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Abstract— In today’s world, SoCs are typically designed 

by integrating several existing in-house Intellectual Properties 

(IPs) and/or third party IPs provided by external vendors. 

Having many of these IPs and memory blocks integrated 

together forms a complex SoC memory map with multiple 

masters trying to access multiple slaves (IP or memory) 

simultaneously. The functioning of each of these slaves is 

tightly dependent on the correctness of the memory map. 

Hence it becomes critical to implement a correct SoC level 

memory map. With the sheer number of slaves, complex access 

policies and checks on valid/error responses for different 

types of address range implementations, verification of a SoC 

level memory map becomes an uphill task. In this paper, we 

present a novel approach towards verifying such a SoC level 

memory map using Formal techniques. We talk briefly about 

the previous work that has been done using traditional 

verification techniques and their shortcomings in verifying 

SoC level memory maps. We give a short introduction to the 

SoC design followed by a discussion on our strategy to use 

Assertion Based Verification IPs along with custom assertions 

to achieve comprehensive verification results. We also discuss 

issues and challenges faced in order to scale Formal 

verification to SoC Level. Finally, we share the results from 

the successful application of our methodology to verify the 

entire memory map on a complex SoC design. 
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I.  INTRODUCTION 
Now-a-days, System On Chips (SoCs) are being 

increasingly deployed in large number of applications and 
systems to implement automation rendering ease and 
convenience in many human activities; prime examples being 
smart mobile phones, automotives, medical electronics etc. 
This makes design implementation a fairly difficult task. With 
larger product space and product revisions, comes the 
requirement for larger feature integration on smaller die-sizes, 
smaller design turnaround times and lower power consumption. 
To address these needs, a typical SoC design contains several 
existing/legacy in-house Intellectual Properties (IPs) and/or 
third party IPs licensed from external vendors. Each IP in a 
SoC consists of multiple registers referred to as memory 
mapped registers (MMRs) that are used to 
configure/control/observe functionalities associated with that 
block. Integration of multiple embedded memory blocks is also 

increasing with the increasing complexity of the SoCs. The 
address range to access these memory mapped components for 
each IP and embedded memories is mapped into the SoC level 
addresses creating a SoC level memory map. In a typical 
functional scenario, having multiple masters trying to access 
multiple slaves (IP or memory) simultaneously, it becomes 
critical to implement a correct SoC level memory map so that 
the access requests intended for a certain slave IP always 
reaches the intended one and does not affect any other. The 
overall task of SoC memory map verification becomes 
complex due to the presence of large number of slaves, bus 
protocols having complex access policies and checks on 
valid/error responses for different types of address range 
implementations. Current approaches to verify such memory 
maps using directed CPU based assembly/C test-cases are time 
consuming and not sophisticated enough to catch critical bugs 
like address aliasing, protocol violation, etc. Formal 
Verification (FV) has always been efficient to address these 
types of verification problems and have been successfully 
deployed at sub-blocks like IPs, decoders, bridges, etc. thus 
gaining increased confidence over just C or assembly based 
tests. However, once these sub-blocks are integrated at the top 
level, it introduces a different level of complexity caused by 
unimplemented/unused/mirrored address spaces; interconnect 
logic, multiple masters and slaves and their interactions. Hence 
there was a strong motivation to deploy FV at the SoC level 
(with all components integrated) and exhaustively verify the 
memory map in its entirety. Our proposal involves using 
Assertion Based VIPs (ABVIPs) along with memory map 
specific assertions to address this verification problem using 
FV. The beauty of this method is that most of the memory map 
verification can be done using assertions without the need for 
complex/long SoC tests. This work significantly improves the 
confidence on the memory map verification and automation 
developed around it makes it easily portable and configurable 
for changes in the next devices. 

II. PRIOR WORK 

A. C or Assembly language based functional tests 

Traditionally, SoC memory map have been verified using 
system level tests written in C or assembly language which 
exercise read and write to different address locations through 
on-chip masters (CPU/DMA). While this approach uses a very 
realistic and close to actual use case scenario, covering the 
complete memory map using this method is impractical and 



requires a huge effort on test development and runtime. 
Moreover, we may not be able to control bus masters to 
exercise all aspects of protocol. For example, we may not be 
able to precisely exercise a back to back read-write-read kind 
of a sequence on the bus through CPU since it is dependent on 
CPU pipeline and other internal states. Thus, we may miss 
many of the protocol related violations with this approach. 
Also, being able to run testcases in this environment will 
require the complete SoC hookup and the verification 
environment to be ready which will take its own time. 

