
	
 1

A Universal DFT Verification Environment:
Filling the Gap between Function Simulation

and ATE Test

Rui Huang
No.2, Science Institute South Rd.

Haidian District, Beijing, China 100190

Abstract-The DFT (Design For Testability) design has become more and more complex accompanying the increasing

scale of SoC (System on Chip). How to verify DFT logic completely in simulation and how to supply test patterns with
high coverage to ATE (Automatic Test Equipment) test are important for post-silicon debug and yield increase. While
verification methodology is evolving, innovating, and entering the UVM (Universal Verification Methodology) era, DFT
verification needs to keep pace to leverage the advantages of UVM, and thereby to increase test reusability, extendibility
and functional coverage, etc. This paper presents a general UVM-based DFT verification environment, which can be
used from modular DFT verification to SoC DFT verification, and it can generate functionally equivalent STIL (Standard
Test Interface Language) test patterns for ATE test during SoC simulation. This paper also presents a method to model
hierarchically networked DFT TDR (Test Data Register) at RAL (Register Abstract Level) in the UVM environment to
allow test writers focus on test sequences without taking care of the details in TDR read and write operations.

I. INTRODUCTION
In DFT (Design For Testability) domain, the test patterns running on an ATE (Automatic Test Equipment) can be

categorized into two types: scan related and non-scan related. The former can be generated using ATPG (Automatic
Test Pattern Generation) tools, while the latter cannot. Like other function tests, these non-scan DFT function tests
are normally created by design verification engineers using languages such as System Verilog or C++. However,
ATEs need test patterns described by STIL (Standard Test Interface Language) or other test languages.

To fill the gap, there is usually a dedicated team to transfer function simulation to ATE test environment, or
alternatively in-house automation flows are developed to enforce complex rules on test writing and register
specification documentation, which are specific for a given environment and difficult to migrate.

This paper provides a universal and more efficient solution by introducing a UVM (Universal Verification
Methodology) based DFT verification environment that naturally generates test patterns in STIL format during
simulation and can be plugged into any UVM-based environment. This method applies to other formats that ATEs
need as well.

For ultra-large-scale SoC (System on Chip), IEEE 1149.1 protocol alone cannot satisfy the DFT design
requirements, therefore the IEEE 1687 and 1500 protocols are usually adopted to enable modular and hierarchical
DFT test access, leading to challenges when writing test sequences at RAL (Register Abstract Level), as different
protocol TDRs (Test Data Register) are hierarchically located in a network connected via IEEE 1687. To access a
TDR, one or more levels 1687 SIBs (Segment Insertion Bit) have to be opened and the length of DR (Data Register)
chain varies with SIB values. The author also comes up with a general way to model hierarchically networked DFT
TDR (Test Data Register) at RAL.
 Structure of This Paper
This paper is divided into four parts. The first part is about how to build a UVM-based DFT verification

environment that can generate STIL test patterns naturally. Then the second part will focus on the method of lifting
DFT TDR to RAL. The third part answers how to verify whether the generated STIL pattern works. The fourth part
is result discussion and conclusions.

In both of the first and second parts, the method we developed will be elaborated as follows: first, a general
overview will be provided, and then the detailed implementation will be elaborated with reference to an example.

II. UVM-BASED DFT VERIFICATION ENVIRONMENT
 Idea Overview
The STIL test pattern describes test stimulus using vectors which specify the pad drive and measurement

information (called STIL information hereinafter) in a time period.

	
 2

A UVM test usually contains one or several sequences, which are finally broken down into streams of UVM
sequence items (a.k.a transactions) and passed to UVM drivers. The UVM drivers are normally used to drive and
sample pads of DUT (Design Under Test), meaning that they also contain the STIL information passing through. In
fact, as to be demonstrated in this paper, the UVM drivers are the best supplier of STIL information.

With the precondition that any pad drive and sample are controlled by a UVM driver, which enforces no direct
pad connection in the testbench (except for clock pads), simply by collecting all STIL information from the drivers
and then writing them out according to the time stamp of the STIL information, we can obtain complete test vectors
of a certain UVM test when the simulation finishes.

