2020

DESIGN AND VERIFICATION™

DVCON

T N
| | 1N
CONFERENCE AND EXHIBITION

Accelerating Automotive Ethernet validation by
leveraging Synopsys Virtualizer with
TraceCompass

Ashish Gandhi, Synopsys, Ottawa, Canada (agandhi@synopsys.com)

Praveen Kumar Kondugari, Synopsys, Bengaluru, India (kpkumar@synopsys.com)

Sam Tennent, Synopsys, Livingston, Scotland (stennent@synopsys.com)

Abstract— Ethernet enables high-bandwidth and cost-effective data exchange and is therefore critical to cope with
the ever-increasing demand for vehicle communications. To also provide the required reliability for in-vehicle
communications, Ethernet has been enhanced with sophisticated protocols like Audio Video Bridging (AVB) and Time
Sensitive Networking (TSN). This complexity substantially increases the effort to validate and test these software stacks.
Automotive Tier-1s and OEMs are looking to Virtual Prototyping for enabling a shift-left of their products’ time-to-
market with early architecting, validation and reduced-cost regression frameworks. Debugging an Ethernet path on a
virtual platform is challenging as there is so far no tool with a holistic view of the traversal of Ethernet transactions
across multiple in-vehicle hops. This paper proposes a solution to simplify and enhance the validation and performance
analysis of complex Ethernet scenarios for in-vehicle networks, through deep integration of Synopsys’ Virtualizer and
TraceCompass, an Eclipse-based plugin. This integration provides a comprehensive view across multiple Ethernet
nodes, whilst allowing correlation of the Ethernet traffic with other hardware and software events in the individual
ECUs.

Keywords—Automotive ethernet, In-vehice networks, Virtualizer, simulation

L INTRODUCTION

Automotive Ethernet is becoming the backbone for high bandwidth, safe, secure and reliable in-vehicle
communication. New protocols like AVB and TSN provide the required Quality of Service (QoS), security, and
safety for using Ethernet in automotive applications like Infotainment, ADAS, Power-Train, Domain Controller,
etc. The next-gen Automotive platforms will typically have many Ethernet nodes and employ switch technology
to route and manage the data flows.

Many Automotive vendors are employing virtual prototyping techniques to allow software development to
progress before hardware is available and to deploy regression systems to manage testing of software variants and
updates [1]. Virtual Prototyping tools provide many capabilities to help the debugging and testing of complex
embedded Software.

Synopsys Virtualizer [2] is a SystemC-based virtual prototyping solution, which has the capability to trace
transactions and events in software and the virtual hardware. Virtualizer’s debug capabilities include tracing of
registers, ports, software functions, TLM transactions, FastTrack logging, SystemC processes, etc.

However, debugging an Ethernet path in simulation is still challenging as there is no tool with a holistic view
of Ethernet transactions traversal across multiple in-vehicle hops.

II. RELATED WORK

Integration with 3rd party tools like pcap [3] can provide even higher-level visibility for ethernet. Virtualizer
uses the pcap capture with timestamping at ethernet interfaces in the platform. Tools like Wireshark [4] can help
visualize the data for a single node but is limited for multi-node systems. However, in a typical Automotive
Ethernet platform, there are many pcap captures which are hard to correlate with each other and with the rest of
the system activity.

2020

DESIGN AND VERIFICATION™

DVGCGON

CONFERENCE AND EXHIBITION

TraceCompass [5] allows multiple pcap captures to be viewed at once while also providing timing information
and statistical analysis of traffic. However, TraceCompass lacks the ability to correlate this information with the
hardware and software events in the system that can be captured by Virtualizer.

This paper proposes a solution to extend existing Virtualizer Tracing Analysis by combining with
TraceCompass Network Analysis capabilities. This integration will provide a holistic view to analyze the multi-
hop ethernet transactions traversal in a platform.

