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Abstract-The DFT (Design For Testability) design has become more and more complex accompanying the increasing 

scale of SoC (System on Chip).  How to verify DFT logic completely in simulation and how to supply test patterns with 
high coverage to ATE (Automatic Test Equipment) test are important for post-silicon debug and yield increase.  While 
verification methodology is evolving, innovating, and entering the UVM (Universal Verification Methodology) era, DFT 
verification needs to keep pace to leverage the advantages of UVM, and thereby to increase test reusability, extendibility 
and functional coverage, etc.  This paper presents a general UVM-based DFT verification environment, which can be 
used from modular DFT verification to SoC DFT verification, and it can generate functionally equivalent STIL (Standard 
Test Interface Language) test patterns for ATE test during SoC simulation.  This paper also presents a method to model 
hierarchically networked DFT TDR (Test Data Register) at RAL (Register Abstract Level) in the UVM environment to 
allow test writers focus on test sequences without taking care of the details in TDR read and write operations. 
 

I.   INTRODUCTION 
In DFT (Design For Testability) domain, the test patterns running on an ATE (Automatic Test Equipment) can be 

categorized into two types: scan related and non-scan related.  The former can be generated using ATPG (Automatic 
Test Pattern Generation) tools, while the latter cannot.  Like other function tests, these non-scan DFT function tests 
are normally created by design verification engineers using languages such as System Verilog or C++.  However, 
ATEs need test patterns described by STIL (Standard Test Interface Language) or other test languages.  

To fill the gap, there is usually a dedicated team to transfer function simulation to ATE test environment, or 
alternatively in-house automation flows are developed to enforce complex rules on test writing and register 
specification documentation, which are specific for a given environment and difficult to migrate.  

This paper provides a universal and more efficient solution by introducing a UVM (Universal Verification 
Methodology) based DFT verification environment that naturally generates test patterns in STIL format during 
simulation and can be plugged into any UVM-based environment.  This method applies to other formats that ATEs 
need as well. 

For ultra-large-scale SoC (System on Chip), IEEE 1149.1 protocol alone cannot satisfy the DFT design 
requirements, therefore the IEEE 1687 and 1500 protocols are usually adopted to enable modular and hierarchical 
DFT test access, leading to challenges when writing test sequences at RAL (Register Abstract Level), as different 
protocol TDRs (Test Data Register) are hierarchically located in a network connected via IEEE 1687.  To access a 
TDR, one or more levels 1687 SIBs (Segment Insertion Bit) have to be opened and the length of DR (Data Register) 
chain varies with SIB values.  The author also comes up with a general way to model hierarchically networked DFT 
TDR (Test Data Register) at RAL. 
   Structure of This Paper 
This paper is divided into four parts.  The first part is about how to build a UVM-based DFT verification 

environment that can generate STIL test patterns naturally.  Then the second part will focus on the method of lifting 
DFT TDR to RAL.  The third part answers how to verify whether the generated STIL pattern works.  The fourth part 
is result discussion and conclusions. 

In both of the first and second parts, the method we developed will be elaborated as follows: first, a general 
overview will be provided, and then the detailed implementation will be elaborated with reference to an example. 

II.   UVM-BASED DFT VERIFICATION ENVIRONMENT 
   Idea Overview 
The STIL test pattern describes test stimulus using vectors which specify the pad drive and measurement 

information (called STIL information hereinafter) in a time period. 
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A UVM test usually contains one or several sequences, which are finally broken down into streams of UVM 
sequence items (a.k.a transactions) and passed to UVM drivers.  The UVM drivers are normally used to drive and 
sample pads of DUT (Design Under Test), meaning that they also contain the STIL information passing through.  In 
fact, as to be demonstrated in this paper, the UVM drivers are the best supplier of STIL information. 

With the precondition that any pad drive and sample are controlled by a UVM driver, which enforces no direct 
pad connection in the testbench (except for clock pads), simply by collecting all STIL information from the drivers 
and then writing them out according to the time stamp of the STIL information, we can obtain complete test vectors 
of a certain UVM test when the simulation finishes. 

Thus, we can categorize the pads of a SoC into the following types from the DFT functional simulation 
perspective: 

1)   IEEE 1149.1 compliance on-chip TAP (Test Access Port).  Hereinafter, it is simply called JTAG (Joint Test 
Action Group) interface as shown in Table I, which is the most important interface for DFT design.  Please 
note that in Table I, read_not_write signal is not defined in IEEE 1149.1, as it is an internal signal only used 
in this environment, for more description please refer to Section C.5. 

