A UVM Based Methodology for
Processor Verification

Abhineet Bhojak, Stephan Herrmann
Tejbal Prasad

Freescale Semiconductor

<&,

L 4
>“ freescale 2015
dé 09//8[' d < semiconductor ‘ES)W”E:EEAQ P

NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE™

Processor Verification Challenges

* Different kind of instructions and excessive number of GPRs
leading to massive functional space and we need to target the

pertinent

* Presence of asymmetric and out-of-order pipelines
— Various hazards (e.g. RAW ,WAR,WAW, Branches)

* Dedicated Hardware Accelerators in parallel with pipeline

* Debug hooks for the ease of debug

* Hazard scenario
e Accelerator
e Jump & Loop cmd

e Most important

e Need of multiple
tests

Stimuli Generator
Program generation

ﬂb'l,'ellera © Accellera Systems Initiative 2

SYSTEMS INITIATIVE™

eDebug Hooks for

localization of failure

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

Existing Technologies

 Random test pattern generators (RTPG) and Test plan automation tools
» Define a specific scenario description language and take as declarative
input architecture and micro-architecture
« Uses sophisticated CSP solver with bias to generate test programs
« there is a significant learning curve involved to leverage these RTPG’s in
a project schedule along with a considerable cost factor

« Formal verification
» Useful and efficient in some cases
* it requires significant mathematics skill and computational resources to

relate to the scenarios and analyze them

« Pure directed testing
» Gives confidence on different functionalities
» Achieving desired coverage may take large amount of time

3008//8[‘3 © Accellera Systems Initiative 3 et TS

SYSTEMS INITIATIVE™

PROPOSED METHODOLOGY

uwvm_test

* Efficient constrained

random stimuli instraction
generation mechanism S
R [0 [toAD (FixeD)] o
for creating = E—
meaningful and highly ER waoon o=
reusable scenarios EW srorcirvco

* Focus on running top
level use cases with
minimum efforts to

achieve high
confidence Randomize with Generate a random E

constraint to generate instruction from

the specific instruction instruction group

* Reducing the debug
time for better time-
to-market

Load Load ADD MULL SUB STORE LOOP

* A methodology for
processor verification
using the open sources
UvM, SV & C/C++.

l/ DESIGN AND VERZFQJ‘I?()N"
acceiera © Accellera Systems Initiative 4 QMEEM

SYSTEMS INITIATIVE™

Proposed Stimulus Generation Flow

A fine blend of Top Down control and Bottom layer intelligence

Better control over random stimuli and high reuse

Program Generator

SYSTEMS INITIATIVE™

¢ Skeleton of the e |t does the
program is decision making
generated based on Scenario
* Size of the program level information
is controlled ¢ |t Randomizes
e Data for the atomic transaction
program is Iqased on
e Provides the Top ?rlsr?d?)rrio a fixed
Down Control .)
Instruction
\§ J g
© Accellera Systems Initiative 5

Atomic Transaction

¢ [t randomizes all the
fields and pack them
into one instruction.

¢ Bottom layer
intelligence
» Takes care of infinite
loop
* Does instruction
operand interlinking
e Extension for
instruction grouping for
better reuse

- J

2015

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Bottom Layer Intelligence

How to put in this
intelligence w/o
complicating
constraint solver ?

Interesting

load address1, R3 scenario
load address2, R4 O
add R3, R4, R5\ @

@
store R5, address3 Potential Hazard Candidate

Conventional Way

7
) L\ . Randomize one instruction at a time.
Randomize the whole program V4
5) Keep copy of last few instruction.
) AV _ Ly
Use foreach constraint to make While randomizing current instruction 15t decide to
relation between instruction what depth (rel_depth) you want to link it
operand {7
L /

Use last instruction copy & rel_depth to decide the
current instruction operand

7l R @ 10|
acceiera © Accellera Systems Initiative 6 QQE/N‘EEEM

SYSTEMS INITIATIVE™

Bottom Layer Intelligence

[2yel0

E:

