

1

Accelerated SOC verification Using UVM

Methodology for a Mix-signal Low Power Design

Giuseppe Scata

Texas Instruments - MCU

Freising - Germany

g-scata@ti.com

Ashwini Padoor
Texas Instruments - MCU

Bangalore – India

ashwini.padoor@ti.com

Vladimir Milosevic

ELSYS Eastern Europe

Belgrade - Serbia

v-milosevic@ti.com

Abstract—This paper proposes a solution to verify a microcontroller based System on Chip (SoC) using a verification

environment which has been architected following System Verilog Universal Verification Methodology (UVM) guidelines

and still allows the coding of direct tests in Verilog style. It highlights the possibilities of randomizing the software

parameters and its execution while deploying a unified simulation for along RTL, gate level and Analog Mixed Signal

(AMS) simulations.

Keywords— Verification, System Verilog, UVM, microcontroller, Random Constrained Verification, Direct Testing,

AMS verification, hardware-software co-verification, software randomization.

I. INTRODUCTION

Digital verification engineering emerged in the last 20 years as an indispensable part of chip design. As

complexities grow and productivity pressures rise, the expansion of verification engineering into the mix-signal

low power design space in the short term is inevitable. Realizing silicon in the face of these challenges requires

new approaches and a very flexible workforce capable of adapting and changing on a regular basis. The

verification environment for any new design had to follow these needs: fast setup, easy reusability options and

strong verification possibilities.

This paper outlines a deterministic microcontroller based SoC design verification approach to manage a

mixed-signal low power design complexity using assertions and Metric driven verification methodologies in a

UVM (Universal Verification Methodology) based environment. One of the advantages is leveraging the IP

verification reuse and keeping open the possibility for plain Verilog directed testcases to unify the flow between

the need for a modern verification environment and in parallel to allow the designers to create basic sanity test

cases. The constrained random capabilities of the UVM were extended even for the software part of the SoC in

order to allow randomization of data and code execution.

The deployed simulation environment was used not only for the basic SoC level interconnect checks, but also

for the IP verification as well as for the application software validation. UVM randomization capabilities were

applied for IP functionality checks at SOC level and hence it was even possible to eliminate the IP verification

gaps. It was also used for SoC level use-case randomization, which allowed more SoC level scenario generation

including the corner cases, and has added to the quality of verification.

An important aspect of this methodology is to focus not only on the digital part of the SoC but also into the

entire mixed signal design definition. The analog top centric design incorporates the analog netlist which contains

behavioral models and for each analog block these models could be replaced through a configuration file to a full

transistor level SPICE description.

II. VERIFICATION ENVIRONMENT ARCHITECTURE

The shrinking development cycles defines the need of a comprehensive, efficient and flexible test bench

platform and to achieve this intercepting the evolving verification methodologies becomes primary importance.

 We focused to achieve below goals during the verification process of the low-power mixed-signal

microcontroller design.

• Use pre-verified Bus Functional models instead of integrating the native Bus Functional Models

(BFMs) in the testbench;

2

• unified simulation flow for RTL, gatelevel and AMS representation of the Device Under Verification

(DUV);

• Support for constrained random testcases as well as plain Verilog based directed testcases;

• the SoC verification close to an IP verification approach;

• Most importantly the need to follow an Industry standard verification methodology;

The testbench framework defined in such a way that all above goals could be achieved using the following

components:

• Verilog segment: plain Verilog part;

• System Verilog segment: UVM compliant components;

• Hardware software synchronization logic;

Any test-case can be either a UVM sequence or a pure Verilog directed test, both combined with a software

part. The testcase pass-fail criterion is determined by evaluating System Verilog errors (from monitors and

assertions), Verilog errors and C-code software errors along with the testbench timer status.

Figure 1

The testbench architecture used for the microcontroller based SOC has been outlined in Figure 1.

The verification environment is architected in such a way that the user can utilize the flexibility of using real

number (WREAL) models, transistor level spice representation or a mix of the two. Each test-case could be

configured to use any of the previous mentioned abstraction levels.

This provides the flexibility to use real number behavioral models for the faster debug and to reuse the

environment including the test cases for the AMS simulation just by replacing all or some of the models with

actual SPICE netlist (See Figure 2).

