transferred from the mappers 

to the reducers. This data is actually written to the disk and consumes a lot of time to be written by mappers and 

then read back by the reducers. In order to minimize the communication load, Hadoop “VIntWritable” data-type 

has been used to store directly the coverage <Key-Value> pairs from the mappers in the memory to be consumed 

by the reducers during the collate operation.  “VIntWritable” data-type is essentially an “int” data type, but with 

variable length instead of the fixed 4 bytes of int decreasing the amount of data transferred from mappers to reducers 

achieved better processing performance. 

C. Coverage Data Writer 

Coverage Data Writer concerns with writing the merged coverage data from coverage text base UCTB Format 

to Coverage DB Format. Having final merged coverage results in DB format allows simulations, formal and other 

coverage consumers to access the merged coverage database. The final merged coverage DB is also used in our 

verification framework when our merged DB is compared with Traditional Simulation Total Merge results. The 

coverage DB writing starts by picking up a master DB, i.e. Largest DB from the input DBs that contains the largest 

number of cover-items. This class is the base class to which the merged values from UCTB is annotated. For any 

missing items or scopes, a clone is triggered for them from their source coverage DB file, as the path of the file is 

stored in the value emitted by the reducer operation, this is followed by the annotation of the merged coverage 

value from UCTB file.  

IV. EXPERIMENTAL RESULTS 

In this experiment, the MapReduce Coverage Merger has been exercised against a group of real industrial 

designs coverage DBs. Table 1 lists some information about the coverage DBs under study such as number of 

input coverage DBs for merging, Number of Branch, Expression, Statement, Toggle, Assertions Cover Items. The 

MapReduce merge results is compared against Totals Merge Algorithm Used in [12]. Totals Merge algorithm 

sums the coverage of the coverage scopes, design scopes, and test plan scopes. The counts are totaled (ORed 

together, in the case of vector bin counts) and by default the final merge is a union of objects from the input files. 

During totals merge the multiple test data records are retained from all merge input databases, however, this 
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merging technique loses the information about which test contributed what coverage into the merge is lost [12]. 

Our MapReduce experiments use Hadoop Framework, which is hosted on four computing nodes. 
Table 1. Testcases Coverage DB Characteristics 

 

A. Experimental Merging Scenarios and Use Cases 

Table 2: Different Experiments w.r.t No of Merged UCDBs, Size & Merging Time Comparisons 

 
 

Table 2, sums up the conducted experiments across four different industrial designs DBs as explained in section 

IV. Each design has been exercised to merge different number of varying size coverage databases. Table 1 lists for 

each experiment, the number of used coverage DBs, the size of each DB and the total size of coverage data in use. 

Then for each experiment, we captured the time of reading coverage DB and converting it to flatten unified coverage 

text base UCTB that is appropriate for the MapReduce operations. We also capture the time of MapReduce merging 

and the time of writing the final merged coverage results in coverage DB. Our work is compared to the Totals 

coverage merge algorithm of industrial simulation [12] . The correctness and completeness of coverage merging 

results is checked by comparing the coverage data from MapReduce merger vs traditional resulted merged coverage 

DB from simulation. Table 2 demonstrates that on average our framework accelerates the coverage merging timing 

w.r.t traditional simulation merging technique by 1.8x factor, this includes our overhead of converting the coverage 

DB to flatten text base format and the writing back of final merged coverage results to coverage DB format.  

B. Few Large sized Coverage DBs vs Many small sized Coverage DBs 

 In this section, we study per each test experiments the overhead time consumed in reading the coverage DBs, 

converting them to a flattened coverage text format and writing-back the merge results to final coverage DB w.r.t 

the time consumed in merging operation of Map-Reduce merger. Recall that data conversion to an intermediate 

presentation is a must to have the coverage data in a format appropriate to MapReduce independent proceeding for 

the cover-items across different DBs as explained in section III. Figure 4 demonstrates our experimental trials. In 

DB_Test1, we exercised a large number of small sized DBs. DB_Test2, and DB_Test3 have moderate number of 

medium sized DBs while DB_Test4 has a small number of large sized DBs. Figure 4 illustrates that the coverage 

DBs reading time overhead is high across the different test cases. The write-back time is of low impact because of 

the use of master-DB to annotate the merged results to it. Yet the writing time with DB_Test4 is relatively high 

because it has few huge-sized DBs. Figure 4 concludes that the MapReduce merging step is highly effective across 

all exercised testcases and especially with huge sized coverage data and hence emphasizes on the effectiveness of 

the proposed approach to accelerate big coverage data analysis/processing. 

