
Accelerated, High Quality SoC Memory Map

Verification using Formal Techniques

Cletan Sequeira, Rajesh Kedia
Texas Instruments India Pvt. Ltd.

Bangalore, India

c-sequeira@ti.com, r-kedia@ti.com

Lokesh Babu Pundreeka, Bijitendra Mittra
Cadence Design Systems, Inc.

Bangalore, India

lokeshp@cadence.com, bijitm@cadence.com

Abstract— In today’s world, SoCs are typically designed

by integrating several existing in-house Intellectual Properties

(IPs) and/or third party IPs provided by external vendors.

Having many of these IPs and memory blocks integrated

together forms a complex SoC memory map with multiple

masters trying to access multiple slaves (IP or memory)

simultaneously. The functioning of each of these slaves is

tightly dependent on the correctness of the memory map.

Hence it becomes critical to implement a correct SoC level

memory map. With the sheer number of slaves, complex access

policies and checks on valid/error responses for different

types of address range implementations, verification of a SoC

level memory map becomes an uphill task. In this paper, we

present a novel approach towards verifying such a SoC level

memory map using Formal techniques. We talk briefly about

the previous work that has been done using traditional

verification techniques and their shortcomings in verifying

SoC level memory maps. We give a short introduction to the

SoC design followed by a discussion on our strategy to use

Assertion Based Verification IPs along with custom assertions

to achieve comprehensive verification results. We also discuss

issues and challenges faced in order to scale Formal

verification to SoC Level. Finally, we share the results from

the successful application of our methodology to verify the

entire memory map on a complex SoC design.

Keywords—Formal verification; Memory Map; SoC; ABVIP

I. INTRODUCTION
Now-a-days, System On Chips (SoCs) are being

increasingly deployed in large number of applications and
systems to implement automation rendering ease and
convenience in many human activities; prime examples being
smart mobile phones, automotives, medical electronics etc.
This makes design implementation a fairly difficult task. With
larger product space and product revisions, comes the
requirement for larger feature integration on smaller die-sizes,
smaller design turnaround times and lower power consumption.
To address these needs, a typical SoC design contains several
existing/legacy in-house Intellectual Properties (IPs) and/or
third party IPs licensed from external vendors. Each IP in a
SoC consists of multiple registers referred to as memory
mapped registers (MMRs) that are used to
configure/control/observe functionalities associated with that
block. Integration of multiple embedded memory blocks is also

increasing with the increasing complexity of the SoCs. The
address range to access these memory mapped components for
each IP and embedded memories is mapped into the SoC level
addresses creating a SoC level memory map. In a typical
functional scenario, having multiple masters trying to access
multiple slaves (IP or memory) simultaneously, it becomes
critical to implement a correct SoC level memory map so that
the access requests intended for a certain slave IP always
reaches the intended one and does not affect any other. The
overall task of SoC memory map verification becomes
complex due to the presence of large number of slaves, bus
protocols having complex access policies and checks on
valid/error responses for different types of address range
implementations. Current approaches to verify such memory
maps using directed CPU based assembly/C test-cases are time
consuming and not sophisticated enough to catch critical bugs
like address aliasing, protocol violation, etc. Formal
Verification (FV) has always been efficient to address these
types of verification problems and have been successfully
deployed at sub-blocks like IPs, decoders, bridges, etc. thus
gaining increased confidence over just C or assembly based
tests. However, once these sub-blocks are integrated at the top
level, it introduces a different level of complexity caused by
unimplemented/unused/mirrored address spaces; interconnect
logic, multiple masters and slaves and their interactions. Hence
there was a strong motivation to deploy FV at the SoC level
(with all components integrated) and exhaustively verify the
memory map in its entirety. Our proposal involves using
Assertion Based VIPs (ABVIPs) along with memory map
specific assertions to address this verification problem using
FV. The beauty of this method is that most of the memory map
verification can be done using assertions without the need for
complex/long SoC tests. This work significantly improves the
confidence on the memory map verification and automation
developed around it makes it easily portable and configurable
for changes in the next devices.