Thus, we can categorize the pads of a SoC into the following types from the DFT functional simulation
perspective:

1) IEEE 1149.1 compliance on-chip TAP (Test Access Port). Hereinafter, it is simply called JTAG (Joint Test
Action Group) interface as shown in Table I, which is the most important interface for DFT design. Please
note that in Table I, read_not_write signal is not defined in IEEE 1149.1, as it is an internal signal only used
in this environment, for more description please refer to Section C.5.

2) Clock pads, which are clocks that need to toggle in DFT functional simulation. See Section D for more
description.

3) Reset pads. All the reset related pads are categorized into this type.
4) Other pads. Except for type 1) to 3) abovementioned, the remaining pads are categorized into this type. See

Section E for more description.
In Figure 1, jtag_driver, clock_driver, reset_driver, and pad_driver correspond to the above four pad types,

respectively. The STIL_generator collects STIL information from these drivers and writes them to a STIL pattern
file.
 jtag_agent Implementation
In Figure 2, jtag_agent is composed of jtag_sequencer, jtag_monitor, and jtag_driver, all of them configured

through jtag_agent_configuration.

Figure 1. UVM-based DFT verification environment.

	
 3

TABLE I

JTAG INTERFACE DEFINITION
JTAG Interface

Pad Direction Pad Name

input TCK

input TMS

input TRST_L

input TDI

output TDO

input read_not_write

Figure 2. jtag_agent block diagram.

C.1. jtag_agent_configuration Class

Figure 3 shows the properties and a key method (pad_info_init ()) of jtag_agent_configuration class.

Figure 3. jtag_agent_configuration properties and pad_info_init () method

	
 4

C.2. jtag_transaction Class
Figure 4 shows the properties of jtag_transaction class.
o_ir is a dynamic array to store the instruction operation code (a.k.a OPCODE) being sent to the DUT’s IEEE

1149.1 FSM (Finite State Machine) IR (Instruction Register) and o_ir_length is its size.
o_dr is a dynamic array to store the data being sent to the DUT’s IEEE 1149.1 FSM DR (Data Register) and

o_dr_length is its size.
tdo_dr_queue, tdo_ir_queue, tdi_dr_queue, and tdi_ir_queue store the data during shift IR or DR state

monitored by jtag_monitor.
chk_ir_tdo and chk_dr_tdo are flags to indicate jtag_driver whether to check TDO cycle-by-cycle during shift IR

or DR state.
exp_tdo_dr_queue is the golden data expecting the DUT TDO output during shift DR state, which is used by

jtag_driver to check the TDO data on the fly.
exp_tdo_dr_mask_queue indicates which bit in exp_tdo_dr_queue needs not to check.
exp_tdo_ir_queue is the golden data expecting the DUT TDO output during shift IR state, which is used by

jtag_driver to check the TDO data on the fly.
read_not_write is a flag indicating jtag_monitor whether it is a read or write operation for the current transaction.

Please see Section C.5 for more details.
C.3. JTAG Interface Connection in Testbench

This paper categorizes pads of a SoC into four types, which are driven by different drivers, so the JTAG interface
shown in Table I is driven by clock_driver, reset_driver, and jtag_driver as shown in Figure 5.

Figure 6 is jtag_if interface definition that does not contain all signals shown in Table I because of the
categorization of pads. The rest signals are defined in clock_if and reset_if interfaces.
C.4. jtag_driver Class

IEEE 1149.1 protocol is implemented in jtag_driver, which fetches every jtag_transaction sequence item from
jtag_sequencer, drives the JTAG interface’s TDI and TMS, and samples TDO if chk_ir_tdo or chk_dr_tdo flag is
on. exp_tdo_dr_queue and exp_tdo_ir_queue store the expected golden values, which also will be used as the
golden measure information for TDO in the generated STIL pattern.

If the gen_stil_file knob is on, jtag_driver not only needs to drive and sample pads – it also converts such
information to STIL information (handled by the call_stil_gen () method), and then sends it to STIL_generator
through an analysis port, which is an object of uvm_analysis_port class specialized with stil_info_transaction type.

Figure 4. jtag_transaction properties definition.

	
 5

Figure 5. JTAG interface toplevel connection.

Figure 6. Signals defined in jtag_if interface.