B. Formal Verification (FV) for individual blocks + 

SoC tests 

To tackle the limitations posed by C or assembly language 
based SoC tests, there has been some work on deploying 
formal verification towards the individual components that 
build the memory map. Components such as bridges and 
decoders are verified at unit level using FV and once fully 
verified, they are used in SoC level tests. This approach 
provides much improved quality and confidence on the 
memory map but still lacks in assuring an exhaustive coverage 
on hookup of these individual blocks in the system. While each 
of the individual memory map component like bridges, 
decoders, memory mapped IPs are verified in entirety, there 
could be bugs introduced during the hookup of these 
components and the traditional SoC tests may not be sufficient 
to cover all such scenarios. As an example, consider one of 
these scenarios: “Writing to a reserved address space shouldn’t 
cause any impact to any functional address”. Verifying it using 
functional method requires writing a complex testcase having a 
flow similar to the below: 

a. Initialize the complete range of implemented address 
space with some known values. 

b. Write random values to all the reserved addresses. 

c. Read back the implemented addresses and check that 
they retain their values from step-a. 

Now-a-days, address space for microcontrollers spans 
across 32-bit or 64-bit range making implementation of such a 
testcase practically impossible. Hence there have been 
approaches where engineers don’t cover the complete address 
space. Rather they use various patterns like walking-1 and 
walking-0 to exercise all address bits, one at a time, providing a 
fair compromise between practicality and quality. But still, 
exhaustiveness is lacking in this approach as well. 

C. Using Emulation platform as accelerator 

Emulation platforms like Field Programmable Gate Arrays 
(FPGAs) have been used to target scenarios which are runtime 
intensive on simulation. Complete SoC memory map 
verification for today’s class of designs fall under such 
category. Hardware platforms have been found to be efficient 
for exercising such scenarios in a fairly exhaustive manner, but 
they come with their own limitations. Setting up the hardware 
platform and getting it to work happens late in the design cycle 
as compared to the simulation environment. Hence, if there is 
any bug caught on emulation platform, depending on the 
current state of design development, the cost of fixing the bug 

may be very high. Secondly, there may be some bugs which 
are sequence dependent and it may not be possible to exercise 
all possible combinations of sequences on a hardware platform 
too. 

Given the above cited limitations with SoC memory map 
verification, there was a strong motivation to look for 
alternative techniques which could lead us to a better quality of 
verification within the given constraints of run-time, schedule 
and effort. Clearly, Formal Verification (FV) comes as a 
possible thought given its exhaustive nature. The power of FV 
lies within the fact that it explores the complete state space 
within the given constraints and comes up with a final PASS or 
FAIL status. This gives much more confidence than just 
covering some selected patterns as in directed/random tests. 
The initial concern on deploying FV here was the effort in 
developing the drivers for various masters and slaves, but 
availability of certain verification IPs from Cadence solved this 
concern and served as another factor in being able to pursue 
FV for memory map verification. 

III. INTRODUCTION TO OUR SOC 
Our SoC consists of a complex bus system comprising of 4 

AHB masters (3 buses from Cortex-M4 (CM4) and one from 
the DMA) and several slaves which interact with each other 
through a common AHB fabric. Each of the master interfaces 
consists of a 32-bit address bus spanning across an address 
range of 4GB. The slaves available in our SoC follow either 
AHB or APB or TI custom protocol. There are bridges and 
decoders between the AHB master ports and some of the slaves 
as shown in the Figure -1 below. The AHB fabric follows a 
fixed priority arbitration scheme whenever more than 1 master 
access the same slave.  