2)   Clock pads, which are clocks that need to toggle in DFT functional simulation.  See Section D for more 
description. 

3)   Reset pads.  All the reset related pads are categorized into this type. 
4)   Other pads.  Except for type 1) to 3) abovementioned, the remaining pads are categorized into this type.  See 

Section E for more description. 
In Figure 1, jtag_driver, clock_driver, reset_driver, and pad_driver correspond to the above four pad types, 

respectively.  The STIL_generator collects STIL information from these drivers and writes them to a STIL pattern 
file. 
   jtag_agent Implementation 
In Figure 2, jtag_agent is composed of jtag_sequencer, jtag_monitor, and jtag_driver, all of them configured 

through jtag_agent_configuration. 
 

 
 

Figure 1. UVM-based DFT verification environment. 
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TABLE I 

JTAG INTERFACE DEFINITION 
JTAG Interface 

Pad Direction Pad Name 

input TCK 

input TMS 

input TRST_L 

input TDI 

output TDO 

input read_not_write 
 

 
 

Figure 2. jtag_agent block diagram. 
 
C.1.  jtag_agent_configuration Class 

Figure 3 shows the properties and a key method (pad_info_init ()) of jtag_agent_configuration class. 
 

 
 

Figure 3. jtag_agent_configuration properties and pad_info_init () method 
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C.2.  jtag_transaction Class 
Figure 4 shows the properties of jtag_transaction class. 
o_ir is a dynamic array to store the instruction operation code (a.k.a OPCODE) being sent to the DUT’s IEEE 

1149.1 FSM (Finite State Machine) IR (Instruction Register) and o_ir_length is its size. 
o_dr is a dynamic array to store the data being sent to the DUT’s IEEE 1149.1 FSM DR (Data Register) and 

o_dr_length is its size. 
tdo_dr_queue, tdo_ir_queue, tdi_dr_queue, and tdi_ir_queue store the data during shift IR or DR state 

monitored by jtag_monitor. 
chk_ir_tdo and chk_dr_tdo are flags to indicate jtag_driver whether to check TDO cycle-by-cycle during shift IR 

or DR state. 
exp_tdo_dr_queue is the golden data expecting the DUT TDO output during shift DR state, which is used by 

jtag_driver to check the TDO data on the fly. 
exp_tdo_dr_mask_queue indicates which bit in exp_tdo_dr_queue needs not to check. 
exp_tdo_ir_queue is the golden data expecting the DUT TDO output during shift IR state, which is used by 

jtag_driver to check the TDO data on the fly. 
read_not_write is a flag indicating jtag_monitor whether it is a read or write operation for the current transaction. 

Please see Section C.5 for more details. 
C.3.  JTAG Interface Connection in Testbench 

This paper categorizes pads of a SoC into four types, which are driven by different drivers, so the JTAG interface 
shown in Table I is driven by clock_driver, reset_driver, and jtag_driver as shown in Figure 5. 

Figure 6 is jtag_if interface definition that does not contain all signals shown in Table I because of the 
categorization of pads.  The rest signals are defined in clock_if and reset_if interfaces. 
C.4.  jtag_driver Class  

IEEE 1149.1 protocol is implemented in jtag_driver, which fetches every jtag_transaction sequence item from 
jtag_sequencer, drives the JTAG interface’s TDI and TMS, and samples TDO if chk_ir_tdo or chk_dr_tdo flag is 
on.  exp_tdo_dr_queue and exp_tdo_ir_queue store the expected golden values, which also will be used as the 
golden measure information for TDO in the generated STIL pattern. 

If the gen_stil_file knob is on, jtag_driver not only needs to drive and sample pads – it also converts such 
information to STIL information (handled by the call_stil_gen () method), and then sends it to STIL_generator 
through an analysis port, which is an object of uvm_analysis_port class specialized with stil_info_transaction type. 
 

 
 

Figure 4. jtag_transaction properties definition. 
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Figure 5. JTAG interface toplevel connection. 
 

 
 

Figure 6. Signals defined in jtag_if  interface. 
 

In Figure 2, let us suppose the jtag_driver’s FSM is in shift DR state and it is going to shift three bits 101 to the 
DUT and sample TDO data during the shift operation.  The golden TDO data are three bits 110. 

At TCK negative edge a, the jtag_driver keeps TSM low to let the DUT’s FSM stay in shift DR state and drives 
TDI high to send out the first bit out.  The call_stil_gen () method converts this information as shown in line 1. 