In Figure 2, let us suppose the jtag_driver’s FSM is in shift DR state and it is going to shift three bits 101 to the
DUT and sample TDO data during the shift operation. The golden TDO data are three bits 110.

At TCK negative edge a, the jtag_driver keeps TSM low to let the DUT’s FSM stay in shift DR state and drives
TDI high to send out the first bit out. The call_stil_gen () method converts this information as shown in line 1.

At TCK positive edge b, the jtag_driver samples TDO and compares it with the golden value, which is one bit 1.
The call_stil_gen () method converts this information as shown in line 2.

At TCK negative edge c, the jtag_driver keeps TSM low to let the DUT’s FSM stay in shift DR state and drives
TDI low to send out the second bit out. The call_stil_gen () method converts this information as shown in line 3.

At TCK positive edge d, the jtag_driver samples TDO and compares it with the golden value, which is one bit 1.
The call_stil_gen () method converts this information as shown in line 4.

At TCK negative edge e, the jtag_driver drives TSM low to let the DUT’s FSM go to exit1 DR state and drives
TDI high to send out the last bit out. The call_stil_gen () method converts this information as shown in line 5.

At TCK positive edge f, the jtag_driver samples TDO and compares it with the golden value, which is one bit 0.
The call_stil_gen () method converts this information as shown in line 6.
C.5. jtag_monitor Class

There is a signal called read_not_write defined in the JTAG interface, as shown in Table I, which is only used by
jtag_monitor to indicate whether the current transaction is a write operation or a read operation.

JTAG interface is a serial bus, while shifting TDI to a register, data stored in it is being shifted out on TDO, so
there is not a really so-called write or read operation.

Here, we define write operation and read operation in concept for RAL convenience.
Read operation: data being shifted in a register is the same as the data stored in it.
Write operation: data being shifted in a register is different with the data stored in it.
jtag_monitor monitors the JTAG interface activity, sampling TDI or TDO according to the read_not_write

signal, composing the jtag_transaction sequence items and then passing them to the dft_tdr_laying as shown in the
blue arrows of Figure 1.
 Clock Pads Connection in Testbench
In the STIL pattern file, the Timing block defines sets of “WaveformTables”. Each WaveformTable defines the

waveforms to be applied to each signal used in a vector [1]. Because DFT function tests only use the JTAG
interface to configure TDRs, we define one WaveformTable in the generated STIL pattern file and use TCK’s half
period as the WaveformTable’s Period. For other clocks, they are described to have the same frequency as TCK in
the STIL pattern file but they are connected to desired frequencies from ATE during post-silicon test. Therefore,
clock_driver only needs to drive TCK during simulation, and other clocks are generated from testbench (this is the
only exception where the clock pads are allowed to drive from testbench in this environment).

As shown in Figure 7 for an example, the DUT has two PLL reference clocks and a bypass clock, which need
active during simulation, named PLL1_REF, PLL2_REF, and BYPASS_CLK.

	
 6

Figure 7. An example of clock pads connection in testbench.

The clock_gen module at the toplevel takes charge of these three clocks’ toggle. TCK of the JTAG interface is
generated by the clock_driver.

If the gen_stil_file knob is on, the clock_driver needs to pass TCK drive information to the the call_stil_gen ()
method at the same time when it drives TCK, and the call_stil_gen () method uses the TCK drive information as all
active clocks’ drive information and pass the STIL information to the STIL_generator, as shown in Figure 7 line1 to
line4.

For an ATE test, the PLL1_REF, PLL2_REF, and BYPASS_CLK toggle information in the STIL pattern can be
regarded as a placeholder to make post silicon engineers aware that these three clocks are reference clocks, so that
they will not use the toggle information described in STIL patterns to drive reference clocks, but use clocks supplied
by ATE with desired frequencies.
 pad_agent Implementation
Figure 8 shows the components in pad_agent and the execution flow in pad_driver, which fetches

pad_rw_transaction from pad_sequencer.
The pad type 4) defined in Section B can be subgrouped according to their function or interface protocol. Taking

the memory pads, GPIO pads, and scan control pads as examples, each of them could be put in a separate subgroup.
Figure 9 is an example of subgrouping pads that define the pad_if interface according to their interface protocols.
In Figure 8, the pad_init () method initializes all subgroups pads in turn at the beginning of the run_phase task of

the pad_driver, and the call_stil_gen () method converts this information to STIL information and writes to the
STIL_generator through an analysis port.