III. INTEGRATING TRACECOMPASS WITH VIRTUALIZER

The TraceCompass plugin provides several Eclipse-based time-synchronous views namely Pcap Trace Viewer,
TimeChart, Histogram, State System Explorer. On the other hand, Virtualizer also provides Eclipse-based time-
synchronous views of the Hardware and Software activity, e.g. function traces, registers, context switches,
messages, etc. The integration of the two worlds ensure that the time updates of TraceCompass views are
synchronized with the Virtualizer views. This is done by creating a new Eclipse plugin called CompassTimeSync.

Figure 1 and Figure 2 depict the details of the CompassTimeSync class:

«Java Interface»
«Java Class» Listener
AbstractHandler {Synopsys Listener class} «Java Class»
+changed(event: int) : void SignalManager
{Synopsys Signal Manager}

e

«Java Class»
CompassTimeSync

- tmfTime: long
+ «constructor» CompassTimeSync()

+ execute(event: ExecutionEvent) : Object

+ changed(event: int) : void «Java Class»

+ timeRangeUpdated(event: TimeGraphRangeUpdateEvent) : void TmfSignalManager

+ selectionChanged(event: TimeGraphSelectionEvent) : void {TraceCompass Signal Manager}

+ broadcast(signal: TmfSignal) : void + reqister(obj: Object): void

+ broadcastAsync(signal: TmfSignal) : void + dispatchSignal(signal: TmfSignal): void

+ timeSelected(event: TmfSelectionRangeUpdatedSignal) : void + dispatchSignalAsync(signal: TmfSignal): void
- toTraceCompassTimeNanos(time: long) : Long

Figure 1: CompassTimeSync Class

2020

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

User

select equivalent ime in

TraceCompassView CompassTimeSyne VirtualizerView

User

This integration enables synchronization of the different views supported

B

Figure 2: Events flow

IV. EXPERIMENTS AND RESULTS

A. An Automotive Ethernet scenario

T
1
1
1
1
1
selects time value () 1 timeSelected() : Virtualizerview() -~
]
1 1 |
1 1]
1]]
1 1]
1 select equivalent time in 1 changed))] octs & "
[TraceCompassView () 1:14 ged() 1514 selects time value ()
1 1]
1 1]
: : select equivalent time range in :
selects time range () 1 timeRangeUpdated() 1 SynopsysView () I
Bl el |-l
]]]
]]]
] 1]
]]]
| select equivalent time range |]
H in TraceCompassView () ! changed() I selects time range ()
f <l]
]
]
]
1

by both Virtualizer and
TraceCompass Eclipse plugin respectively. This way we scale up the analysis capabilities to cope with the of the
complexity Automotive Ethernet protocols.

Figure 3 represents a typical automotive ethernet platform containing multiple ECUs connected via Ethernet
Switch. This example uses a Synopsys VDK containing 4x Virtual ECU subsystems with Ethernet Controllers
connected using an Ethernet Switch.

Automotive Ethernet SoC (Synopsys Virtual Platform)

ECU
(VECU_2)

ECU
(VECU_0)

Ethernet Gateway
(EthernetSwitch)

ECU
(VECU_3)

ECU
(VECU_1)

Figure 3: Automotive Ethernet scenario

Figure 4 and Figure 5 show the details of the experiment:

Enable Pcap capture and N) ping from vECU_0 to vECU_1, P]
Virtualizer Analysis eth interfaces vECU_2 &vECU_3 & Trace anaylsis