SoC Analog toplevel

V regulators
(WREAL/Spice)

Pads
(WREAL/Spice)

…
(WREAL/Spice)

Oscillator
(WREAL/Spice)

Digital Top

ARM

Core

ROM/RAM

MEMCTL NVM

Timer

…

A
H

B
/A

P
B

B
ri

d
g
e

SPI

G
P

IO
/P

in
s

Power/

Reset/Clk

Control

DEBUG

JTAG

TB

Verilog Segment

Backdoor memory

access

Reset Control

Ext Clock generation

Power supply
(WREAL/electrical)

Sys Verilog

Segment

In
te

rf
ac

es
 Active uVCs

Passive uVCs

(Monitors)

UVCs Monitors connections

UVCs Drivers Connections

3

Figure 2

In order to consider the power domain information the digital part of the DUV is paired with a CPF (common

power format) file that is created for each of the step of the design (RTL, gate-level pre-layout and gate level

post-layout). It is not in the scope of this document to go deeper in the detail of this process.

A. Verilog Segment

The legacy part of the testbench is implemented in plain Verilog and this segment comprises four main blocks

which are associated with analog power signal generation, memory backdoor access function definitions, reset

generation and clock generation.

The analog power signals are generated according to the test-case configuration and are either real numbers or

Verilog-AMS electrical quantities. This approach enables the possibility to simulate power ramps, power drops,

glitches, etc.

The generation of these signals could be easily migrated into a UVM approach.

 The memory backdoor access functions are used for:

 Memory initialization with the predefined data/instructions;

 UVM component and software synchronization and data exchange;

 User memory backdoor accesses;

The Verilog segment of the test bench also contains a clock generation and reset control blocks. The DUT

external clock and uVC clock generation is handled by this block. Reset generated by the testbench is used as the

main power-on reset to the DUT and also for UVM components.

B. System Verilog Segment

The System Verilog segment is associated with interface definitions, active and passive uVC components and

assertions. The subsequent section describes the basic tenets of UVM testbench components.

1. UVM sequences and direct testing

The uVC sequences are used for defining the stimulus for various peripherals which includes IO ports, serial

communication peripherals, debug subsystem etc. All the sequences are implemented in a way to enable

transparent reuse between RTL, GLS (Gate Level Simulation) and AMS simulations.

The synchronization between various sequences is achieved by a virtual sequencer.

An important feature is to give the possibility to the non UVM trained engineers to code direct tests in plain

Verilog.

To achieve this a default dummy uVC Sequence has been defined, it controls the simulation time and ends

when the software execution is completed. The sequence raises/drops uvm_test_done objection to control

start/end of the simulation according to UVM guidelines. It also implements a timeout mechanism.

Verilog Netlist

(WREAL behave models)

Block A

Block A1

Block A2

Block B

SPICE Netlist

Block A

Block A1

Block A2

Block B

Block B1

Simulated Netlist

Block A

Block A1

Block A2

Block B

Block B1

configuration

file

Verilog WREAL
models

SPICE transistor level

4

2. Checkers

Checkers are implemented at various design abstraction levels to ensure the data flow correctness, protocol

compliance for various bus interfaces (e.g. AHB, APB, JTAG), reset assertion/de-assertion correctness and to

ensure the precision of Analog & digital control timings. The checker implementation highlights are described

below.

a. standard bus protocol checkers

The uVC based checkers are implemented to ensure the protocol compliance for various standard interfaces

like AHB, APB, Serial communication interfaces, debug interfaces etc.

These checkers are always enabled and the protocol violations are flagged out by providing the appropriate

errors details. All the bus protocol checks are enabled for all the interfaces irrespective of the number of instances

connected.

DIRECTED TEST WITH DUMMY UVM

// DIRECTED TEST

initial begin

 // DIRECTED TEST BODY

end

// DUMMY UVC INSTANTIATION

class `tc_name extends uvm_test;

 soc_tb ve;

 `uvm_component_utils(`tc_name)

 function new(input string name,

 input uvm_component parent=null);

 super.new(name,parent);

 endfunction

 virtual function void build_phase(uvm_phase phase);

 super.build_phase(phase);

 uvm_config_db#(uvm_object_wrapper)::set(this, "ve.virtual_sequencer.run_phase",

 "default_sequence", sw_seq::type_id::get());

 set_type_override("vr_ahb_agent_monitor", "ahb_monitor");

 super.build_phase(phase);

 ve = soc_tb::type_id::create("ve", this);

 endfunction : build_phase

 function void end_of_elaboration_phase(uvm_phase phase);

 ve.top_env.set_report_verbosity_level (UVM_LOW);

 endfunction : end_of_elaboration_phase

 endclass : `tc_name

5

Figure 3

b. Assertions between digital & analog blocks

Always running assertions based checkers are implemented to ensure the clock and power management block

functionality correctness at system level.