Figure 10 displays all properties of the pad_rw_transaction class.
grp_num is used to indicate the pad_dirver which group of pads to drive.
in_data_queue stores the data being driven by the pad_driver.
out_data_queue stores the data being sampled by the pad_driver.
inout_data_queue stores the data being driven or sampled by the pad_driver. An unknown bit in the queue

indicates pad_driver the corresponding pad is in output mode and it will write the sampled pad value into the same
location.

exp_out_data_queue and exp_inout_data_queue stores both golden values to let pad_driver check on the fly and
the information for STIL pattern to measure the pads value during a time period of conversion by the call_stil_gen ()
method.

Please note these queue types should be logic instead of bit in order to store four state values.

	
 7

Figure 8. pad_agent block diagram.

Figure 9. An example of defining pad_if interface in subgroups.

Figure 10. pad_rw_transaction properties definition

E.1. pad_agent_configuration Class

Figure 11 is an example of the pad_agent_configuration class, which has two subgroups of pads.
A DFT test needs to initialize every group’s package name by calling the pad_info_init () method before the

main phase objection and stores it in the configuration database for pad_driver and STIL_generator fetch.
 reset_driver Class
Figure 12 is an example of reset_driver that drives all resets signals defined in the reset_if interface where the

call_stil_gen () method converts the drive information to STIL information and writes it to STIL_generator through
an analysis port.
 STIL_generator Implementation
The STIL_generator, which extends from uvm_subscriber class specialized with stil_info_transaction type, has

four analysis exports to connect with clock_driver, reset_driver, pad_driver, and jtag_driver’s analysis port
separately. Since the uvm_subscriber class has only one built-in analysis export, the uvm_analysis_imp_decl
macro needs to be used to declare analysis imp export and its associated write () method for the remaining analysis
export [2].

	
 8

Figure 11. pad_agent_configuration properties definition example

Figure 12. An example of reset_driver.

stil_info_transaction is defined in Figure 13. stil_info is pads drive and measure information, and comment_info
is the comment going to be printed out with the stil_info.

In Figure 14, each driver’s analysis port has its corresponding write () method, a semaphore which has only one
key and a group of Ping-Pong buffers which have two variables, called ping_data_rdy and pong_data_rdy, to
indicate the Ping-Pong buffer status.

The stil_info_transaction written through a driver’s analysis port is stored in a Ping-Pong buffer group, each
buffer stores one stil_info_transaction.

The STIL_generator needs to collect all stil_info_transaction coming from the same simulation time slot, to
concatenate stil_info of every stil_info_transaction, and to write them out as a single test vector. To make sure
STIL_generator does not miss any stil_info_transaction from the same time slot, it has to suspend the run_phase
task in the STIL_generator until all other run_phase tasks finish. However, in UVM, because all uvm_component
run_phase tasks are executed in parallel and the STIL_generator itself is an uvm_component, there is no easy way
to schedule the simulation events in STIL_generator’s run_phase task that is to be executed after all other drivers’
run_phase tasks finish.

To resolve this issue, a group of Ping-Pong buffers is introduced. The write () method always writes the ping
buffer first and then the pong buffer, so the ping data and pong data come at different simulation time slots. Once a
group of Ping-Pong buffers is full, which indicates the simulation has already moved forward, it will be the right
time to collect all ping buffer data and write them out.

The run_phase task of STIL_generator, as shown in Figure 14, always checks if there is at least one driver
whose Ping-Pong buffer group is full. If the result is true, it will query each key of the semaphore belonging to the
corresponding driver. Once it gets all the keys, it will then fetch all ping buffer data, update the Ping-Pong buffer
groups (if the ping and pong buffers are both empty, do nothing; if the ping buffer is full and the pong buffer is
empty, clear ping_data_rdy; if the ping and pong buffers are both full, copy the pong buffer data to the ping buffer
and clear pong_data_rdy), and put back all keys and write a test vector to the STIL pattern.

