
Accelerated SOC Verification Using
UVM Methodology for a Mixed-

Signal Low Power Design

Giuseppe Scata – Texas Instruments (g-scata@ti.com)
Ashwini Padoor – Texas Instruments (ashwini.padoor@ti.com)

Vladimir Milosevic – ELSYS Eastern Europe (v-milosevic@ti.com)

© Accellera Systems Initiative 1

Overview
 Introduction

• Unified SoC flow for directed and constrained random verification approach

 DUT Overview
• DUT Overview – I am Mixed Signal

 SoC TB Architecture Overview
• SoC Testbench: An Overview
• SoC Testbench: Stimuli
• SoC Testbench: Direct Testing
• SoC Testbench: TB/SW synchronization
• IPDV Reuse Examples
• uVC: Use-Model
• Checkers and Assertions
• Functional Coverage Tracking
• Test End Mechanisms

 Going AMS

 Results & Observations

© Accellera Systems Initiative 2

The microcontroller SoC verification strategy
refinement to the next level:

 Unified flow from RTL to AMS

 Reduction of development cycles via reuse of IP-DV
components

 Uncover each possible design surprise by using
always on checkers / scoreboards

 Adherence to Industry standard methodology: UVM

 Support for direct and random verification
approaches

© Accellera Systems Initiative 3

The Motivations

DUT – I am Mixed Signal

 Design is not just digital: Analog On Top (AOT) Low
Power Mixed Signal Design;

 The toplevel is an analog netlist instantiating Real
Number Models and the digital top.

 Netlist is automatically generated by analog tool
netlister – The tool extracts the design hierarchy
details until it finds a Verilog view of a cell.

© Accellera Systems Initiative 4

SoC Testbench: An Overview

The testbench framework contains the following
components:

 Verilog segment: Plain Verilog part;

 System Verilog segment: UVM compliant components;

 Hardware/Software synchronization logic;

© Accellera Systems Initiative 5

SoC Testbench: An Overview

© Accellera Systems Initiative 6

SoC Analog toplevel

V regulators
(WREAL/Spice)

Pads
(WREAL/Spice)

…
(WREAL/Spice)

Oscillators
(WREAL/Spice)

Digital Top

ARM

Core

ROM/RAM

MEMCTL NVM

Timer

…

A
H

B
/A

P
B

B
ri

d
g

e

SPI

G
P

IO
/P

in
s

Power/

Reset/Clk
Control

DEBUG

JTAG

TB

Verilog Segment

Backdoor

memory access

Power supply
(WREAL/electrical)

SV Segment

In
te

rf
a
c
e

s Active

uVCs

Passive

uVCs

UVCs Monitors connections

UVCs Drivers Connections

Ext Clock

generation

Reset
Control

SOC Testbench: Stimuli

© Accellera Systems Initiative 7

The testcase definition constitutes:

 A System Verilog file that defines a SV Sequence;

 A Software file (C/ASM/memory image) which defines
the data which needs to be loaded into the SoC memory;

 Optional support files (linker command files,
configuration files, …);

SOC Testbench: Stimuli

© Accellera Systems Initiative 8

Universal Verification Component (uVC) deployment
for generating the traffic :

 SOC external Stimuli: The stimulus generation on
external I/O via the uVCs;

 SOC software Stimuli: uVC based constrained random
software data handling using mailbox mechanisms;

 Handling Stimulus on multiple interfaces in a controlled
way: multiple uVC integration using Virtual sequencer;

SoC Testbench: Direct Testing

© Accellera Systems Initiative 9

Allow “legacy” direct verification methodology in Verilog style
via instantiating a dummy sequence that just waits for the “test
end” event :

class `tc_name extends uvm_test;

soc_tb ve;

`uvm_component_utils(`tc_name)

function new(…);

super.new(name,parent);

endfunction

…

virtual function void build_phase(uvm_phase phase);

super.build_phase(phase);

uvm_config_db#(uvm_object_wrapper)::set(this,

"ve.virtual_sequencer.run_phase",

"default_sequence", sw_seq::type_id::get());

endclass : `tc_name

initial begin

// Verilog direct test

// paired with a C file

…

// testend event via SW

// or via task call

end

SoC Testbench: TB/SW Synchronization

© Accellera Systems Initiative 10

int main ()

{

while (1) {

// synchronize with TB

TB_synch = 1;

// Use random data got from TB

switch (DATA_MAILBOX1) {

case 1: fct1 (DATA_MAILBOX2); break;

case 2: fct2 (); break;

case 3: fct3 (DATA_MAILBOX3); break;

case 4: test_end(); break;

default: ERROR++;

}

}

void fct1 (int);

void fct2 (void);

void fct3 (uint32_t);

C-test issues a write to

dedicated memory location
with a predefined key Testbench

uVC sequence

Testbench detects a

write to TB_synch’s
address and generates
an event according to

its value;

uVC reacts to the testbench’s

event by storing random
constrained data into the device’s
memory (DATA_MAILBOX*) thus

achieving randomization of the C-
code execution.