At TCK positive edge b, the jtag_driver samples TDO and compares it with the golden value, which is one bit 1.  
The call_stil_gen () method converts this information as shown in line 2. 

At TCK negative edge c, the jtag_driver keeps TSM low to let the DUT’s FSM stay in shift DR state and drives 
TDI low to send out the second bit out.  The call_stil_gen () method converts this information as shown in line 3. 

At TCK positive edge d, the jtag_driver samples TDO and compares it with the golden value, which is one bit 1.  
The call_stil_gen () method converts this information as shown in line 4. 

At TCK negative edge e, the jtag_driver drives TSM low to let the DUT’s FSM go to exit1 DR state and drives 
TDI high to send out the last bit out.  The call_stil_gen () method converts this information as shown in line 5. 

At TCK positive edge f, the jtag_driver samples TDO and compares it with the golden value, which is one bit 0.  
The call_stil_gen () method converts this information as shown in line 6. 
C.5.  jtag_monitor Class 

There is a signal called read_not_write defined in the JTAG interface, as shown in Table I, which is only used by 
jtag_monitor to indicate whether the current transaction is a write operation or a read operation. 

JTAG interface is a serial bus, while shifting TDI to a register, data stored in it is being shifted out on TDO, so 
there is not a really so-called write or read operation. 

Here, we define write operation and read operation in concept for RAL convenience. 
Read operation: data being shifted in a register is the same as the data stored in it. 
Write operation: data being shifted in a register is different with the data stored in it. 
jtag_monitor monitors the JTAG interface activity, sampling TDI or TDO according to the read_not_write 

signal, composing the jtag_transaction sequence items and then passing them to the dft_tdr_laying as shown in the 
blue arrows of Figure 1. 
   Clock Pads Connection in Testbench 
In the STIL pattern file, the Timing block defines sets of “WaveformTables”.  Each WaveformTable defines the 

waveforms to be applied to each signal used in a vector [1].  Because DFT function tests only use the JTAG 
interface to configure TDRs, we define one WaveformTable in the generated STIL pattern file and use TCK’s half 
period as the WaveformTable’s Period.  For other clocks, they are described to have the same frequency as TCK in 
the STIL pattern file but they are connected to desired frequencies from ATE during post-silicon test.  Therefore, 
clock_driver only needs to drive TCK during simulation, and other clocks are generated from testbench (this is the 
only exception where the clock pads are allowed to drive from testbench in this environment). 

As shown in Figure 7 for an example, the DUT has two PLL reference clocks and a bypass clock, which need 
active during simulation, named PLL1_REF, PLL2_REF, and BYPASS_CLK.  
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Figure 7. An example of clock pads connection in testbench. 
 

The clock_gen module at the toplevel takes charge of these three clocks’ toggle.  TCK of the JTAG interface is 
generated by the clock_driver.  

If the gen_stil_file knob is on, the clock_driver needs to pass TCK drive information to the the call_stil_gen () 
method at the same time when it drives TCK, and the call_stil_gen () method uses the TCK drive information as all 
active clocks’ drive information and pass the STIL information to the STIL_generator, as shown in Figure 7 line1 to 
line4. 

For an ATE test, the PLL1_REF, PLL2_REF, and BYPASS_CLK toggle information in the STIL pattern can be 
regarded as a placeholder to make post silicon engineers aware that these three clocks are reference clocks, so that 
they will not use the toggle information described in STIL patterns to drive reference clocks, but use clocks supplied 
by ATE with desired frequencies. 
   pad_agent Implementation 
Figure 8 shows the components in pad_agent and the execution flow in pad_driver, which fetches 

pad_rw_transaction from pad_sequencer. 
The pad type 4) defined in Section B can be subgrouped according to their function or interface protocol.  Taking 

the memory pads, GPIO pads, and scan control pads as examples, each of them could be put in a separate subgroup.  
Figure 9 is an example of subgrouping pads that define the pad_if interface according to their interface protocols. 
In Figure 8, the pad_init () method initializes all subgroups pads in turn at the beginning of the run_phase task of 

the pad_driver, and the call_stil_gen () method converts this information to STIL information and writes to the 
STIL_generator through an analysis port. 