 

Fig.1. SoC Level Memory Map Block Diagram 

 

The memory map in our SoC consists of the following 
types of address spaces:  



1. Slaves which  are accessible only by CPU and not by 
DMA (Error response when accessed by DMA). 

2. Slaves that are accessible only by some CPU buses 
and gives an error response when accessed by others. 

3. Slave that is mirrored at different addresses for 2 
different masters. 

4. Reserved address within the slaves which have no 
effect on write access and read zeros. 

5. Illegal spaces in between the slaves which give an 
error response on access. 

6. Slaves which allow access of certain size only and 
give error response for invalid size transactions. 

IV. PROPOSED METHODOLOGY 
In this section, sub-sections A and B give a background on 

the ABVIPs and the environment, while C and D focuses on 
the actual memory map verification. Sub-section E discusses 
various challenges that we faced during this work. 

A. Introduction to ABVIPs from Cadence 

Cadence provides off-the-shelf Assertion Based 
Verification IPs (ABVIPs) for standard ARM protocols like 
AHB (master and slave), APB, AXI that checks for the 
compliance to the ARM AMBA protocols. These ABVIPs 
served as foundation blocks in our verification methodology. A 
correct hookup and control of these ABVIPs can be used to 
verify protocol compliance of masters and slaves in a multi-
master/multi-slave environment. It provides constraints on the 
input side of the device and assertions that check the outputs 
are as expected. Here the same property can act as a checker or 
BFM as explained in Figure 2 below.  

 

Fig.2 Using ABVIPs in Formal Analysis 

Example: We define a property: 

prop1: ((!hresetn_i)    (hready)); 

which is an AHB protocol specification. The property 
mentions that whenever hresetn_i is ‘0’, then hready is ‘1’. 
Now, if we say “assert prop1”, then it becomes an assertion 
and works as a checker to verify the hready behavior of slaves. 
Whenever hresetn_i is ‘0’, it will check if hready is ‘1’ else it 
will fail. On the other hand, if we say “assume prop1”, then it 
becomes a constraint and controls the driving of hready from 

the AHB slaves. Whenever hresetn_i goes ‘0’, it will force 
hready to ‘1’. 

Based on the above example, if we control the slave and 
master properties precisely, we can make them act either as a 
driver or a checker. 

B. Hookup of ABVIPs to each of the master and slave  

1. The slave and master ABVIPs are clubbed together to 
form a complete set of AHB/APB properties. 

2. Bind these combined AHB and APB ABVIPs to each 
AHB and APB slave respectively. For slaves 
following TI custom protocol, an ABVIP is coded in-
house and hooked up at each custom slave. To ease 
the hookup, a perl script was written to automate it 
based on an input file. 

3. The properties contained in the VIPs are controlled 
precisely (either as constraints or as assertions) 
depending on whether it is bound to a slave or master 
using IFV Tool Command Language (TCL) interface. 
This is also automated through scripts. 

4. With the above steps, we have the complete setup 
ready to verify the protocol compliance of each of the 
interconnect logic which form a part of the memory 
map. 

 

Fig.3. SoC Level Memory Map Verification Environment 

We are reusing the golden RTL file directly in our 
verification flow and no changes are done to the golden RTL 
for hooking up the ABVIPs to each of the master or slave. The 
ABVIPs are bound to various masters and slaves using vunit 
construct available in Property Specification Language (PSL). 
There is a separate PSL file written for the hookup. An 
example of the vunit based ABVIP binding is given below for 
an AHB slave: 



vunit vunit_abvipfv_master1_ahb_top (top_entity) { 

--   Define local parameters 

localparam ahb_master1_ABUS_WIDTH = 32 ; 

localparam ahb_master1_AHB_MAX_WAIT_STATES = 3 ; 

…   

-- Hookup the VIP to signals inside the top_entity 

ahb_full_monitor  ahb_full_monitor_MASTER1 ( 

 .hclk(HCLK),  

 .hresetn(HRESETn), 

 .haddr(u_CORTEXM4.HADDRD), 

 .htrans(u_CORTEXM4.HTRANSD), 

 .hwrite(u_CORTEXM4.HWRITED), 

 .hsize(u_CORTEXM4.HSIZED), 

 .hburst(u_CORTEXM4.HBURSTD), 

… 

); 

 

--   Map local parameters to the VIP 

defparam ahb_full_monitor_MASTER1.ABUS_WIDTH = 
ahb_master1_ABUS_WIDTH; 

defparam ahb_full_monitor_MASTER1.DBUS_WIDTH = 
ahb_master1_DBUS_WIDTH; 