II. PRIOR WORK

A. C or Assembly language based functional tests

Traditionally, SoC memory map have been verified using
system level tests written in C or assembly language which
exercise read and write to different address locations through
on-chip masters (CPU/DMA). While this approach uses a very
realistic and close to actual use case scenario, covering the
complete memory map using this method is impractical and

requires a huge effort on test development and runtime.
Moreover, we may not be able to control bus masters to
exercise all aspects of protocol. For example, we may not be
able to precisely exercise a back to back read-write-read kind
of a sequence on the bus through CPU since it is dependent on
CPU pipeline and other internal states. Thus, we may miss
many of the protocol related violations with this approach.
Also, being able to run testcases in this environment will
require the complete SoC hookup and the verification
environment to be ready which will take its own time.

B. Formal Verification (FV) for individual blocks +

SoC tests

To tackle the limitations posed by C or assembly language
based SoC tests, there has been some work on deploying
formal verification towards the individual components that
build the memory map. Components such as bridges and
decoders are verified at unit level using FV and once fully
verified, they are used in SoC level tests. This approach
provides much improved quality and confidence on the
memory map but still lacks in assuring an exhaustive coverage
on hookup of these individual blocks in the system. While each
of the individual memory map component like bridges,
decoders, memory mapped IPs are verified in entirety, there
could be bugs introduced during the hookup of these
components and the traditional SoC tests may not be sufficient
to cover all such scenarios. As an example, consider one of
these scenarios: “Writing to a reserved address space shouldn’t
cause any impact to any functional address”. Verifying it using
functional method requires writing a complex testcase having a
flow similar to the below:

a. Initialize the complete range of implemented address
space with some known values.

b. Write random values to all the reserved addresses.

c. Read back the implemented addresses and check that
they retain their values from step-a.

Now-a-days, address space for microcontrollers spans
across 32-bit or 64-bit range making implementation of such a
testcase practically impossible. Hence there have been
approaches where engineers don’t cover the complete address
space. Rather they use various patterns like walking-1 and
walking-0 to exercise all address bits, one at a time, providing a
fair compromise between practicality and quality. But still,
exhaustiveness is lacking in this approach as well.

C. Using Emulation platform as accelerator

Emulation platforms like Field Programmable Gate Arrays
(FPGAs) have been used to target scenarios which are runtime
intensive on simulation. Complete SoC memory map
verification for today’s class of designs fall under such
category. Hardware platforms have been found to be efficient
for exercising such scenarios in a fairly exhaustive manner, but
they come with their own limitations. Setting up the hardware
platform and getting it to work happens late in the design cycle
as compared to the simulation environment. Hence, if there is
any bug caught on emulation platform, depending on the
current state of design development, the cost of fixing the bug

may be very high. Secondly, there may be some bugs which
are sequence dependent and it may not be possible to exercise
all possible combinations of sequences on a hardware platform
too.

Given the above cited limitations with SoC memory map
verification, there was a strong motivation to look for
alternative techniques which could lead us to a better quality of
verification within the given constraints of run-time, schedule
and effort. Clearly, Formal Verification (FV) comes as a
possible thought given its exhaustive nature. The power of FV
lies within the fact that it explores the complete state space
within the given constraints and comes up with a final PASS or
FAIL status. This gives much more confidence than just
covering some selected patterns as in directed/random tests.
The initial concern on deploying FV here was the effort in
developing the drivers for various masters and slaves, but
availability of certain verification IPs from Cadence solved this
concern and served as another factor in being able to pursue
FV for memory map verification.

III. INTRODUCTION TO OUR SOC
Our SoC consists of a complex bus system comprising of 4

AHB masters (3 buses from Cortex-M4 (CM4) and one from
the DMA) and several slaves which interact with each other
through a common AHB fabric. Each of the master interfaces
consists of a 32-bit address bus spanning across an address
range of 4GB. The slaves available in our SoC follow either
AHB or APB or TI custom protocol. There are bridges and
decoders between the AHB master ports and some of the slaves
as shown in the Figure -1 below. The AHB fabric follows a
fixed priority arbitration scheme whenever more than 1 master
access the same slave.