Bring up eth driver & configure

cap capiur

Figure 4: Setup flow

2020

DESIGN AND VERIFICATION™

DVGCGON

CONFERENCE AND EXHIBITION

TraceCompass Plugin Views ‘

0 micsc i EWQU K ENQ e FWCLLKD EOLLmKw VOIS EY

10 IGO0 TH e HiC 4255 86021 Dedrwon WAC 133 90004016
LNININ00 QI HAH 2= Tive L

Virtualizer Views

o s Qar

Off= 1764460815557265 35

SN0 QA)
Dt s o o o0 ol o oo
1212557 103600 @SS TLM) [T T
R0 QssEc) | ! I
1313260912000 235 dadicc 3 . t I
LINNNOWO QIS KGN '} : i
N0 RSB = o s
SN A0 @S5 AN 3 . i |
AN D800 @35k M i 0

i | |
i i T
'
] | i
1 1" it
0 ! i
e r— 263 Bbh- A WIAS (=
. w0134 GI31S0 013260 OO 01320 013230 OLILAD 013230 013

Q0 e g

frop R ——

"oy mten st

Tt o
praen '
ere 18

00000000-0100000000.0200000000]

01X b rend G0110000 sz O30

7] sert pce o Qo 0 (v i =01

Figure 5: Individual Views from TraceCompass and Virtualizer

Figure 6 provide the following four synchronized views to analyze ethernet transactions:

1. For vECU 0, select a time value in the register trace, where the MAC Transmit Enable bit changes to

value “ENABLE” (Virtualizer)

2. The cursor in the Pcap Trace Viewer jumps to selected time and show the frame being transmitted

(TraceCompass)

3. Additionally, the State System Explorer (or Time Chart) view also jumps to the selected time and the
corresponding stats can be seen (TraceCompass)

analyzed (Virtualizer)

Time synchronous
selection of Ul views

The Fast Track Messages view jumps to the selected time and the logging from virtual hardware is