… 

}  //end of vunit definition 

C. Additional assertions to verify the memory map 

On top of the default protocol checks available as part of 
the ABVIPs, we wrote additional assertions to check for the 
SoC specific memory map features. The assertions were 
intended to cover the below features:  

1. Write access to each slave from each master at 
designated addresses: We constrain each master to 
drive different pre-defined write data for each slave 
address range. On slave side, we have assertions 
which check that if there is a write access to the slave, 
it must contain only the pre-defined write data for that 
slave. This way we comprehensively confirm that the 
particular slave can be written only within the selected 
address range. 

Property:  

a. ({psel_i && penable_i && pwrite_i}|-> 
{pwdata_i == apb_slave_write_data})@(posedge 
pclk_i);  -- this property checks that whenever 
there is a write access on an APB slave, then 
pwdata_i should match the predefined write data 
for that slave. 

b. ({(hsel_i && hready_global_i && htrans_i[1] 
&& hwrite_i);!hready_global_i[*]} 
|=>{(hwdata_i == ahb_slave_write_data)}) 
@(posedge hclk_i);   -- this property checks that 

whenever there is a write access on an AHB slave, 
then hwdata_i should match the predefined write 
data for that slave. 

2. Read access from each slave to each master at 
designated addresses: We constrain each slave to 
drive different pre-defined read data. On master side, 
we have assertions which check that if there was a 
read access to a particular slave, on hready going 
high, the read data must contain the pre-defined read 
value for that slave. This way we comprehensively 
confirm that the particular slave can be read only 
under the selected address range. 

Property: 

({AHM_Slave_Valid_Address_active && !hwrite && 
hready_i  && htrans[1]; !hready_i[*];hready_i}|-> 
{hrdata_i== AHM_Master_Slave0_read_data}) @(posedge 
hclk_i);  -- this property checks that whenever there is a read 
access from an AHB master to a particular slave, then 
hrdata_i should match the predefined read data 
corresponding to that slave. 

 

3. Mirroring of certain slaves at multiple addresses 
for different masters: Different masters can access 
certain slaves at different addresses. e.g. Master M1 
can access slave S1 in address range A-B while 
master M2 can access the same slave S1 in address 
range C-D. To verify this implementation, the read 
and write assertions described above were duplicated 
and different address ranges were specified for each 
master. This was taken care by the IFV tool TCL 
commands. 

TCL commands: 

constraint –add -pin  
dbus_MASTER.slave1_Valid_Address_LOW 
$slave1_mirror_start_add 

constraint -add  -pin  
sbus_MASTER.slave1_Valid_Address_LOW   
$slave1_actual_start_add 

4. Reserved space checks: In case of a reserved space, 
we need to ensure that writes are ignored and read 
data is always 0. This gets checked by having an 
assertion at master side which checks for the read data 
to be “0x00000000” for such addresses. The writes 
being ignored is checked by the slave assertions 
which expect only pre-defined write data on the bus. 

Property: 

({AHM_Slave_Valid_Addres_active && !hwrite && 
hready_i  &&htrans[1]; !hready_i[*];hready_i}|-> 
{hrdata_i== 0x00000000}) @ (posedge hclk_i);    -- this 
assertion is similar to the read assertion described above 
with the read data being fixed to 0x00000000. 

5. Error response checks for illegal space between 
slaves: There is an assertion at master side which 
checks for the response line to indicate error 
whenever ready goes high if the access was to an 
illegal address range. 



Property: 

{master_error_resp_active && hready_i && htrans[1]} 
|=> {hresp_i && !hready_i;hresp_i && 
hready_i})@(posedge hclk_i);   -- this assertion checks for 
hresp_i signal to be ‘1’ in case of illegal address ranges. 

6. Error response checks for invalid size access: The 
assertion is similar to the earlier assertion for error 
response but this becomes active only when the 
master issues an access of invalid size. 