IP-DV uVC Reuse

Reused components:

 Any passive component from IP DV – monitors:

- Functional coverage definitions;

- Protocol checkers;

 Any active component - driver that drives external I/Os to the DUT:

- In SoC environment drivers are connected to the DUT boundary
(Example:Serial interfaces uVC);

Redundant components:

 Any active component that drives signals internal to the SOC:

- Interconnect signals (APB, AHB) – use C code to generate stimuli;

- Signals connected to other IPs (Clock, Power, Reset, etc.) – use specific
scenarios to trigger these signals by various SOC internal blocks;

© Accellera Systems Initiative 11

© Accellera Systems Initiative 12

SoC DV Environment

DUT

SPI

Module

GP

I/OA
P

B

B
R

ID
G

E

Power, Clock, Reset, Control IPs…

IP DV Environment

System Verilog TB

APB I/f

APB uVC
ACTIVE

Driver

Monitor

CTRL I/f

CTRL uVC
ACTIVE

Driver

Monitor

SPI I/f

SPI uVC
ACTIVE

Driver

Monitor

DUT - SPI

Module

IP-DV uVC Reuse

R
EU

SE

APB SPI I/F

C
tr

l

System Verilog TB

APB I/f

APB uVC
PASSIVE

Driver

Monitor

CTRL I/f

CTRL uVC
PASSIVE

Driver

Monitor

SPI I/f

SPI uVC
ACTIVE

Driver

Monitor

SPI I/F

uVC: Use-Model

 Scoreboards are automatically configured according
to the transactions based on IP configuration through
the register interfaces;

 Availability to check design behavior automatically
reduces testcase development effort;

 Checkers always are enabled for any testcase, and
even if application software is run;

© Accellera Systems Initiative 13

uVC: Use-Model

© Accellera Systems Initiative 14

DUT

Mem_Ctrl
Memory

Bank

System Verilog TB

MEMDATA I/f MEM

Transaction

Scoreboard

APB I/f

AHB I/f

MEMDATA

Monitor

APB Monitor

AHB Monitor

MEMCTL

Monitor

Config

Automatic MEMCTL
Monitor based on
detected MEMCTL

configuration; MEMCTL
monitor controls MEM
Scoreboard operation;

Data I/FAHB

A
P

B

Checkers and Assertions

Checkers are implemented at various design
abstraction levels to ensure design correctness

© Accellera Systems Initiative 15

Data Checkers

Protocol Checkers

Inbuilt Self Checking Mechanisms

Checkers and Assertions

© Accellera Systems Initiative 16

Always running assertions based checkers are implemented
to ensure the clock and power management block
functionality correctness at system level.

System Verilog TB

DUT
Digital Top

Analog

Blocks

(Reg, Osc,

BG, …)

CPU

Peripherals

…Clock system

Power Management

Assertions

© Accellera Systems Initiative 17

task ams_regulator_chk();

forever begin

@(posedge vif.tbclk iff (vif.resetall === 0 &&

cfg.checkers_en == 1 && (vif.vdd_lvl < `VDD_LVL_MIN)))

nRST_AMS_CHK: assert(vif.pmucore_poresetn_i == 1'b0)

else begin

`uvm_error(get_type_name(),

$psprintf("CORE_RESET: %1b,not expected (low Reg

Voltage LvL) @ %0t!\n", vif.pmucore_porstn, $time))

end

end

endtask

Checkers and Assertions

// If RESET_PIN is risen, in next cycle RESET_SD and RESET_SYS has to be asserted

property reset_pin_asserted;

disable iff (checkers_en == 0 || sig_reset == 0)

$rose(sig_reset_pin) |-> ##1 (~sig_reset_sdn & ~sig_rst_sysn);

endproperty

assert property (reset_pin_asserted)

else begin

`uvm_error("RSTCTRL_IF", $sformatf("\n Reset pin should

assert RESET_SD and RESET_SYS in next cycle @ %0t!\n", $time))

end

© Accellera Systems Initiative 18

 Standard UVM Checkers for protocol checking

 UVM Scoreboard implementation for data paths

 Software checkers for register / some direct tests

Checkers and Assertions

Functional Coverage Tracking

© Accellera Systems Initiative 19

 Coverage groups in uVC Monitors – standard uVM
method;

 VITAGs – Verification Item Tags:

– Implemented in TB as SV Assertions;

– Manually triggered to indicate PASS/FAIL status:

• C code - library function call;

• Verilog testcase - dedicated task call;

– Used where automatic checkers cannot be used

– Track a directed scenario or any part of a directed
scenario;

Test End Mechanisms

The testcase end declaration:

 uVC sequence end;

 Software: calling a “test_end()” function;

 Verilog (direct testing): generating a “test end” event;

Pass / Fail criteria:
 No uVCs errors;

 No assertions errors;

 No software errors (error counter in memory);

 At least one success event;

© Accellera Systems Initiative 20

Going AMS

• Allows to use of the goodness of the digital verification
flow;

• Possibility to mix abstraction level of analog blocks
(models/transistor level) via configuration file;

© Accellera Systems Initiative 21

Verilog Netlist

(WREAL behavioral
models)

Block A

Block A1

Block A2

Block B

SPICE Netlist

Block A

Block A1

Block A2

Block B

Block B1

Simulated Netlist

Block A

Block A1

Block A2

Block B

Block B1

Config
file

Verilog WREAL
models

SPICE transistor
level

Results and Observations

The UVM based verification infrastructure helped us:

 To have a single verification environment for digital,
AMS and software validation;

 Helped us to overcome IP verification gaps;

 To maximize verification quality in a very minimal
schedule;

© Accellera Systems Initiative 22

The silicon validation is showing positive results

Questions ?

Thank you !

© Accellera Systems Initiative 23