& |i=VECU O macpcap iz VECUO mac txps3 i= Switch portoin iz VECU 3 mac drop iz VECU 3 mactxp ™ y = Time Chart i= i Jsst eI % L@~ § =D
S Timestamp Source Destination Reference Protocol Contents State System Attrio T 01:31:40 01:32:00 01:32:40
| <sren> <sreh ch> | <srch> | <sreh> ¥ VECU_0_mac_tx peap
01:31:32.513 178 000 16 VECU_O_mai ETH Source MAC: 42:55:06:62:2f ¥ statistics \
01:31:32.557 183 000 16 VECU_O_mar ETH T T
01:31:33.397 238 000 a2 VECU_O_ma ETH o e o s s
01:31:34.421 275 000 33:33:00:00:00:16 VECU_O_mar ETH ¥ event_types
01:31:34.421 335 000 2 VECU_0_mar ETH packetieth 2
01:31:35.413 178 000 6 VECU_0_mai ETH packetiedd g
01:31:38.389 173 000 33:33:00:00:00:02 VECU_O_ma ETH
01:31:46.581 172 000 2 VECU_0_mai ETH
01:32:02.197 172 000 :02 VECU_O_mar ETH
01:32:21.662 071 000 42:55:d6:62:21:aa ff:ff: VECU_0_ma: ETH 4y Histogram (] Statistics (7] Properties & Colors | Charts &8 QR RPPbE § =0
.
01:32:26.771 643 000 42 + 0. Diff = 1941663565953 ns
01:32:35.989 173 000 42:55:d6:6a: [so0s. [o00s
e a6 212000 255 dbes “—’ === |l HIHHHIIIIIIIIIIIIIIIIIIlHi MHIII
01:32:55.461 213 000 42:55:d6:62:2 :
01:33:00571 563 000 42: A 2
01:33:27.152 394 000 42:55:d6:62:2 i =
01:33:27.153 902 000 T
01:33:32.309 914 000 I
01:33:39.477 160 000 1:30 0 1
I il
- Filters (flBookmarks i= Stream List 4 Results | Details 53 o S0 ¢ =0
FastTrack Messages Trace
Time (ps) = Object Message ¥ category = Core_Name = PC =S\
1941662839458000 AutomotiveMUultiECU_VDK.VECU_0.DWC_EQoS_DUT.DWC_EQoS Channel 0: [RX] descr Internal Level 0 ._EQUS_DUTDWC_EQ0S) 0x0 wa
1941663565708000 AutomotiveMUultiECU_VDK.VECU_0.DWC_EQoS_DUT.DWC_EQos Channel 0: [Tx] descr Internal Level 0 £Q0S_DUT.DWC_EQoS) 0x0 wa
1941663565708000 AutomotiveMUultiECU_VDK.VECU_0.DWC_EQ0S_DUT.DWC_EQoS Channel 0: [TX] buffer 1 read @0xfb104000 , size 0x62 Internal Level 0 £Q0S_DUT.DWC_EQoS) 0x0 a
1941663565953000 AutomotiveMUltIECU_VDK.VECU_0.DWC_EQoS_DUT.DWC_EQoS Channel 0: [TX] sent packet to Queue 0 [Queue Size = 0x1] Internal Level 0 QoS_DUTDWC_EQS) 00 wa
1941663565953000 AutomotiveMUultiECU_VDK.VECU_0.DWC_EQoS_DUT.DWC_EQoS Queue O: [TX] sent packet to MAC [Queue Size = 0x0, 0X6ad65542:0x5542bb21:0xaa216ad6:0x00... _Internal Level 0 EQ0S_DUT.DWC_EQOS) 0x0 a
AC 1] raraied ol (01634 55430155420021 0100213 0100450008, Lkl Levl |~ —cQos-ouTovic c0gs) 00 s |
1941663566809000 AutomotiveMultiECU_VDK.VECU_0.DWC_EQ0S_DUT.DWC_EQoS Channel 0: [TX] descr wri Internal Level 0 _DUT.DWC wa I
1941663566849000 AutomotiveMultiECU_VDK.VECU_0.DWC_EQoS_DUT.OWC_EQoS Channel 0: [TX] descr olnlemal Level 0 wa
1941663567585000 AutomotiveMUultiECU_VDK.VECU_1.DWC_EQoS_DUTDWC_EQoS MAC : [RX] received packet of size 0x66 Internal Level 0 wa
1941663567585000 AutomotiveMUultiECU_VDK.VECU_1.DWC_EQoS_DUT.DWC_EQoS Queue O: [RX] received packet from MAC [Queue Size = 01, 0x6ad65542:0x5542bb21:0xaa216ad... Internal Level 0 wa
1941663567585000 AutomotiveMUultiECU_VDK.VECU_1.DWC_EQoS_DUT.DWC_EQoS Channel 0: [RX] buffer write @0xfafff800 , size Ox3fff Internal Level 0 EQ0S_DUT.DWC_EQoS) 0x0 wa

Figure 6: Integrated Analysis views showing time synchronization

In the above experiment, the integration is successfully verified. As a result, the user can correlate any ethernet
traffic analysis from TraceCompass with the analysis offered by Virtualizer.

B. Ethernet packet loss analysis in an Automotive platform using AUTOSAR

This is a real example from a production automotive platform with 2 ECUs and an external interface to host
ethernet adapter. We observe the packet losses between a VLAN application running under Linux on the host
communicating over ethernet with one of the ECU running AUTOSAR [6].

2020

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

To debug this issue, we use the ping6 application on the host. This way we can replicate the packet loss scenario
as shown in Figure 7.

Figure 7: ping6 output showing packet losses

The SystemC TLM model of the Ethernet MAC component has the capability to dump the inbound and
outbound ethernet traffic into separate files as well as a superset pcap file with the timing information. Also,
Virtualizer Studio allows to dump the AUTOSAR Software Function Trace.

Both the traditional and the proposed approaches of analyzing the issue are explained in the following paragraphs.

B.1. Traditional Approach

Without this proposed solution, the issue was investigated as below:
Step 1: Analyze the dumped pcap files in Wireshark and confirm missing ping replies for some of the request

packets.