Property: 

{AHM_Slave_Valid_Adress_active && (hsize[1] | hsize[2]) 
&& hready_i && htrans[1]; !hready_i[*];hready_i} |-> 
{hresp_i})@(posedge hclk_i);   -- this assertion checks for 
hresp_i signal to be ‘1’ in case of accesses of certain sizes 
for certain address ranges. 

7. Priority of each master when they are accessing 
the same slaves:  

 Drive different write data from different masters. 

 Constrain htrans as sequential or non-sequential 
access for the master with highest priority. 

 Constrain all the masters to drive same slave 
address. 

 At slave side, check that write data from highest 
priority master is seen. 

 Repeat the above steps for all other masters by 
constraining the htrans of higher priority master 
to idle. 

This is implemented using a combination of the 
PSL properties and IFV TCL commands. The 
properties behave as checkers for which particular 
master is accessing the slave, while the TCL 
commands controls which masters are active and 
which are not. 

D. Putting it all together 

All the above checks for memory map require manual 
effort in coding the assertions, but once done, they are portable 
across different devices. They are also easily extensible for 
addition or removal of master or slaves in the system. 

Having all the assertions coded and ABVIPs hooked up in 
the system, we are ready to proceed with the verification of the 
system level memory map. The design compile is done by 
black-boxing the modules which don’t form a part of the 
memory map. At the first step, only the ABVIPs, bridges, bus-
fabric and decoders are taken as real design. Incisive Formal 
Verifier (IFV) from Cadence is used as the formal verification 
tool. Firstly the protocol assertions are run and then the SoC 
memory map related assertions are run in IFV. 

With this approach, we check the following critical 
functionalities of the SoC which are difficult to achieve using 
conventional approaches based on C/assembly tests, 

1. Adherence of interconnect logic (bus-fabric, decoders, 
bridges) to AMBA (AHB and APB) and custom 
protocols. 

2. Connectivity of bus fabric with all the masters and 
slaves. 

3. Functionality of bus-fabric, bridges and decoders. 

4. Accessibility and address mapping for each slave 
from various masters. 

5. Priority checks for each master when they are 
accessing the same slave. 

6. Mirroring of certain slaves at different addresses for 
different masters. 

7. Error response checks in-case of invalid addresses. 

8. Address aliasing. 

E. Challenges faced in scaling up FV to SoC Level 

While FV makes many things easier by not demanding a 
sophisticated verification environment and being able to 
exhaustively verify the design, it poses certain challenges 
during the initial bring-up, especially at SoC level due to the 
larger size of the design compared to unit level. The team 
involved in this work had prior experience on FV with IFV tool 
and PSL assertions and hence we are not listing the common 
issues related to syntax, etc. which might be seen by beginners. 
Instead we focus on the issues specific to porting FV to SoC 
level. Mentioned below are some of the challenges and issues 
faced by us during the development of the flow. 

1. Limit the state-space of the design: In an SoC, there 
are lots of modules present but many of them may not 
have any influence on the functioning of the memory 
map. Hence a common practice in such cases is to 
black-box those modules so that the tool just sees the 
modules needed for intended functionality and thus 
limit the overall design size that the tool needs to 
analyze. Following similar practice, we selected only 
the modules which comprise the memory map i.e. 
bridges, decoders, bus-fabric, clock and reset 
controllers and all others were black-boxed. But 
eventually we ended up removing many modules from 
black-box list during the bring-up. An example reason 
being – “Even though we had constrained the clocks 
and resets at their source points, they were passing 
through some other modules for test/debug purposes or 
for some functional overrides and were causing 
assertions to fail.” These modules needed to be read-in 
as actual RTL and not as black-box to get the flow 
working. Overall, it was an iterative process to find out 
the right set of modules for black-boxing. 

2. Choosing the right engine from the IFV tool: IFV 
tool internally has many engines (algorithms) for 
solving the formal properties and each of them works 
better for certain kind of logic or assertions but not for 
all. Initially, we observed huge runtime and non-
convergence due to use of default engines and it was 
an iterative process to find out the right set of engines 



which works well with all assertions in the context of 
our design. We tried using the tool option (auto_dist) 
to automatically distribute each assertion for all 
engines and get the result from the best engine for that 
assertion; but it required multiple parallel jobs to be 
invoked on compute farm and was limiting the overall 
turn-around time due to limited slots per user. Our 
approach to select the engine involved running the 
non-converging assertions with the auto_dist option 
and list down the winning engine. We did this for few 
such properties and chose the engine that was chosen 
most. Using this engine as default enabled us to see 
more properties converging faster. Doing it iteratively, 
we chose “sword”, “bow” and “hammer” [2] as the 
default engines. 