Fig.1. SoC Level Memory Map Block Diagram

The memory map in our SoC consists of the following
types of address spaces:

1. Slaves which are accessible only by CPU and not by
DMA (Error response when accessed by DMA).

2. Slaves that are accessible only by some CPU buses
and gives an error response when accessed by others.

3. Slave that is mirrored at different addresses for 2
different masters.

4. Reserved address within the slaves which have no
effect on write access and read zeros.

5. Illegal spaces in between the slaves which give an
error response on access.

6. Slaves which allow access of certain size only and
give error response for invalid size transactions.

IV. PROPOSED METHODOLOGY
In this section, sub-sections A and B give a background on

the ABVIPs and the environment, while C and D focuses on
the actual memory map verification. Sub-section E discusses
various challenges that we faced during this work.

A. Introduction to ABVIPs from Cadence

Cadence provides off-the-shelf Assertion Based
Verification IPs (ABVIPs) for standard ARM protocols like
AHB (master and slave), APB, AXI that checks for the
compliance to the ARM AMBA protocols. These ABVIPs
served as foundation blocks in our verification methodology. A
correct hookup and control of these ABVIPs can be used to
verify protocol compliance of masters and slaves in a multi-
master/multi-slave environment. It provides constraints on the
input side of the device and assertions that check the outputs
are as expected. Here the same property can act as a checker or
BFM as explained in Figure 2 below.

Fig.2 Using ABVIPs in Formal Analysis

Example: We define a property:

prop1: ((!hresetn_i)  (hready));

which is an AHB protocol specification. The property
mentions that whenever hresetn_i is ‘0’, then hready is ‘1’.
Now, if we say “assert prop1”, then it becomes an assertion
and works as a checker to verify the hready behavior of slaves.
Whenever hresetn_i is ‘0’, it will check if hready is ‘1’ else it
will fail. On the other hand, if we say “assume prop1”, then it
becomes a constraint and controls the driving of hready from

the AHB slaves. Whenever hresetn_i goes ‘0’, it will force
hready to ‘1’.

Based on the above example, if we control the slave and
master properties precisely, we can make them act either as a
driver or a checker.

B. Hookup of ABVIPs to each of the master and slave

1. The slave and master ABVIPs are clubbed together to
form a complete set of AHB/APB properties.

2. Bind these combined AHB and APB ABVIPs to each
AHB and APB slave respectively. For slaves
following TI custom protocol, an ABVIP is coded in-
house and hooked up at each custom slave. To ease
the hookup, a perl script was written to automate it
based on an input file.

3. The properties contained in the VIPs are controlled
precisely (either as constraints or as assertions)
depending on whether it is bound to a slave or master
using IFV Tool Command Language (TCL) interface.
This is also automated through scripts.

4. With the above steps, we have the complete setup
ready to verify the protocol compliance of each of the
interconnect logic which form a part of the memory
map.

Fig.3. SoC Level Memory Map Verification Environment

We are reusing the golden RTL file directly in our
verification flow and no changes are done to the golden RTL
for hooking up the ABVIPs to each of the master or slave. The
ABVIPs are bound to various masters and slaves using vunit
construct available in Property Specification Language (PSL).
There is a separate PSL file written for the hookup. An
example of the vunit based ABVIP binding is given below for
an AHB slave:

vunit vunit_abvipfv_master1_ahb_top (top_entity) {

-- Define local parameters

localparam ahb_master1_ABUS_WIDTH = 32 ;

localparam ahb_master1_AHB_MAX_WAIT_STATES = 3 ;

…

-- Hookup the VIP to signals inside the top_entity

ahb_full_monitor ahb_full_monitor_MASTER1 (

 .hclk(HCLK),

 .hresetn(HRESETn),

 .haddr(u_CORTEXM4.HADDRD),

 .htrans(u_CORTEXM4.HTRANSD),

 .hwrite(u_CORTEXM4.HWRITED),

 .hsize(u_CORTEXM4.HSIZED),

 .hburst(u_CORTEXM4.HBURSTD),

…

);

