
A UVM Based Methodology for
Processor Verification

Abhineet Bhojak, Stephan Herrmann
Tejbal Prasad

Freescale Semiconductor

© Accellera Systems Initiative 1

Processor Verification Challenges

• Different kind of instructions and excessive number of GPRs
leading to massive functional space and we need to target the
pertinent

• Presence of asymmetric and out-of-order pipelines
– Various hazards (e.g. RAW ,WAR,WAW, Branches)

• Dedicated Hardware Accelerators in parallel with pipeline

• Debug hooks for the ease of debug

© Accellera Systems Initiative 2

St
im

u
li

G
en

er
at

o
r

• Most important

• Need of multiple
tests

P
ro

gr
am

 g
en

er
at

io
n

• Hazard scenario

• Accelerator

• Jump & Loop cmd

D
eb

u
g

•Debug Hooks for
localization of failure

Existing Technologies

© Accellera Systems Initiative 3

• Random test pattern generators (RTPG) and Test plan automation tools

• Define a specific scenario description language and take as declarative

input architecture and micro-architecture

• Uses sophisticated CSP solver with bias to generate test programs

• there is a significant learning curve involved to leverage these RTPG’s in

a project schedule along with a considerable cost factor

• Formal verification

• Useful and efficient in some cases

• it requires significant mathematics skill and computational resources to

relate to the scenarios and analyze them

• Pure directed testing

• Gives confidence on different functionalities

• Achieving desired coverage may take large amount of time

PROPOSED METHODOLOGY

• Efficient constrained
random stimuli

generation mechanism
for creating

meaningful and highly
reusable scenarios

• Focus on running top
level use cases with
minimum efforts to

achieve high
confidence

• Reducing the debug
time for better time-

to-market

• A methodology for
processor verification

using the open sources
UVM , SV & C/C++.

© Accellera Systems Initiative 4

Proposed Stimulus Generation Flow

• A fine blend of Top Down control and Bottom layer intelligence

• Better control over random stimuli and high reuse

© Accellera Systems Initiative 5

Scenario

•Skeleton of the
program is
generated

•Size of the program
is controlled

•Data for the
program is
controlled

•Provides the Top
Down Control

Program Generator

•It does the
decision making
based on Scenario
level information

• It Randomizes
atomic transaction
based on
fixed/random
type or to a fixed
/random
instruction

Atomic Transaction

• It randomizes all the
fields and pack them
into one instruction.

• Bottom layer
intelligence

• Takes care of infinite
loop

• Does instruction
operand interlinking

• Extension for
instruction grouping for
better reuse

Bottom Layer Intelligence

© Accellera Systems Initiative 6

load address1, R3
load address2, R4
add R3, R4, R5
store R5, address3 Potential Hazard Candidate

Interesting
scenario

How to put in this
intelligence w/o

complicating
constraint solver ?

Conventional Way

Randomize the whole program

Use foreach constraint to make
relation between instruction

operand

Innovative Way

Randomize one instruction at a time.

Keep copy of last few instruction.

While randomizing current instruction 1st decide to
what depth (rel_depth) you want to link it

Use last instruction copy & rel_depth to decide the
current instruction operand

Bottom Layer Intelligence

© Accellera Systems Initiative 7

Operand Interlinking

Proposed flow in action

© Accellera Systems Initiative 8

JMP LEN1

JMP LEN2

BZ End
SUB R1,1

Loop:
MOV R1,VAL

BNZ Loop
SUB R1,1

HALTEnd:

BRANCH

•BEQ

•BLT

•BGT

•BN

•BC

ALU

•ADD

•SUB

•XOR

•OR

•CMP

INSTRUCTION GROUPS

Jump Length

constraints

L
E

N
1

L
E

N
2

W-

MARK

LENGT

H

FILL

Infinite Loop Avoidance

Debugging Hooks

© Accellera Systems Initiative 9

• Zero time
Reference model
Vs pipelined
processor

• Checking only at
interfaces is not
enough for
complex
scenarios

• Register trace
queue based
Checker

Debug cannot be
an afterthought.

• Out-of-order
execution of
pipeline Vs In-
order execution
of model

• Need checker
based on
register content
change – Data
trace checker

Localization of
Failure

• To get the
desired
confidence
running directed
use cases is a
must

• Switch based
flow for directed
stimulus which
uses program ,
data/images and
configuration as
file based input

Scenario
Replication

Debugging Hooks

© Accellera Systems Initiative 10

Evaluation of the Proposed Flow

© Accellera Systems Initiative 11

Design Complexity

Scalar, Vector & Matrix operation, 9 ALUs, 4 Multiplier, ~256 GPRs
& Hardware Accelerator like SORT, HISTOGRAM etc

Verification

30 man weeks of effort, Verification Environment created from
Scratch, ~200 test /15 K runs, ~10 k functional cover points, 200
odd defects were found

First Pass Success

No additional bugs found after IP signoff.

Silicon has been evaluated - considered to be a first pass success.

Thank You
Q & A

© Accellera Systems Initiative 12