	
 9

Figure 13. stil_info_transaction properties.

Figure 14. STIL_generator block diagram.

III. DFT TDR ABSTRACTION
 Idea Overview
For ultra-large-scale SoC, usually there is a group of TDRs, which are either IEEE 1500 or IEEE 1149.1

compliant, being used to configure a block of the DFT design. The TDR groups among different blocks are chained
together using IEEE 1687 protocol. Figure 15 is an example of DFT TDR access network.

It is necessary to level up the TDR access in RAL, so as to make it easy to migrate UVM tests developing from
this UVM-based DFT verification environment among verification environments and tests from block to system
level. By doing this, test writers can focus on test sequences as such rather than the complex operation of accessing
every TDR hierarchically located in the network.

For non-UVM-based environments, the normal way is to define a base class according to its protocol (for
example, to define an IEEE1500 TDR base class and an IEEE 1149.1 TDR base class) and wrap up a TDR access
operation inside its extension. When the DFT access network changes, the wrapped-up access operation in each
TDR class has to be updated accordingly. Such work is usually time-consuming. However, the method of
modelling DFT TDR in UVM-based environments is rarely seen in literature to the author’s knowledge.

	
 10

This paper presents a way to abstract TDR in UVM-based environments that is neat and easy to maintain, as
shown in Figure 16.

We can encode a TDR’s location information into its address, as shown in Figure 17, and model an equivalent
TDR access network named dft_tdr_network in dft_tdr_monitor, as shown in Figure 16.

In Figure 1, the reg2bus direction is shown in red lines, where the dft_tdr_trans_to_jtag_trans_sequence fetches
dft_tdr_transactions, unpacks address, decodes SIB code to get the TDR location information, and then generates
jtag_transactions to jtag_sequencer [3]. For the bus2reg direction shown in blue lines, the dft_tdr_network
maintains network status using jtag_transactions from jtag_monitor. When the sib_nodes value hit the SIB code in
the dft_tdr_block, dft_tdr_monitor writes a dft_tdr_transaction to dft_tdr_predictor.

In this way, the TDR class definition can be very neat, and only needs to declare each bit field of it. Figure 19 is
an example of a TDR class definition. When TDR access network changes, we only need to update dft_tdr_network
and dft_tdr_trans_to_jtag_trans_sequence, while all TDR class definitions do not need any update, which can save
a lot of test environment setup time.

Figure 15. DFT TDR access network example.

Figure 16. dft_tdr_layering block diagram.

Figure 17. TDR address encode.

	
 11

 DFT TDR Access Network Modelling
In the DFT TDR access network, a SIB bit and a TDR bit can be modelled as shown in Figure 18.
The out_update () method is to model the active clock edge that triggers the shift register bit during shift

operation, and the value_update () method is to model the active clock edge that triggers the update register bit
during the update operation.

dft_tdr_network uses sib_node and reg_node to construct a network equivalent to the DUT.
And it only needs to model each 1500 client’s IR and a WDR (Wrapper Data Register) whose length is dynamic,

which can calculate from jtag_transaction coming from jtag_monitor and current network chain length. It needs
not to actually model every TDR, because each time only a TDR can be configured in a 1500 client.
 DFT TDR Class Definition
The DFT TDR class definition is similar to other function registers, which extend from uvm_reg class. A bypass

TDR that has only one bit field is defined in Figure 19 for an example.

Figure 18. TDR access network element modelling.

	
 12

Figure 19. DFT TDR definition example.

 dft_tdr_transaction Class and bus_reg_ext Class
The bus_reg_ext class is used for sending golden values to jtag_driver when doing register read or write in RAL.

dft_tdr_adpter colons the extension information to the handle of extension in dft_tdr_transaction in bus2reg
direction.