This indicates the following possible issues:
1. the request/reply packets are dropped by the simulated hardware or
2. the simulated hardware is forwarding request packets to the software with delays (could be related to
Scheduling, Latencies, etc) or
3. the software is dropping the request/reply packets or
the software is not responding to some of the request packets

Step 2: Analyze the recorded Function Trace from VP Explorer to look at software functions of the AUTOSAR
stack as shown in Figure 8 and Figure 9.

= Charts 33 SAARI G L Rppba §

Diff = 11070637464335 ps.
i 1070 ms 11075 ms |ﬂUBUms 11085 ms 11090 mes |NUSSms ‘TNUUms 11105 ms 11110 m
[] [F] [] [] [} B B@EE @® [}] 7]

"D Task_BowW T ask] [
Sohd_MainFunction
Sokd_MainFunctionFls

Sohel_Tcplp_MainFunctionPx

Sod_Rx_HandleRecption

S EveniQueue_GelE lemeniNunToHande

Sothd_MainFunctionState

Sodd Teplp_MainFunctionState

Sohd_SoCon_HandeUldpéliveTimeout

Sohd_TimeourList_CheckElements

d_SoCon_HandeSoConS ales

S ol _MainFunctionT »

Sokd_Tx_Handle Transission

“Sabel_Toplp_MainFunctionT:

“Sabd FiouteGip_HandelfTransmit

Sod_Tx HandeConfimation .
mp_ VFAE choFlequest. H.38 5 erkine 5]

IpVB: lemp, Transmit

R T Py
'

moponoEDEDEEEEEE

o
moEmooEooEoEEmEEE
EomomomoooEEEEaE

ooEoEosoooooEEEEEE
ooEoEososoEoEEEEEE
o EoposoooooEsEEEaE

o,
o EoEoooooEoEEEEaE

o
o EeposossEsssEEEE

Figure 8: AUTOSAR Software stack Function Trace

Function Self (%) TISP TISCP Called Instructions
_SoAd_MainFunction 1.858 2762058 191644332 51 663
_SoAd_EventQueue_GetElemen... 14.862 22096.. 22096464 255 5304
_Os_Task_BSW Task 29475 43822.. T7715840.. 0 10519
_lpV6_lcmp_VRxEchoRequest.... 5.786° 8602790 29745240 35 2065
_IpVe_lcmp_Transmit 1.289 1916360 232071196 20 460

Figure 9: Details View showing Function calls statistics

2020

DESIGN AND VERIFICATION™

DVGCGON

CONFERENCE AND EXHIBITION

This way we can rule out issues 1 and 3 from the list above.
Step 3: Correlate the packets in the pcap file to the function calls based on the simulation time.

Figure 10 indicates the way to look at the time in Wireshark for a specific ping request and then manually zoom
and pan to the same value on the Function Trace view inside VP Explorer.

No, Time Source
o 1 11.070623 fd53:abcd:123:
2 11.074623 fd53:abcarizs

3 11.074640 fd53:abcd:123
4 11.079623 fd53:abcd:123
5 11.079745 fd53:abcd:123
6 11.083999 fd53:abcd:123
7 11.084615 fd53:abcd:123
8 11.093848 fds3:abcd:123
9 11.094614 fd53:abcd:123
10 11.098623 fds3:abcd:123
11 11.099657 fd53:abcd:123
12 11.103764 fds3:abcd:123
13 11.104614 fd53:abcd:123
14 11.107623 fd53:abcd:123
15 11.108623 fd53:abcd:123
16 11.109636 fd53:abcd:123
17 11.110623 fd53:abcd:123
18 11.112623 fd53:abcd:123
19 11.112633 fd53:abcd:123
20 11.114623 fd53:abcd:123
21 11.114640 fds3:abcd:123
22 11.115623 fds3:abcd:123
23 11.116623 fd53:abcd:123

Info
Echo (ping) request id=0x5a32, seqs1, hop limit=64 (no response found!)
Echo (ping) request 1d-0x5232, seq-2, hop limit=64 (reply in 3)
hop limit=64 (request i in z)