-- Map local parameters to the VIP

defparam ahb_full_monitor_MASTER1.ABUS_WIDTH =
ahb_master1_ABUS_WIDTH;

defparam ahb_full_monitor_MASTER1.DBUS_WIDTH =
ahb_master1_DBUS_WIDTH;

…

} //end of vunit definition

C. Additional assertions to verify the memory map

On top of the default protocol checks available as part of
the ABVIPs, we wrote additional assertions to check for the
SoC specific memory map features. The assertions were
intended to cover the below features:

1. Write access to each slave from each master at
designated addresses: We constrain each master to
drive different pre-defined write data for each slave
address range. On slave side, we have assertions
which check that if there is a write access to the slave,
it must contain only the pre-defined write data for that
slave. This way we comprehensively confirm that the
particular slave can be written only within the selected
address range.

Property:

a. ({psel_i && penable_i && pwrite_i}|->
{pwdata_i == apb_slave_write_data})@(posedge
pclk_i); -- this property checks that whenever
there is a write access on an APB slave, then
pwdata_i should match the predefined write data
for that slave.

b. ({(hsel_i && hready_global_i && htrans_i[1]
&& hwrite_i);!hready_global_i[*]}
|=>{(hwdata_i == ahb_slave_write_data)})
@(posedge hclk_i); -- this property checks that

whenever there is a write access on an AHB slave,
then hwdata_i should match the predefined write
data for that slave.

2. Read access from each slave to each master at
designated addresses: We constrain each slave to
drive different pre-defined read data. On master side,
we have assertions which check that if there was a
read access to a particular slave, on hready going
high, the read data must contain the pre-defined read
value for that slave. This way we comprehensively
confirm that the particular slave can be read only
under the selected address range.

Property:

({AHM_Slave_Valid_Address_active && !hwrite &&
hready_i && htrans[1]; !hready_i[*];hready_i}|->
{hrdata_i== AHM_Master_Slave0_read_data}) @(posedge
hclk_i); -- this property checks that whenever there is a read
access from an AHB master to a particular slave, then
hrdata_i should match the predefined read data
corresponding to that slave.

3. Mirroring of certain slaves at multiple addresses
for different masters: Different masters can access
certain slaves at different addresses. e.g. Master M1
can access slave S1 in address range A-B while
master M2 can access the same slave S1 in address
range C-D. To verify this implementation, the read
and write assertions described above were duplicated
and different address ranges were specified for each
master. This was taken care by the IFV tool TCL
commands.

TCL commands:

constraint –add -pin
dbus_MASTER.slave1_Valid_Address_LOW
$slave1_mirror_start_add

constraint -add -pin
sbus_MASTER.slave1_Valid_Address_LOW
$slave1_actual_start_add

4. Reserved space checks: In case of a reserved space,
we need to ensure that writes are ignored and read
data is always 0. This gets checked by having an
assertion at master side which checks for the read data
to be “0x00000000” for such addresses. The writes
being ignored is checked by the slave assertions
which expect only pre-defined write data on the bus.

Property:

({AHM_Slave_Valid_Addres_active && !hwrite &&
hready_i &&htrans[1]; !hready_i[*];hready_i}|->
{hrdata_i== 0x00000000}) @ (posedge hclk_i); -- this
assertion is similar to the read assertion described above
with the read data being fixed to 0x00000000.

5. Error response checks for illegal space between
slaves: There is an assertion at master side which
checks for the response line to indicate error
whenever ready goes high if the access was to an
illegal address range.

Property:

{master_error_resp_active && hready_i && htrans[1]}
|=> {hresp_i && !hready_i;hresp_i &&
hready_i})@(posedge hclk_i); -- this assertion checks for
hresp_i signal to be ‘1’ in case of illegal address ranges.

6. Error response checks for invalid size access: The
assertion is similar to the earlier assertion for error
response but this becomes active only when the
master issues an access of invalid size.