3. Design Constraints: Certain constraints need to be 
defined for the memory map to be successfully seen by 
all masters. These constraints could be to disable test 
logic or reset or to prevent power down, etc. The 
device was given an initial reset pulse through tcl 
interface to reset the internal states and we added some 
of the constraints initially based on our understanding 
of the SoC and discussions with designer. But during 
assertion cleanup, there was significant time spent in 
refining the constraints as and when there were false 
failures seen. We didn’t observe any time-out due to 
the missing constraints, and mostly it led to assertion 
failures which could be easily debugged using the 
counter-example provided by the tool. 

The benefits and power of FV kept us focused and 
motivated to work on this flow despite the above challenges. 
Finally, we were able to solve these issues and achieve the 
verification comprehensiveness within acceptable time-frame. 

V. AUTOMATION 
As mentioned earlier, there has been automation done 

wherever possible to maximize the reuse and enable a faster 
turn-around time for future projects. The memory map 
information is captured in a format as shown below in an excel 
sheet. 

MASTER SLAVE START 

ADDRESS 
END 

ADDRESS 
SIZE Sel_Path 

M2#M0 S31 SA31 EA31 SZ31 H1.pin1 

M2#M0 S41 SA41 EA41 SZ41 H2.pin2 

M0#M1#
M3 

S0 SA0 EA0 SZ0 H3.pin3 

M3#M1 S1 SA1 EA1 SZ1 H4.pin4 

M2 S1 SA1m EA1m SZ1m H4.pin4 

Table-1: Example of the input file for automation 

The columns in the above table can be described briefly as: 

 MASTER – Mentions which masters can access a 
particular slave. 

 SLAVE – Mentions the particular slave being 
accessed by the masters. 

 START ADDRESS – Mentions the valid start address 
for a particular slave. 

 END ADDRESS – Mentions the end address for the 
slave. 

 SIZE – Mentions the size of the slave in terms of 
address range (while this information is redundant 
given the start and end address, some implementation 
aspects require us to provide this information). 

 Sel_Path – Mentions the hierarchical path for the 
select pin of the slave, needed for the automated 
binding of ABVIPs. 

In the above table, the two highlighted rows show an 
example of slave S1 mirrored across different address ranges 
for different masters. 

This Excel file containing the memory map information as 
described above is parsed by scripts which generate the PSL 
property files for binding the ABVIPs to the master and slaves. 
It also generates the appropriate TCL files which cover various 
memory map parameters that are used in the assertions. 

VI. RESULTS 
We caught three critical bugs in the bridge using this 

approach, out of which one was a corner case bug related to 
bridge functionality which would have been nearly impossible 
to catch using traditional approaches. We recorded a huge 
runtime advantage in comparison to the simulation-based flow. 
While it took just 16 hours to run ~1300 protocol and memory 
map assertions, it would have been in terms of days to 
complete the C/assembly based simulations that too with a 
limited coverage of features. Since FV does not need a 
testbench setup, we could catch bugs early during the 
development cycle and it worked as a first level exhaustive 
sanity check before releasing the RTL for further verification 
activities. 

The summary of assertions for our SoC using this flow is 
listed in Table-2 below. While all the memory map assertions 
passed, there were some of the protocol assertions that showed 
as failing. These were analyzed and waived-off since they were 
some of the optional implementations. We also see in the 
results that including the protocol assertions increase the run-
time significantly compared to without having them. This is 
because of the complexity of the assertions and state space 
explosion to prove them and it required large compute time for 
proof. But because the total run-times being within acceptable 
limits, we chose to get them passing rather than excluding 
them.  

