
A UVM Based Methodology for
Processor Verification

Abhineet Bhojak, Stephan Herrmann
Tejbal Prasad

Freescale Semiconductor

© Accellera Systems Initiative 1

Processor Verification Challenges

• Different kind of instructions and excessive number of GPRs
leading to massive functional space and we need to target the
pertinent

• Presence of asymmetric and out-of-order pipelines
– Various hazards (e.g. RAW ,WAR,WAW, Branches)

• Dedicated Hardware Accelerators in parallel with pipeline

• Debug hooks for the ease of debug

© Accellera Systems Initiative 2

St
im

u
li

G
en

er
at

o
r

• Most important

• Need of multiple
tests

P
ro

gr
am

 g
en

er
at

io
n

• Hazard scenario

• Accelerator

• Jump & Loop cmd

D
eb

u
g

•Debug Hooks for
localization of failure

Existing Technologies

© Accellera Systems Initiative 3

• Random test pattern generators (RTPG) and Test plan automation tools

• Define a specific scenario description language and take as declarative

input architecture and micro-architecture

• Uses sophisticated CSP solver with bias to generate test programs

• there is a significant learning curve involved to leverage these RTPG’s in

a project schedule along with a considerable cost factor

• Formal verification

• Useful and efficient in some cases

• it requires significant mathematics skill and computational resources to

relate to the scenarios and analyze them

• Pure directed testing

• Gives confidence on different functionalities

• Achieving desired coverage may take large amount of time

PROPOSED METHODOLOGY

• Efficient constrained
random stimuli

generation mechanism
for creating

meaningful and highly
reusable scenarios

• Focus on running top
level use cases with
minimum efforts to

achieve high
confidence

• Reducing the debug
time for better time-

to-market

• A methodology for
processor verification

using the open sources
UVM , SV & C/C++.

© Accellera Systems Initiative 4

Proposed Stimulus Generation Flow

• A fine blend of Top Down control and Bottom layer intelligence

• Better control over random stimuli and high reuse

© Accellera Systems Initiative 5

Scenario

•Skeleton of the
program is
generated

•Size of the program
is controlled

•Data for the
program is
controlled

•Provides the Top
Down Control

Program Generator

• It does the
decision making
based on Scenario
level information

• It Randomizes
atomic transaction
based on
fixed/random
type or to a fixed
/random
instruction

Atomic Transaction

• It randomizes all the
fields and pack them
into one instruction.

• Bottom layer
intelligence

• Takes care of infinite
loop

• Does instruction
operand interlinking

• Extension for
instruction grouping for
better reuse

Bottom Layer Intelligence

© Accellera Systems Initiative 6

load address1, R3
load address2, R4
add R3, R4, R5
store R5, address3 Potential Hazard Candidate

Interesting
scenario

How to put in this
intelligence w/o

complicating
constraint solver ?

Conventional Way

Randomize the whole program

Use foreach constraint to make
relation between instruction

operand

Innovative Way

Randomize one instruction at a time.

Keep copy of last few instruction.

While randomizing current instruction 1st decide to
what depth (rel_depth) you want to link it

Use last instruction copy & rel_depth to decide the
current instruction operand

Bottom Layer Intelligence

© Accellera Systems Initiative 7

Operand Interlinking

Proposed flow in action

© Accellera Systems Initiative 8

JMP LEN1

JMP LEN2

BZ End
SUB R1,1

Loop:
MOV R1,VAL

BNZ Loop
SUB R1,1

HALTEnd:

BRANCH

•BEQ

•BLT

•BGT

•BN

•BC

ALU

•ADD

•SUB

•XOR

•OR

•CMP

INSTRUCTION GROUPS

Jump Length

constraints

L
E

N
1

L
E

N
2

W-

MARK

LENGT

H

FILL

Infinite Loop Avoidance

Debugging Hooks

© Accellera Systems Initiative 9

• Zero time
Reference model
Vs pipelined
processor

• Checking only at
interfaces is not
enough for
complex
scenarios

• Register trace
queue based
Checker

Debug cannot be
an afterthought.

• Out-of-order
execution of
pipeline Vs In-
order execution
of model

• Need checker
based on
register content
change – Data
trace checker

Localization of
Failure

• To get the
desired
confidence
running directed
use cases is a
must

• Switch based
flow for directed
stimulus which
uses program ,
data/images and
configuration as
file based input

Scenario
Replication

Debugging Hooks

© Accellera Systems Initiative 10

Evaluation of the Proposed Flow

© Accellera Systems Initiative 11

Design Complexity

Scalar, Vector & Matrix operation, 9 ALUs, 4 Multiplier, ~256 GPRs
& Hardware Accelerator like SORT, HISTOGRAM etc

Verification

30 man weeks of effort, Verification Environment created from
Scratch, ~200 test /15 K runs, ~10 k functional cover points, 200
odd defects were found

First Pass Success

No additional bugs found after IP signoff.

Silicon has been evaluated - considered to be a first pass success.

Thank You
Q & A

© Accellera Systems Initiative 12