S 42095237 seq.
Echo (ping) request 1d=uxsass;
Echo (ping) reply id=0x5a32, seq=3, hop limit=64 (requi
Echo (ping) request id=exsa32, seq=4, hop limit=64 (reply in 7))
Echo (ping) reply id=0x5a32, seq=4, hop limit=64 (request in 6)
Echo (ping) request id=ex5a32, seq=5, hop limit=64 (reply in 9)
Echo (ping) reply id=0x5a32, seq=5, hop limit=64 (request in &
Echo (ping) request id=exsa32, seq=6, hop limit=64 (replydil)
Echo (ping) reply id=0x5a32, seq=6, hop limit=64 (readllin 10)
Echo (ping) request id=ex5a32, seq=7, hop lis
Echo (ping) reply id=ex5a32, seq=7, hop
Echo (ping) request id=ex5a32, seq=8,
Echo (ping) request id=ex5a32,
Echo (ping) reply id=0x5a32 , hop limit=64 (request in 15)
Echo (ping) request id: seq=10, hop limit=64 (no response found!)
Echo (ping) reque: seq=11, hop limit=64 (no response found!)
Echo (ping) t id=exsa32, seq=12, hop limit=64 (no response found!)
iggfrequest id=0x5a32, seq=13, hop limit=64 (reply in 21)
reply id=0x5a32, seq=13, hop limit=64 (request in 20)
request id=6x5232, seq=14, hop limit=64 (no response found!)
request m-exSasz seq=15, hop h.m-u (no response found!)

SAAR G RPPBE 8

99 fd53:abcd:
1 fds3:abed:
99 fd53:abcd:
1 fds3:abed:
99 fd53:abcd:
1 fds3:abed:
99 fd53:abcd:

op limit=64 (reply in 16)

2 Charts 52

Dif = TI0EABHIS pe
¥ (11075ms [11080ms [1108Sms [11080ms [110%5ms |11100ms [11105ms [11110m
O O

ol M ctefe
vertQueue_GelElemenNunTcHande
darFuncorStale
o MarFnctonSiste

i lements

Fig'ure 10: Wireshark window and VPExplorer view with manual time-selection for each packet

It is a tedious and time-consuming effort to manually establish the correlation of 55 packets. After matching up
the timestamps for all the packets in the captured pcap file to the same time in the software invocation, the issue
2 is ruled out.

Upon further analysis of the function traces and its correlation with the pcap file, it is observed that there is only
1 ping request packet received within subsequent invocations of the “_SoAd_MainFunction” AUTOSAR
runnable.

B.2. Proposed Approach

With the proposed solution, the above steps change as follows:
Step 1: From the TraceCompass Plugin, we use the Statistics window and the Pcap Trace Viewer to check the

number of receive and transmit packets. As shown in Figure 11, there are missing ping replies for request packets.

S Lutomotive.ws - o
File Edit Navigate Search Project Run SampleMenu Creation VOKDebug Window Help

e TR Rt R e
5 i=macpcep i mactepcap | i PeapTrace 3 =1
L] Trace Source Destination Reference Protocol Contents.

A csich> <sch> <sech ch> <sich

mac_rcpeap 01:00:11.070 623 000 u:hb.(cdd:e:lf macrpcep ETH
mac_cpcap O1:00:11.074 623 000 ff macupeap ETH
mac_tupcap 01:00:11.074 640 000 mac_txpeap ETH
mac_cpcap 0100107962300 8ad1:S5adkSdT2 ambbicciddieeff macmpcap ETH
mac_tepcap 0100107974500 axbbiccddeeff 8ad1:S5:adi5d72 mac_tupcap ETH
mac_rcpcap 01:00:11.083 999 000
mac_tupcap 01:00:11.084 615 000

