Accelerating and Improving FPGA Design Reviews Using Analysis Tools

Abdelouahab Ayari, Mentor, a Siemens Business, Germany Anna Tseng, Mentor, a Siemens Business, USA Kurt Takara, Mentor, a Siemens Business, USA

FPGA Design Quality and Reliability

- FPGA systems requirements
 - Functional safety
 - Reliability
 - Data integrity
- Challenges
 - Manual RTL reviews inefficient and not scalable
 - Target known risks with review checklists
 - Reviews time consuming and error prone
 - Reviews under schedule and budget pressures

Automated FPGA Review Flow

- Built upon design analysis tools
- Checks for latest industry standards and best-practices
- Automation provides high performance, low error, consistency
- Enables a well-defined, repeatable review process

Automated FPGA Review Flow

- Improves design quality
- Improves design review efficiency
- Enables faster and more consistent design review completion

Lint Analysis

- Automatic checking of RTL code for errors
- Checks against industry best practices
- Identify design elements problematic for FPGA mapping
- Identify problematic constructs
 - Ambiguous code
 - Incomplete sensitivity lists
 - Combinational loops
 - Incomplete state machines
 - Underflow and overflow conditions
- Enforce compliance to industry or project standards
- Early examination of RTL at syntax, semantic and structural levels

Lint Example

- Manual code reviews are tedious and error-prone
- The designer wants A=4
 - Needs a check for missing parens

```
wire [3:0] a, b, c, d;
assign b = 4'h2;
assign c = 4'h1;
assign a = 4'h8 >> b >> c;
```


Advanced Linting

- Deep sequential checks using advanced formal technology
 - A deadlock scenario in your state machine
 - An overflow condition on a registered variable
 - A combinational loop in your code, etc.

83M10030X

Advanced Lint Example

- FSM deadlock from incorrect structure
- Sequential logic causing FSM deadlock and dead code

Checking for Unknowns

- If unexpected 'X's appear on a critical signal or in an important register, your design can malfunction
- The circuit startup sequence or low power entry/exit can create cases where 'X's could corrupt critical design elements or signals
- The difference in the handling of 'X' semantics in synthesis and simulation can mask 'X' propagation issues

Challenges with X-States

Simulation to Silicon Mismatches

DESIGN AND VE

10

X-State Analysis

Missed X-state bugs will result in bad silicon

'X' Risk Factors

- □ Circuit start-up & initialization
- □ Low power-related optimizations
- □ Multi-mode operations
- Gate level register state predictability
- □ Simulation vs. synthesis semantics

Unknown Verification Benefits

- Exhaustively identify all X-state issues
- ✓ Enables exhaustive evaluation of all circuit start-up and post-reset 'X' issues
- Fully automated analysis flow utilizing advanced formal technologies

Clock-Domain Crossing (CDC)

- Asynchronous clock domains
 - Contain registers whose clocks have variable or unpredictable phase relationships vs. other domains
- CDC paths
 - Originate in one clock domain
 - Sampled by register(s) in a different clock domain
- Today's designs can have >10⁵ CDC signals!

CDC Paths Cause Metastability

- When CDC signal changes within the setup/hold window of a receiving register
- Receiving register becomes *metastable*
 - Settles to a random value, after unknown amount of time

- Happens even with proper synchronization & protocols
- Can cause significant functional problems in the design

accelle

SYSTEMS INITIATIVE

Clock Domain Crossing (CDC) Analysis

CDC verification identifies bugs created by multiple clocks, and suggests circuit corrections

Reset Domain Crossing (RDC)

External/generic IPs used in designs

Functional domains with independent reset

Functions requiring async reset (e.g. safety, power)

RDC analysis is a similar, but more complex analysis than CDC

RDC Paths Cause Metastability

- When RDC signal changes within the setup/hold window of a receiving register
- Receiving register becomes *metastable*
 - Settles to a random value, after unknown amount of time

- Happens even with proper synchronization & protocols
- Can cause significant functional problems in the design

accelle

SYSTEMS INITIATIVE

- Automatically exhaustively identifies all reset signaling issues
- Fully automated analysis: no testbench or knowledge of formal required
- SoC-level scalability: hierarchical approach enables multi-billion gate capacity

Automated FPGA Review Flow Requirements

- Available tools must be available to the designers at office or home
- Accessible throughout the design process
- Configurable to create and enforce project-specific rules and checks, review criteria, and compliance standards
- Identifiable errors must be easily identified, easily debugged, and provides suggested fixes
- Repeatable process must produce the consistent results on the same design and configuration
- Auditable results must be well-documented to allow audit and archival

Results

- Automated FPGA design review flow
- Maintains latest industry standards and best-practices
- Improved performance and productivity
- Enables a well-defined review process

Summary

- FPGA design reviews are critical to mitigate risk
- Manual design reviews are insufficient for complex FPGAs
- Automated review flows address increasing design complexity
 - Increased performance and scalability

Questions