Figure 20 and Figure 21 show all properties of the dft_tdr_transaction and bus_reg_ext class.
read_not_write indicates whether the current register operation is a UVM_READ or UVM_WRITE kind.
address is the encoded TDR address.
If the current register access kind is UVM_WRITE, dft_tdr_adapter shifts write data to wr_data_q. If the current

register access kind is UVM_READ, dft_tdr_adapter shifts the default value of the register to wr_data_q.
extension is an object of the bus_reg_ext class. It is used to transfer the side information for TDO pad checking

in RAL.
reg_length stores the current register’s length.
In the bus2reg direction, if the current register access kind is UVM_WRITE, dft_tdr_adapter returns data in

wr_data_q, otherwise it returns data in rd_data_q.
IV. STIL TEST PATTERN VERIFICATION

In order to verify the content and behaviours of the generated STIL file, we can use STIL VerifyTM to generate a
Verilog testbench and re-run simulation before delivering to ATE test engineers. The STIL file is verified if the
simulation passes in STIL VerifyTM generated Verilog testbench.

STIL VerifyTM is a free verification utility provided by Mentor Graphics for checking the conformity of STIL
files, which ensures that STIL files are syntactically correct, and features a Verilog testbench that allows EDA
(Electronic Design Automation) and ATE tool developers to run and display STIL content in any Verilog simulator
taking STIL file and DUT as input [4].

V. DISCUSSION
In Figure 1, pad_agent is mostly a physical layer agent that only drives and samples pads directed by

pad_rw_transactions, and has no knowledge about the interface protocols, although it groups pads based on their
interface protocols. If needed, the user can implement an upper layer agent to convert protocol-related transactions
to pad_info_transactions and pass them down to pad_agent.

For the sake of simplification, this paper focuses on describing how to build a verification environment that can
convert UVM tests to test patterns for ATE test during simulation, and the common components such as coverage
collectors and scoreboards are not shown, the user can easily implement them using sequence items coming from
jtag_monitor, dft_tdr_monitor, and pad_monitor.

Figure 22 is an example of building an upper layer agent that includes a scoreboard and a coverage collector using
the sequence items from pad_monitor, above the pad_agent. Inside scan_agnet, scan related protocols are
implemented in scan_trans_to_pad_rw_trans_sequence, which converts each scan_transaction to a serial of
pad_rw_transactions. scan_monitor collects pad_rw_transactions and converts them into scan_transactions.

	
 13

Figure 20. dft_tdr_transaction properties definition.

Figure 21. bus_reg_ext properties definition.

Figure 22. An example of building upper layer agent above pad_agent

Because we enforce every pad drive and sample should be done by a driver except for the reference clock pads
and each driver passes STIL information to the STIL_generator whenever it drivers and samples a pad, the
generated STIL pattern is in function equivalent to its corresponding UVM test. Coverage statistics, which is
gathered from coverage collectors to rank a UVM test, is also used to rate the generated STIL pattern.

VI. CONCLUSION
This UVM-based DFT environment can be easily adopted in most projects for DFT function verification by

overriding dft_env_configuration, grouping pads as shown in Section B, and defining related interfaces.
By modifying the call_stil_gen () method in each driver to transfer pad drive and measure information to the

format of the other test language required, this environment could also generate other format patterns ATE needs,
not just the STIL format.

Using this method, it saves usually a team’s work to translate DFT function tests to STIL patterns in a project, and
more important, it avoids errors introduced in the manual translation process to save turnaround debug efforts.

The approach to lift TDR in RAL is also a general way and can be applied in most projects by modelling related
dft_tdr_network and overriding dft_tdr_trans_to_jtag_trans_sequence. Moreover, it makes it easy to migrate
UVM tests developing from this UVM-based DFT verification environment among verification environments and
tests from block to system levels.

This UVM-based DFT environment works well in an experiment project and the generated STIL test pattern files
pass simulation using STIL VerifyTM, which indicates it could be applied in real projects.

The next step of work will be to use this environment in real projects and validate it in post-silicon debug.
REFERENCES

[1] IEEE Standard Test Interface Language (STIL) for Digital Test Vector Data, Section 5. STIL orientation and capabilities tutorial
(informative), p. 10.

[2] S. Sutherland, and T. Fitzpatrick, “UVM rapid adoption: a practical subset of UVM,” DVCON 2015, p. 21.
[3] Mentor Graphics, Online UVM Cookbook (http://verificationacademy.com/cookbook), pp. 302–307.
[4] Mentor Graphics (https://www.mentor.com/products/silicon-yield/getting_started_stil).