Propert; Hist 1 [Statistics 52

(Global - PcapTrace

awbbiccddeefl macmpcap ETH
8a:41:55:28:5672 mac_tupeap ETH

mac_ncpcap 01:00:11.003 848 000 mac_mpeap ETH Level Events total Events in selection
mac_tupcap 01:00:11.094 614 000 Sad1i55205472 macixpeop ETH Source MAG sabbicciddhestt, Destination MAC: Bt -

2| mac_drop_ncpca) 0 0
mac_upeap 01001109 623 000 asbbccddieetf macopeop ETH Source MAC: adTSSadSdT2, a2 Hac SIOP-RPip
mac_tepeap 01:00:11.099 657000 8:4155:2d:5¢72 mactepeap ETH Source MAC: anbbiccddieett, > lsdl mac_ncpeap 35 1
mac_nupeap 01:00:11.103 764 000 aabl eeff mac_rupcap ETH Source MAC: 8:41:55:2d:5d:72, > |os) mac_txpcap 20 0

mac tupcap OHOGTIIONGIS000 anbbiccddieeti 8adlS5ad5T2 mactxpeap ETH Source MAC: aabbiccidbeet, Destination MAC: a1
macxpeap 0T:00:11.107623000 8a:41:55adk5d72 awbbiccddieeff macrepeap ETH inati ¥
macxpeap 01:00:11.108623000 8a:d1:55:ad:5d72 ambbrccddeeff macupcap ETH Source MAC: Ba:d1:55:ad:5d:72, Destination M)
mac_tpcap 01:00:11.109636000 asbbrcc:ddieeff 8ad1:552d:5d72 mactepesp ETH Source MAC: aabbice:dd:eeff, Destination MAC: 82
macxpeap 01:00:11.110623000 8a:41:55:ad:5d:72 , Destination MAC
mac.xpeap 01:00:11.112 623 000 . Destination MA(
mac_mpeap 01:00:11.112633000 8ax 72, Destination M

Figure 11: views of the TraceCompass Plugm show different number of receive and transmit packets

cddeesl macmpcap ETH
asbbiccddeeti macmpcap ETH
asbbiccddeeff macpcap ETH

72

Step 2: Same as approach B.1, confirming all the request/reply packets are accounted for in the software stack.

2020

DESIGN AND VERIFICATION™
DV

CONFERENCE AND EXHIBITION

Step 3: Correlate the packets in pcap file to the Function call based on simulation time.

Open Software Function Trace using VPExplorer’s Charts view. Select the packets inside the TraceCompass’
Pcap Trace Viewer and the VPExplorer’s Function Trace auto selects the selected packet’s simulation time value
as shown in Figure 12 (marked by x).

Pesprace.-

#te Search Project Run SempleMenu Crestion VOKDebug Window Help

o~ ST S

Auto-selection of Function
Trace time bosed on selected
packet

£ mactepeap | i Peaprace Charts

Source Destinstion Reference Pro... Contents

mac.rpesp ETH A s
asbbiccddeeti macrupcsp ETH Source MAC: Budl:SSiads

0 BualisSadsdT

. BadliSSadSET asbbiccddee
mac_bepeop 01

mac cpcsp 01
mac_tcpcap.
mac ocpeap 0101093848000 Ba4l:SSadSET2 anbbice

»
BaAliSSadSET) asbbiccddeeti macripesp ETH_S

ectt % EH Source 4155205

ac tepeap ETH
mac_opeap ETH MAC:&

mac bepcap ETH
Bu41i55ad5E72 asbbiccddieeti macupcap ETH Source MAC: 8d1:S5:adi5dT2, Destination MAC]aa
mac tupeap ETH
mac nupesp ETH W
B04li55ad5ET asbbiccddieeti macrepeap ETH Source MAC:Badl:SSad:sd:

Badissad Baaiss:

2 axbbrccddeeti macopeop ETH Source MAC: Sad1:SSiadiSdT2 MAC: ambbcciddee

Mapping requests and.
replies to software function

Figure 12: Single UI Window with auto-selection of Function Trace time based on selected based

We confirm that there is no delay from the time when hardware received the packet to the time when software
received it. In other words, RxEchoRequest and Icmp_Transmit getting called at the same time as the respective
receive and transmit packets.