 
Total 

Assertions 

Assertions 

Passed 

Assertions 

Failed 

FV Run-

time (hrs) 

Protocol 

checks + 

memory 
map checks 

1300 1268 32 16 

Only 

memory 

map checks 
500 500 0 5 

Table-2: Summary of various assertions for SoC 



Flow Deployment Approximate bring-up 

effort 

For the first device ~6 weeks 

For subsequent devices in 

family 

< 1 week 

Table-3: Flow bring-up effort for various devices 

A. Examples of bugs that were caught using this flow 

1. “If the first access from the CPU is to an address space 
that falls within the range for the custom bridge, then 
the access may get lost and not reach the slaves.” – If 
we deployed only the traditional verification 
approaches, this bug wouldn’t have been caught 
because of multiple reasons. Firstly, it is a corner case 
to be thought of as a scenario in the planning. 
Secondly, CPU has its own way of powering-up and 
first few accesses from CPU are not controllable. 
Hence, even if we have such a scenario in our plan, it 
is not possible to be exercised. 

 

Fig.4. First transaction getting missed due to missing pulse 

2. “Inconsistency between access to odd versus even byte 
through bridge – The values for the unused bits during 
odd byte access and even byte access was not 
consistent. In one case, it was taking all 0s and in other 
case, it was duplicating the data.” – Again this is a bug 
which doesn’t have any direct functional impact but 
may have other implications like active power. This 
would have been impossible to catch with traditional 
approaches. 

 

Fig.5. Inconsistency between even/odd byte accesses 

3. “There was a protocol violation in the way decoder 
was driving certain signals for the APB”. The default 
protocol assertions from the ABVIPs were able to 
catch this bug. 

VII. ADVANTAGES 
1. The ABVIPs binding with the appropriate module is 

done using vunit construct which allows this flow to 
work directly on the integrated RTL without any local 
changes.  

2. Memory map checks can be done much early during 
the development phase which helps to find early bugs 
in decoders, bridges, interconnects, etc. 

3. It gives more confidence on the verification quality 
because of the exhaustive nature of formal 
verification. 

4. No disk-space issues because debug in IFV doesn’t 
require waveforms to be dumped unlike in 
simulations. 

5. Debug is quite simple and fast – the exact (or 
sometimes close) cone of signals related to the 
assertion get added to the waveform automatically. 

VIII. LIMITATIONS 
1. While the control space (address decoding, priority 

control, etc.) is exhaustively covered, a major 
limitation with the proposed methodology is that it 
doesn’t cover the data space exhaustively because of 
the use of pre-defined data patterns for each 
master/slave. 

2. This flow assumes that the individual IPs internal 
register map is verified at unit level and doesn’t 
exercise the internal register map. This is not done 
due to capacity limitations of the tool and the effort in 
finding more constraints when actual slave RTL is 
integrated. Also, the focus on this work currently was 
on finding the SoC integration issues. 

3. The pre-requisite for this flow to work is the 
availability of ABVIPs. For any IP being added in the 
system which doesn’t have a corresponding ABVIP 
available, this flow demands for an extra effort in the 
development of the VIP. 

4. We observed very large run-times for some of the 
complex assertions, which were related to protocol 
verification. Though most of them were able to 
converge for our design, but it may not always be the 
case for designs having more complex protocols or 
with much higher number of master/slaves. In such 
cases, we may not be able to see a PASS/FAIL status 
on these assertions and these may remain in the 
EXPLORED state. 

IX. CONCLUSION AND FUTURE 

WORK 
The proposed methodology is fully automated and can be 

reused for any ARM Cortex-M based device. It can be easily 
extended to other ARM processors which use more complex 



bus protocols like AXI. This approach can be a generic 
methodology that can be deployed across any design/protocol, 
given the availability of the corresponding ABVIPs. There is a 
known limitation of the data space not being exercised 
exhaustively and only control space being exhaustively 
verified. Sophisticated techniques like Formal scoreboarding 
can be used in conjunction with this approach to verify data 
integrity and is the next step in our plan. We also plan to 
replace each slave ABVIP with the corresponding RTL to gain 
further confidence on the whole system. Since this flow is 
based on Formal techniques, the inherent exhaustive nature of 
FV ensures higher confidence on the verification quality. This 
methodology successfully deploys formal verification to SoC 
level (other than just pin-multiplexing or connectivity checks) 
and can enable thoughts for deploying FV in multiple other 
SoC scenarios as well. 
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