Imnterlimnkimng Daepth

Loyel2

accellera

SYSTEMS INITIATIVE™

Operand Interlinking

© Accellera Systems Initiative

7

class processor_transaction_atomic extends uvm_sequence_item;

// represent instruction groups

rand processorMasterCommandT master cmd;
// represents individual instructions
rand processorCommandT processor_command_type;

// Variables for construction the final instruction

bit [31:0] processor_instruction;

rand bit [7:0] processor_input_operand_1;
rand bit [7:0] processor_input_operand_2;
rand bit [7:0] processor_destination_address;

constraint processor_master_command_decoding {
(master_cmd) inside
{ /*define the valid instruction groups here */};
(master cmd == MASTER ADD) -=
processor_command_type == PROCESSOR_CMD_S_ADD;

(master_cmd == SCALAR COMMANDS) -> {processor_command_type inside
{PROCESSOR_CMD_S_MOV ,PROCESSOR_CMD_S_ADD };}}
constraint processor_operand interlinking {
(dest_op_relation) inside { INDEP, DEPO, DEPLl }
(dest_op_relation == INDEP) -= {};
(dest_op_relation == DEPO) -=
{processor destination address == last operand type};
(dest_op_relation == DEP1) -=
{processor_destination_address == 2nd_last_operand_type}};
function generate instruction dataf();
if (processor_command_type ==PROCESSOR_CMD_S ADD)
begin
processor_instruction[23:16] = processor_destination_address;
processor_instruction[15:8] = processor_input_operand_1;
processor_instruction[7:0] = processor_input_operand_2;
end

endfunction : generate_instruction_data

endclass : processor transaction atomic

CONFERENCE AND EXHIBITION

201

DESIGN AND VERIFICATION™

5

Proposed flow in action

BRANCH
BEQ
BLT
BGT
BN

BC

INSTRUCTION GROUPS /

SYSTEMS INITIATIVE™

[MOY _RIVAL] Jump Length
Loop: [] copstraints
COOMP___TENT] | <
Z
LL
-
ALU _ W-
(SUB _RTT | PP e
*ADD FILL -
*XOR \ o
‘OR
— L
CMP COMVP LEN? | —
LENGT
[SUB__RI1T | H
[BNZ Loop J
End: [(HALT |
Infinite Loop Avoidance 2015
© Accellera Systems Initiative 8 QMEEBL\JN

Debugging Hooks

(

~N

e Zero time

Reference model
Vs pipelined
processor
Checking only at
interfaces is not
enough for
complex
scenarios

Register trace
gueue based
Checker

Debug cannot be

an afterthought.

SYSTEMS INITIATIVE™

-
e Qut-of-order

execution of
pipeline Vs In-
order execution
of model

e Need checker
based on
register content
change — Data
trace checker

Localization of

Failure

© Accellera Systems Initiative 9

~N

e

e To get the

desired
confidence
running directed
use cases is a
must

Switch based
flow for directed
stimulus which
uses program,
data/images and
configuration as
file based input

Scenario
Replication

Debugging Hooks

Debug Logic Checker
Interface level checker

Data trace checker

Stimuli Generatar

!

Input Program

Register Programming
DUV sequence

i1

111

Input data

l/ DESIGN AND V'E%Q/]'IQN"
accelera © Accellera Systems Initiative 10 QMEQM

e p— — [——
— LI RO PE
SYSTEMS INITIATIVE™ WJ 1" Aad AT“““ L]

Evaluation of the Proposed Flow

Design Complexity

Scalar, Vector & Matrix operation, 9 ALUs, 4 Multiplier, ~¥256 GPRs
& Hardware Accelerator like SORT, HISTOGRAM etc

Verification

30 man weeks of effort, Verification Environment created from
Scratch, ~200 test /15 K runs, ~10 k functional cover points, 200
odd defects were found

First Pass Success

No additional bugs found after IP signoff.

Silicon has been evaluated - considered to be a first pass success.

—
ﬂﬂb'el/ éra © Accellera Systems Initiative 11 b Tl

—) =
SYSTEMS INITIATIVE * EURDODOPE |

Thank You
Q&A

accellera e 2015

SYSTEMS INITIATIVE™