The issue of missing replies is clearly analyzed in the Figure 12, where the Function Trace shows that there is
only 1 ping request packet received within subsequent invocations of the SoAd MainFunction AUTOSAR
runnable for the successful request-reply pairs (marked by a-d, b-e, c-f) as compared to unsuccessful request
(marked by x).

As a fix, we have the following the options:
e Increase the frequency of scheduling of AUTOSAR Ethernet task or
e Slow down the subsequent ping requests at the origin to ensure that only 1 packet is received within the
subsequent invocations of the SoAd_MainFunction AUTOSAR runnable

For this example, we used the second option. It resolves the packet loss as shown in Figure 13.

Figure 13: ping6 output showing no packet losses with additional time delay option

Using the proposed solution, a significant time and effort is saved in Step 3, resulting in a much more efficient
analysis.

2020

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

C. Software Bug analysis for faster debug

The stmmac [7] module is a Linux ethernet driver containing support for Designware Ethernet Controllers. It
had a bug for the DMA programming sequence, which was causing random DHCP failure on an ARMv8 based
virtual platform. Debug required manually comparing the pcap files and the simulation traces of the pass v/s fail
scenario. This solution provides mechanism to view multiple pcap traces over the same TimeChart
(TraceCompass) and trace back to the software programming sequence by using Register Tracing and Fast Track
capabilities (Virtualizer).

D. Enhanced Scheduling Traffic (EST) visualization for Time Sensitive Networking

Enhanced Scheduling Traffic (IEEE 802.1Qbv-2015) [8] is one of the critical standards to ensure that the
ethernet traffic is forwarded from one ECU to another with a deterministic delay. Typically, an Automotive
software developer programs virtual communication channels for the required priority of the traffic. For validating
and optimizing the programmed priority traffic reservation in time, experiments performed can be visualized to
analyze the configured scheduled traffic windows against the actual transmitted priority traffic.

V. CONCLUSION

This solution extends the current individual capabilities of the TraceCompass eclipse plugin and virtual
platform tools like Synopsys Virtualizer by cross-synchronization of their views. This enables the holistic
visualization of ethernet transactions in conjunction with hardware and software events across a virtual platform.
The experiments covered in this paper provide clear differentiation of the value added by the solution. It
accelerates the software debugging and performance analysis of complex Automotive Ethernet platforms. The
TraceCompass plugin can be further enhanced to identify various protocols like AVB, TSN, PTP, ARP, ICMP,
BOOTP/DHCP, IPv6, etc. and implementing the Raw Data view. This would further accelerate investigating
Automotive Ethernet in virtual platforms.

VI. REFERENCES

[1] Wei Liu, "Shifting Left with Virtualizer: End-to-end Virtual Prototype for Automotive Ethernet Switch", Presented at virtual Synopsys
Users Group Conference, Silicon Valley, 2020.

[2] Synopsys Virtualizer: www.synopsys.com/verification/virtual-prototyping/virtualizer.html

[3] pcap: Packet CAPture, application programming interface (API) for capturing network traffic, www.tcpdump.org

[4] wireshark: www.wireshark.org

[S] tracecompass: www.eclipse.org/tracecompass

[6] Concept and Implementation of AUTOSAR compliant Automotive Ethernet stack on Infineon Aurix Tricore board:
https://monarch.qucosa.de/api/qucosa%3 A20582/attachment/ATT-0/

[7] stmmac: https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next. git/tree/drivers/net/ethernet/stmicro/stmmac

[8] EST:https://en.wikipedia.org/wiki/Time-Sensitive Networking#IEEE 802.1Qbv_Enhancements _to Traffic Scheduling: Time-

Aware_Shaper (TAS)