Property:

{AHM_Slave_Valid_Adress_active && (hsize[1] | hsize[2])
&& hready_i && htrans[1]; !hready_i[*];hready_i} |->
{hresp_i})@(posedge hclk_i); -- this assertion checks for
hresp_i signal to be ‘1’ in case of accesses of certain sizes
for certain address ranges.

7. Priority of each master when they are accessing
the same slaves:

 Drive different write data from different masters.

 Constrain htrans as sequential or non-sequential
access for the master with highest priority.

 Constrain all the masters to drive same slave
address.

 At slave side, check that write data from highest
priority master is seen.

 Repeat the above steps for all other masters by
constraining the htrans of higher priority master
to idle.

This is implemented using a combination of the
PSL properties and IFV TCL commands. The
properties behave as checkers for which particular
master is accessing the slave, while the TCL
commands controls which masters are active and
which are not.

D. Putting it all together

All the above checks for memory map require manual
effort in coding the assertions, but once done, they are portable
across different devices. They are also easily extensible for
addition or removal of master or slaves in the system.

Having all the assertions coded and ABVIPs hooked up in
the system, we are ready to proceed with the verification of the
system level memory map. The design compile is done by
black-boxing the modules which don’t form a part of the
memory map. At the first step, only the ABVIPs, bridges, bus-
fabric and decoders are taken as real design. Incisive Formal
Verifier (IFV) from Cadence is used as the formal verification
tool. Firstly the protocol assertions are run and then the SoC
memory map related assertions are run in IFV.

With this approach, we check the following critical
functionalities of the SoC which are difficult to achieve using
conventional approaches based on C/assembly tests,

1. Adherence of interconnect logic (bus-fabric, decoders,
bridges) to AMBA (AHB and APB) and custom
protocols.

2. Connectivity of bus fabric with all the masters and
slaves.

3. Functionality of bus-fabric, bridges and decoders.

4. Accessibility and address mapping for each slave
from various masters.

5. Priority checks for each master when they are
accessing the same slave.

6. Mirroring of certain slaves at different addresses for
different masters.

7. Error response checks in-case of invalid addresses.

8. Address aliasing.

E. Challenges faced in scaling up FV to SoC Level

While FV makes many things easier by not demanding a
sophisticated verification environment and being able to
exhaustively verify the design, it poses certain challenges
during the initial bring-up, especially at SoC level due to the
larger size of the design compared to unit level. The team
involved in this work had prior experience on FV with IFV tool
and PSL assertions and hence we are not listing the common
issues related to syntax, etc. which might be seen by beginners.
Instead we focus on the issues specific to porting FV to SoC
level. Mentioned below are some of the challenges and issues
faced by us during the development of the flow.

1. Limit the state-space of the design: In an SoC, there
are lots of modules present but many of them may not
have any influence on the functioning of the memory
map. Hence a common practice in such cases is to
black-box those modules so that the tool just sees the
modules needed for intended functionality and thus
limit the overall design size that the tool needs to
analyze. Following similar practice, we selected only
the modules which comprise the memory map i.e.
bridges, decoders, bus-fabric, clock and reset
controllers and all others were black-boxed. But
eventually we ended up removing many modules from
black-box list during the bring-up. An example reason
being – “Even though we had constrained the clocks
and resets at their source points, they were passing
through some other modules for test/debug purposes or
for some functional overrides and were causing
assertions to fail.” These modules needed to be read-in
as actual RTL and not as black-box to get the flow
working. Overall, it was an iterative process to find out
the right set of modules for black-boxing.

2. Choosing the right engine from the IFV tool: IFV
tool internally has many engines (algorithms) for
solving the formal properties and each of them works
better for certain kind of logic or assertions but not for
all. Initially, we observed huge runtime and non-
convergence due to use of default engines and it was
an iterative process to find out the right set of engines

which works well with all assertions in the context of
our design. We tried using the tool option (auto_dist)
to automatically distribute each assertion for all
engines and get the result from the best engine for that
assertion; but it required multiple parallel jobs to be
invoked on compute farm and was limiting the overall
turn-around time due to limited slots per user. Our
approach to select the engine involved running the
non-converging assertions with the auto_dist option
and list down the winning engine. We did this for few
such properties and chose the engine that was chosen
most. Using this engine as default enabled us to see
more properties converging faster. Doing it iteratively,
we chose “sword”, “bow” and “hammer” [2] as the
default engines.