Figure 4

In the example below the checker ensures that when the LDO voltage level is dropped beyond the minimal

threshold value, the assertion ensures that CORE RESET is getting asserted.

Sequences Virtual seq

CPU Interface

AHB uVC [passive]

Debug

Peripherals

SPI I2C GPIO UART

JTAG

SWD

Peripheral Bridge

APB uVC [passive]

Bus protocol

errors

Test Bench

DUV - Analog Top

Analog

Blocks

(Regulators,

Oscillators)

Clock system block

Power Management
block

 CPU

Memory

PBridge

Peripherals

Debugss

Assertions

6

The digital domain checks are targeted for ensuring the clock frequency correctness, system LPM Mode

definition versus clock source usage, isolation assertion/de-assertion timings, reset assertion/de-assertion, analog

and digital handshake timings, glitch checks on the important control signals including the reset etc.

All the assertions related to the control signals have implemented as two way checks.

 The control signal is getting asserted/de-asserted when it is expected;

 No spurious assertion/de-assertion is observed;

Also the assertions are associated inbuilt switches which can be used to turn ON/OFF assertion checks. This

was helpful to bring up the initial gate level simulations (GLS) runs quickly and the assertions were enabled one-

by-one which helped to speed-up the GLS regression handling

c. Data checkers

APB and AHB monitor are normally used for defining the protocol checks and coverage bins, but can also be

used for:

 IP behavior prediction based on the register configuration;

 Implementing the scoreboard based checks for the SOC;

In Figure 5 an example of scoreboard implementation for a memory controller is shown.

task ams_regulator_chk();

 forever begin

 @(posedge vif.tbclk iff (vif.resetall === 0 &&

 cfg.checkers_en == 1 &&

 (vif.vdd_lvl < `VDD_LVL_MIN)))

 nRST_AMS_CHK: assert (vif.pmucore_poresetn_i == 1'b0) else

 begin

 `uvm_error(get_type_name(),

 $psprintf("CORE_RESET: %1b,not expected (low Regulator Voltage LvL) @ %0t!\n",

 vif.pmucore_poresetn_i, $time))

 end

 end

endtask

/*===

 The following checker ensures

 During Emulated MOD1, CONFIGISO gets asserted

 During Emulated MOD1, ISO doesn’t get asserted

 ==*/

task iso_dbg_state();

 forever begin

 @(posedge vif.fclk iff (cfg.checkers_en == 1))

 if (vif.cdbgpwrupack==1 && vif.sleeping==1 && pwr_dsm==4'hF)

 begin

 // Chk during MOD1 iso_.3P3V is not asserted

 ISO_AO_O_3P3V: assert(vif.iso_ao_o_3P3V == 0)

 `uvm_info(get_type_name(),$psprintf("%s", $psprintf("ISO CHECKING!")),UVM_FULL)

 else

 `uvm_error(get_type_name(),$psprintf("\n CDBGPWR: %1b,SLEEPING: %1b,

 PWR_DSM: %1b, ISO_AO3P3V signal asserted, and it should not! @ %0t!\n",

 vif.cdbgpwrupack, vif.sleeping, pwr_dsm, $time))

 // Chk during MOD1 CFG_ISO signal is asserted

 CFG_ISO: assert(vif.config_iso==1 || vif.sysresetn==1)

 `uvm_info(get_type_name(),

 $psprintf("%s", $psprintf("\n CFG CHK! ")),UVM_FULL)

 else

 `uvm_error(get_type_name(),

 $psprintf("\n CONFIG_ISO: %1b, SLEEP: %1b, PWR_DSM: %1b, CFG_ISO isn't

 asserted! @ %0t!\n", vif.config_iso, vif.sleeping, pwr_dsm, $time))

 end

 end

 endtask

7

Figure 5

The scoreboard implementation depends on the register configuration by the CPU through the APB Interface,

the data transfers initiated by the CPU through the AHB Interface as well as the data path between the memory

controller and the memory banks. This information is captured into the scoreboard consistently by following

components of the testbench:

 • The “MEMCONTROL Monitor” snoops the APB transactions on the “MEMCTL” register address

space and automatically gets configured based on the CPU initiated configuration.

