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Overview 
 Introduction

• Unified SoC flow  for directed and constrained random verification approach

 DUT Overview 
• DUT Overview – I am Mixed Signal

 SoC TB Architecture Overview
• SoC Testbench: An Overview  
• SoC Testbench: Stimuli
• SoC Testbench: Direct Testing 
• SoC Testbench: TB/SW synchronization
• IPDV Reuse Examples
• uVC: Use-Model
• Checkers and Assertions
• Functional Coverage Tracking
• Test End Mechanisms

 Going AMS

 Results & Observations
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The microcontroller SoC verification strategy
refinement to the next level:

 Unified flow from RTL to AMS

 Reduction of development cycles via reuse of IP-DV
components

 Uncover each possible design surprise by using
always on checkers / scoreboards

 Adherence to Industry standard methodology: UVM

 Support for direct and random verification
approaches
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The Motivations



DUT – I am Mixed Signal

 Design is not just digital: Analog On Top (AOT) Low
Power Mixed Signal Design;

 The toplevel is an analog netlist instantiating Real
Number Models and the digital top.

 Netlist is automatically generated by analog tool
netlister – The tool extracts the design hierarchy
details until it finds a Verilog view of a cell.
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SoC Testbench: An Overview

The testbench framework contains the following 
components: 

 Verilog  segment: Plain Verilog part;

 System Verilog segment: UVM compliant components;

 Hardware/Software synchronization logic;

© Accellera Systems Initiative 5



SoC Testbench: An Overview
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SOC Testbench: Stimuli
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The testcase definition constitutes: 

 A System Verilog file that defines a SV Sequence;

 A Software file (C/ASM/memory image) which defines
the data which needs to be loaded into the SoC memory;

 Optional support files (linker command files,
configuration files, …);



SOC Testbench: Stimuli
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Universal Verification Component  (uVC) deployment  
for generating the traffic :

 SOC external Stimuli: The stimulus generation on
external I/O via the uVCs;

 SOC software Stimuli: uVC based constrained random
software data handling using mailbox mechanisms;

 Handling Stimulus on multiple interfaces in a controlled
way: multiple uVC integration using Virtual sequencer;



SoC Testbench: Direct Testing
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Allow “legacy” direct verification methodology in Verilog style
via instantiating a dummy sequence that just waits for the “test
end” event :

class `tc_name extends uvm_test;

soc_tb ve;

`uvm_component_utils(`tc_name)

function new(…);

super.new(name,parent);

endfunction

…

virtual function void build_phase(uvm_phase phase);

super.build_phase(phase); 

uvm_config_db#(uvm_object_wrapper)::set(this,

"ve.virtual_sequencer.run_phase",

"default_sequence", sw_seq::type_id::get());

endclass : `tc_name

initial begin

// Verilog direct test

// paired with a C file

…

// testend event via SW 

// or via task call

end



SoC Testbench: TB/SW Synchronization
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int main ()

{

while (1) {

// synchronize with TB

TB_synch = 1;

// Use random data got from TB

switch (DATA_MAILBOX1) {

case 1: fct1 (DATA_MAILBOX2); break;

case 2: fct2 ();              break; 

case 3: fct3 (DATA_MAILBOX3); break;

case 4: test_end();           break;

default: ERROR++;     

}

}

void fct1 (int);

void fct2 (void);

void fct3 (uint32_t);

C-test issues a write to

dedicated memory location
with a predefined key Testbench

uVC sequence

Testbench detects a

write to TB_synch’s
address and generates
an event according to

its value;

uVC reacts to the testbench’s

event by storing random
constrained data into the device’s
memory (DATA_MAILBOX*) thus

achieving randomization of the C-
code execution.



IP-DV uVC Reuse

Reused components:

 Any passive component from IP DV – monitors:

- Functional coverage definitions;

- Protocol checkers;

 Any active component - driver that drives external  I/Os to the DUT:

- In SoC environment drivers are connected to the DUT boundary        
(Example:Serial interfaces uVC);

Redundant components:

 Any active component that drives signals internal to the SOC:

- Interconnect signals (APB, AHB) – use C code to generate stimuli;

- Signals connected to other IPs (Clock, Power, Reset, etc.) – use specific 
scenarios to trigger these signals by various SOC internal blocks;
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uVC: Use-Model

 Scoreboards are automatically configured according
to the transactions based on IP configuration through
the register interfaces;

 Availability to check design behavior automatically
reduces testcase development effort;

 Checkers always are enabled for any testcase, and
even if application software is run;
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uVC: Use-Model
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Checkers and Assertions

Checkers are implemented at various design 
abstraction levels to ensure design correctness 
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Data Checkers

Protocol Checkers

Inbuilt Self Checking Mechanisms



Checkers and Assertions
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Always running assertions based checkers are implemented
to ensure the clock and power management block
functionality correctness at system level.
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task ams_regulator_chk();

forever begin

@(posedge vif.tbclk iff (vif.resetall === 0 &&

cfg.checkers_en == 1 && (vif.vdd_lvl < `VDD_LVL_MIN)))

nRST_AMS_CHK: assert(vif.pmucore_poresetn_i == 1'b0)

else begin

`uvm_error(get_type_name(), 

$psprintf("CORE_RESET: %1b,not expected (low Reg

Voltage LvL) @ %0t!\n", vif.pmucore_porstn, $time))

end

end

endtask

Checkers and Assertions

// If RESET_PIN is risen, in next cycle RESET_SD and RESET_SYS has to be asserted

property reset_pin_asserted;

disable iff (checkers_en == 0 || sig_reset == 0)

$rose(sig_reset_pin) |-> ##1 (~sig_reset_sdn & ~sig_rst_sysn);  

endproperty

assert property (reset_pin_asserted)

else begin

`uvm_error("RSTCTRL_IF", $sformatf("\n Reset pin should 

assert RESET_SD and RESET_SYS in next cycle @ %0t!\n", $time))

end
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 Standard UVM Checkers for protocol checking

 UVM Scoreboard implementation for data paths

 Software checkers for register / some direct tests

Checkers and Assertions



Functional Coverage Tracking
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 Coverage groups in uVC Monitors – standard uVM
method;

 VITAGs – Verification Item Tags:

– Implemented in TB as SV Assertions;

– Manually triggered to indicate PASS/FAIL status:

• C code - library function call;

• Verilog testcase - dedicated task call;

– Used where automatic checkers cannot be used

– Track a directed scenario or any part of a directed 
scenario;



Test End Mechanisms

The testcase end declaration:

 uVC sequence end; 

 Software: calling a “test_end()” function;

 Verilog (direct testing): generating a “test end” event;

Pass / Fail criteria:
 No uVCs errors;

 No assertions errors; 

 No software errors (error counter in memory);

 At least one success event;
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Going AMS 

• Allows to use of the goodness of the digital verification
flow;

• Possibility to mix abstraction level of analog blocks
(models/transistor level) via configuration file;
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Results and Observations

The UVM based verification infrastructure helped  us:

 To have a single verification environment for digital,
AMS and software validation;

 Helped us to overcome IP verification gaps;

 To maximize verification quality in a very minimal
schedule;
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The silicon validation is showing positive results



Questions ?

Thank you !
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