3. Design Constraints: Certain constraints need to be
defined for the memory map to be successfully seen by
all masters. These constraints could be to disable test
logic or reset or to prevent power down, etc. The
device was given an initial reset pulse through tcl
interface to reset the internal states and we added some
of the constraints initially based on our understanding
of the SoC and discussions with designer. But during
assertion cleanup, there was significant time spent in
refining the constraints as and when there were false
failures seen. We didn’t observe any time-out due to
the missing constraints, and mostly it led to assertion
failures which could be easily debugged using the
counter-example provided by the tool.

The benefits and power of FV kept us focused and
motivated to work on this flow despite the above challenges.
Finally, we were able to solve these issues and achieve the
verification comprehensiveness within acceptable time-frame.

V. AUTOMATION
As mentioned earlier, there has been automation done

wherever possible to maximize the reuse and enable a faster
turn-around time for future projects. The memory map
information is captured in a format as shown below in an excel
sheet.

MASTER SLAVE START

ADDRESS
END

ADDRESS
SIZE Sel_Path

M2#M0 S31 SA31 EA31 SZ31 H1.pin1

M2#M0 S41 SA41 EA41 SZ41 H2.pin2

M0#M1#
M3

S0 SA0 EA0 SZ0 H3.pin3

M3#M1 S1 SA1 EA1 SZ1 H4.pin4

M2 S1 SA1m EA1m SZ1m H4.pin4

Table-1: Example of the input file for automation

The columns in the above table can be described briefly as:

 MASTER – Mentions which masters can access a
particular slave.

 SLAVE – Mentions the particular slave being
accessed by the masters.

 START ADDRESS – Mentions the valid start address
for a particular slave.

 END ADDRESS – Mentions the end address for the
slave.

 SIZE – Mentions the size of the slave in terms of
address range (while this information is redundant
given the start and end address, some implementation
aspects require us to provide this information).

 Sel_Path – Mentions the hierarchical path for the
select pin of the slave, needed for the automated
binding of ABVIPs.

In the above table, the two highlighted rows show an
example of slave S1 mirrored across different address ranges
for different masters.

This Excel file containing the memory map information as
described above is parsed by scripts which generate the PSL
property files for binding the ABVIPs to the master and slaves.
It also generates the appropriate TCL files which cover various
memory map parameters that are used in the assertions.

VI. RESULTS
We caught three critical bugs in the bridge using this

approach, out of which one was a corner case bug related to
bridge functionality which would have been nearly impossible
to catch using traditional approaches. We recorded a huge
runtime advantage in comparison to the simulation-based flow.
While it took just 16 hours to run ~1300 protocol and memory
map assertions, it would have been in terms of days to
complete the C/assembly based simulations that too with a
limited coverage of features. Since FV does not need a
testbench setup, we could catch bugs early during the
development cycle and it worked as a first level exhaustive
sanity check before releasing the RTL for further verification
activities.

The summary of assertions for our SoC using this flow is
listed in Table-2 below. While all the memory map assertions
passed, there were some of the protocol assertions that showed
as failing. These were analyzed and waived-off since they were
some of the optional implementations. We also see in the
results that including the protocol assertions increase the run-
time significantly compared to without having them. This is
because of the complexity of the assertions and state space
explosion to prove them and it required large compute time for
proof. But because the total run-times being within acceptable
limits, we chose to get them passing rather than excluding
them.

Total

Assertions

Assertions

Passed

Assertions

Failed

FV Run-

time (hrs)

Protocol

checks +

memory
map checks

1300 1268 32 16

Only

memory

map checks
500 500 0 5

Table-2: Summary of various assertions for SoC

Flow Deployment Approximate bring-up

effort

For the first device ~6 weeks

For subsequent devices in

family

< 1 week

Table-3: Flow bring-up effort for various devices

A. Examples of bugs that were caught using this flow

1. “If the first access from the CPU is to an address space
that falls within the range for the custom bridge, then
the access may get lost and not reach the slaves.” – If
we deployed only the traditional verification
approaches, this bug wouldn’t have been caught
because of multiple reasons. Firstly, it is a corner case
to be thought of as a scenario in the planning.
Secondly, CPU has its own way of powering-up and
first few accesses from CPU are not controllable.
Hence, even if we have such a scenario in our plan, it
is not possible to be exercised.