• The “AHB Monitor” monitors the data transfers between CPU and memory controller and the

“MEMDATA Monitor” monitors the data transfers between Memory controller and memory bank.

• Using the MEMCONTROL Monitor and above two bus snoopers the scoreboard is filled. The “MEM

Transaction scoreboard” ensures the correctness of data transfers between CPU and memory banks.

This approach allowed fully automatic uVC/Monitor configuration and the test case development focus was

only on the stimulus related details not on the checking part.

d. Built-in Self checking mechanisms

The software and direct sequences are implemented in such a way that a subset of checks can be proven via

dedicated directed testcases. This set mainly includes Status register set/clear functionality, reset influence after

various power modes, Isolation defaults for various registers, automatic hardware influences on various registers

and so on.

C. Hardware software synchronization

In a microcontroller based product the software is the main driver of the internal busses so we can consider it

as stimuli generator. Hence we can consider it as part of the testbench/testcase and we need a mechanism to

synchronize it with the SystemVerilog testbench and we need the possibility to randomize it.

In order to synchronize the C-code with the testbench functions and UVM sequences, events are triggered in

testbench by monitoring write accesses to the predetermined memory addresses locations. Thus the software part

of the code can fire an event by writing predefined patterns into these memory locations. Similarly some memory

locations can be used to enable data exchange between the testbench and the software and vice-versa.

The possibility to synchronize and to exchange information between the testbench/testcase and the software

allows achieving the software randomization (for both execution and input data), the flow is depicted in the

Figure 6.

DUT

Data I/f MEMCTL Memory Bank Data I/f

C
o
n

fi
g

I/
f

System Verilog TB

MEMDATA I/f

MEM Transaction

Scoreboard

APB I/f

AHB I/f

MEMDATA

Monitor

APB Monitor

AHB Monitor

MEMCTL Monitor

Config

Automatic MEMCTL
Monitor based on detected
MEMCTL configuration;
MEMCTL monitor controls
MEM Scoreboard
operation;

8

Figure 6

III. FUNCTIONAL COVERAGE MODELS

The functional coverage is collected into two different ways: via coverage groups in the uVC monitors and via

assertions.

In order to make sure the IP functionality is covered in detail, coverage groups are defined within the uVC

monitors.

Having the possibility to code non UVM compliant direct tests necessitated an automatic tracking of the

coverage for these scenarios. This was achieved by a native defined method and is known as “Verification Item

Tags” (VITag). The verification engineer can define a VITag for each scenario defined in the verification plan

and should be used for any items that cannot be covered automatically. VITags are implemented in the Testbench

as System Verilog assertions and are mapped to the verification plan. The VITags are triggered manually either

from the C code (by using a library function) or from the testbench (by using a testbench auxiliary task) and can

yield to a PASS/FAIL status.

VITag PASS trigger from software

setVITAG(VITAG_BASIC_SW,RES_PASS);

VITag FAIL trigger from the testbench

tb.setVitag(`VITAG_BASIC_TB,`RES_FAIL);

IV. RESULTS AND CONCLUSION

This paper presented practical experience of an uVM based verification approach followed for a mix-signal

Low Power design. This flow has been implemented successfully and the verification was completed on-time.

The UVM based verification infrastructure also helped to have a single verification environment for digital, AMS

and software validation. This for sure helped us to maximize verification quality versus effort and especially to

overcome IP verification gaps. The silicon is out from the fab and the silicon validation is showing positive

results.

V:ACKNOWLEDGMENT

The authors would like to thank the entire TI Security design and management team without whose support

this flow would not have been a success.

REFERENCES

[1] Accellera, “UVM User Guide”, www.uvmworld.org

int main ()

{

 while (1) {

 // synchronize with TB

 TB_synch = 1;

 // Use random data got from TB

 switch (DATA_MAILBOX1) {

 case 1: fct1 (DATA_MAILBOX2); break;

 case 2: fct2 (); break;

 case 3: fct3 (DATA_MAILBOX3); break;

 case 4: test_end(); break;

 default: ERROR++;

 }

}

void fct1 (int);

void fct2 (void);

void fct3 (uint32_t);

C-test issues a write to

dedicated memory

location with a

predefined key
Testbench

uVC sequence

Testbench detects a write to

TB_sych’s address and

generates an event according to
its value;

uVC reacts to the

testbench’s event by storing

random constrained data into

the device’s memory

(DATA_MAILBOX*) thus

achieving randomization of

the C-code execution.

http://www.uvmworld.org/