Design Name DB_Test1 DB_Test2 DB_Test3 DB_Test4

Coverage DB Size in (MBs) 2.5 17 20 44

Total Numbers of input Coverage DBs 1000 120 120 52

Total Size of Coverage DBs in (GBs) 2.5 2.04 2.4 2.3

No. of Assertions Bins N/A 803 803 978

No. of Statement Bins N/A 621,406 621,406 13,105

No. of Branches Bins N/A 383,861 383,861 5,501

No. of Toggle Bins N/A 0 3,097,204 13,646

No. of Focused Expression Coverage Condition Bins N/A 33,831 33,831 1,815

No. of Focused Expression Coverage Expression Bins N/A 858,673 858,673 10,917

No. of FSM States N/A 5,013 5,013 0

No. of FSM Transitions N/A 15,457 15,457 0

No. of CoverPoints Bins 524,288 0 0 754,154

Total No. of Cover Items 524,288 1,919,044 5,016,248 800,116

Testcase Experiement_ID

No of 

Merged 

UCDBs

Size of Each 

UCDB 

(in MBs)

Total UCDBs 

Size 

(in MBs)

Merging Time

Using Map-Reduce

 (in Secs)

Flattened UCTB 

Creation Time 

(in Secs)

Writing UCDB 

Time 

(In Secs)

Total Time 

in (Secs)

Ref Merging 

Time in (Secs)

 [12] 

DB_Test1 Experiement_1 125 2.5 312.5 99 125 15 239 139

Experiement_2 250 2.5 625 197 250 15 462 269

Experiement_3 500 2.5 1250 367 500 15 882 548

Experiement_4 1000 2.5 2500 757 1000 15 1772 1061

DB_Test2 Experiement_1 16 17 272 86 86 14 186 216

Experiement_2 32 17 544 118 172 14 304 481

Experiement_3 64 17 1088 236 344 14 594 1003

Experiement_4 128 17 2176 477 688 14 1179 2019

DB_Test3 Experiement_1 16 20 320 121 107 23 251 294

Experiement_2 32 20 640 223 214 23 460 579

Experiement_3 64 20 1280 449 428 23 900 1176

Experiement_4 128 20 2560 894 856 23 1773 2520

DB_Test4 Experiement_1 6 44 264 24 72 110 206 658

Experiement_2 12 44 528 25 144 110 279 976

Experiement_3 24 44 1056 34 288 110 432 1655

Experiement_4 52 44 2288 52 624 110 786 3974
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Figure 4. Coverage Data Conversion, Merging and Writing-back Times 

C. MapReduce Coverage Merger with Traditional Simulation Merging Approach 

In this section we compare our proposed framework with traditional simulation merging algorithm “Total 

Merge” [12]. Two comparisons have been conducted, the first one (Merging Time use Map-Reduce vs Ref 

Merging Time in Table 2) compares MapReduce merging time vs the simulation merging time. The second 

comparison considers the entire total time, including merging time plus the coverage DBs read/write-back time 

overhead with the simulation merge time (Total Time vs Ref Merging Time in Table 2).  Figure 5 demonstrates 

that for all cases the MapReduce merging step beats the traditional simulation merging time. Additionally, for all 

tests the total_flow_run_time (reading, merging, and writing) is lower than simulation merge time, except for 

DB_Test1 where the total_flow_run_time is higher than simulation merge time. This is because in DB_Test1 the 

overhead of creating parallel mappers for many small-sized coverage DBs is larger than the speedup gain from 

the parallel operations of the map-reduce. This occurs due to the fact that Hadoop creates separate mapper for 

each DB block for its HDFS operations, so for many small-sized files the speed up gain will be less. 

 

 

Figure 5. MapReduce Merge-Time w.r.t Simulation Merge-Time 

Finally, Figure 6, summarizes the comparison of merging time across the different 4 test cases with all the 

experimental trials with and without including the reading/writing overhead. It is obvious that the proposed 

framework demonstrates an acceleration for the coverage merging time across the entire used test suite. 

 



 

8 

 

 
Figure 6. MapReduce Merge-Time w.r.t Simulation Merge-Time for All experimental Testcases  

V. CONCLUSION AND FUTURE WORK 

We propose how MapReduce can be used to accelerate coverage data merging step. Our approach demonstrates 

up to 1.8x speedup in the merging time of big coverage data. Yet the concept still valid to accelerate other coverage 

data processing steps like coverage report generation or mining coverage data for coverage trend construction. 

We believe that having a flattened unified coverage format, that inherits the storage optimizations of UCIS 

representation, but at the same time allows independent proceeding for the cover-items, should be the next step in 

coverage data presentation. Because this presentation will allow more explorations to the big-data analysis 

methods in the field of coverage data manipulation. Our future work aims to explore how the unified coverage 

DBs can be proceed directly as HDFS file. This change will allow direct processing of coverage databases and 

faster manipulation to coverage items. Another direction for our future work is to extend the system to include 

data analyzing and mining that can result useful conclusions about the coverage data and hence help further 

analysis of coverage information. 
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