Fig.4. First transaction getting missed due to missing pulse

2. “Inconsistency between access to odd versus even byte
through bridge – The values for the unused bits during
odd byte access and even byte access was not
consistent. In one case, it was taking all 0s and in other
case, it was duplicating the data.” – Again this is a bug
which doesn’t have any direct functional impact but
may have other implications like active power. This
would have been impossible to catch with traditional
approaches.

Fig.5. Inconsistency between even/odd byte accesses

3. “There was a protocol violation in the way decoder
was driving certain signals for the APB”. The default
protocol assertions from the ABVIPs were able to
catch this bug.

VII. ADVANTAGES
1. The ABVIPs binding with the appropriate module is

done using vunit construct which allows this flow to
work directly on the integrated RTL without any local
changes.

2. Memory map checks can be done much early during
the development phase which helps to find early bugs
in decoders, bridges, interconnects, etc.

3. It gives more confidence on the verification quality
because of the exhaustive nature of formal
verification.

4. No disk-space issues because debug in IFV doesn’t
require waveforms to be dumped unlike in
simulations.

5. Debug is quite simple and fast – the exact (or
sometimes close) cone of signals related to the
assertion get added to the waveform automatically.

VIII. LIMITATIONS
1. While the control space (address decoding, priority

control, etc.) is exhaustively covered, a major
limitation with the proposed methodology is that it
doesn’t cover the data space exhaustively because of
the use of pre-defined data patterns for each
master/slave.

2. This flow assumes that the individual IPs internal
register map is verified at unit level and doesn’t
exercise the internal register map. This is not done
due to capacity limitations of the tool and the effort in
finding more constraints when actual slave RTL is
integrated. Also, the focus on this work currently was
on finding the SoC integration issues.

3. The pre-requisite for this flow to work is the
availability of ABVIPs. For any IP being added in the
system which doesn’t have a corresponding ABVIP
available, this flow demands for an extra effort in the
development of the VIP.

4. We observed very large run-times for some of the
complex assertions, which were related to protocol
verification. Though most of them were able to
converge for our design, but it may not always be the
case for designs having more complex protocols or
with much higher number of master/slaves. In such
cases, we may not be able to see a PASS/FAIL status
on these assertions and these may remain in the
EXPLORED state.

IX. CONCLUSION AND FUTURE

WORK
The proposed methodology is fully automated and can be

reused for any ARM Cortex-M based device. It can be easily
extended to other ARM processors which use more complex

bus protocols like AXI. This approach can be a generic
methodology that can be deployed across any design/protocol,
given the availability of the corresponding ABVIPs. There is a
known limitation of the data space not being exercised
exhaustively and only control space being exhaustively
verified. Sophisticated techniques like Formal scoreboarding
can be used in conjunction with this approach to verify data
integrity and is the next step in our plan. We also plan to
replace each slave ABVIP with the corresponding RTL to gain
further confidence on the whole system. Since this flow is
based on Formal techniques, the inherent exhaustive nature of
FV ensures higher confidence on the verification quality. This
methodology successfully deploys formal verification to SoC
level (other than just pin-multiplexing or connectivity checks)
and can enable thoughts for deploying FV in multiple other
SoC scenarios as well.

X. REFERENCES
1. Property Specification Language Reference Manual

(http://www.eda.org/vfv/docs/PSL-v1.1.pdf)

2. Cadence Incisive Formal Verifier User Manual

3. Cadence Assertion Based Verification IP User Guide

4. AMBA™ 3 Specification Rev 1.0,
http://www.arm.com

http://www.eda.org/vfv/docs/PSL-v1.1.pdf
http://www.arm.com/