Figure 10 displays all properties of the pad_rw_transaction class. 
grp_num is used to indicate the pad_dirver which group of pads to drive. 
in_data_queue stores the data being driven by the pad_driver. 
out_data_queue stores the data being sampled by the pad_driver. 
inout_data_queue stores the data being driven or sampled by the pad_driver.  An unknown bit in the queue 

indicates pad_driver the corresponding pad is in output mode and it will write the sampled pad value into the same 
location. 

exp_out_data_queue and exp_inout_data_queue stores both golden values to let pad_driver check on the fly and 
the information for STIL pattern to measure the pads value during a time period of conversion by the call_stil_gen () 
method. 

Please note these queue types should be logic instead of bit in order to store four state values. 
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Figure 8. pad_agent block diagram. 
 

 
 

Figure 9. An example of defining pad_if interface in subgroups. 
 

 
 

Figure 10. pad_rw_transaction properties definition 
 
E.1.  pad_agent_configuration Class 

Figure 11 is an example of the pad_agent_configuration class, which has two subgroups of pads. 
A DFT test needs to initialize every group’s package name by calling the pad_info_init () method before the 

main phase objection and stores it in the configuration database for pad_driver and STIL_generator fetch. 
   reset_driver Class 
Figure 12 is an example of reset_driver that drives all resets signals defined in the reset_if interface where the 

call_stil_gen () method converts the drive information to STIL information and writes it to STIL_generator through 
an analysis port. 
   STIL_generator Implementation 
The STIL_generator, which extends from uvm_subscriber class specialized with stil_info_transaction type, has 

four analysis exports to connect with clock_driver, reset_driver, pad_driver, and jtag_driver’s analysis port 
separately.  Since the uvm_subscriber class has only one built-in analysis export, the uvm_analysis_imp_decl 
macro needs to be used to declare analysis imp export and its associated write () method for the remaining analysis 
export [2]. 
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Figure 11. pad_agent_configuration properties definition example 
 

 
 

Figure 12. An example of reset_driver. 
 

stil_info_transaction is defined in Figure 13.  stil_info is pads drive and measure information, and comment_info 
is the comment going to be printed out with the stil_info. 

In Figure 14, each driver’s analysis port has its corresponding write () method, a semaphore which has only one 
key and a group of Ping-Pong buffers which have two variables, called ping_data_rdy and pong_data_rdy, to 
indicate the Ping-Pong buffer status. 

The stil_info_transaction written through a driver’s analysis port is stored in a Ping-Pong buffer group, each 
buffer stores one stil_info_transaction. 

The STIL_generator needs to collect all stil_info_transaction coming from the same simulation time slot, to 
concatenate stil_info of every stil_info_transaction, and to write them out as a single test vector.  To make sure 
STIL_generator does not miss any stil_info_transaction from the same time slot, it has to suspend the run_phase 
task in the STIL_generator until all other run_phase tasks finish.  However, in UVM, because all uvm_component 
run_phase tasks are executed in parallel and the STIL_generator itself is an uvm_component, there is no easy way 
to schedule the simulation events in STIL_generator’s run_phase task that is to be executed after all other drivers’ 
run_phase tasks finish. 

To resolve this issue, a group of Ping-Pong buffers is introduced.  The write () method always writes the ping 
buffer first and then the pong buffer, so the ping data and pong data come at different simulation time slots.  Once a 
group of Ping-Pong buffers is full, which indicates the simulation has already moved forward, it will be the right 
time to collect all ping buffer data and write them out. 

The run_phase task of STIL_generator, as shown in Figure 14, always checks if there is at least one driver 
whose Ping-Pong buffer group is full.  If the result is true, it will query each key of the semaphore belonging to the 
corresponding driver.  Once it gets all the keys, it will then fetch all ping buffer data, update the Ping-Pong buffer 
groups (if the ping and pong buffers are both empty, do nothing; if the ping buffer is full and the pong buffer is 
empty, clear ping_data_rdy; if the ping and pong buffers are both full, copy the pong buffer data to the ping buffer 
and clear pong_data_rdy), and put back all keys and write a test vector to the STIL pattern. 
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Figure 13. stil_info_transaction properties. 
 

 
 

Figure 14. STIL_generator block diagram. 
 

III.   DFT TDR ABSTRACTION 
   Idea Overview 
For ultra-large-scale SoC, usually there is a group of TDRs, which are either IEEE 1500 or IEEE 1149.1 

compliant, being used to configure a block of the DFT design.  The TDR groups among different blocks are chained 
together using IEEE 1687 protocol.  Figure 15 is an example of DFT TDR access network. 

It is necessary to level up the TDR access in RAL, so as to make it easy to migrate UVM tests developing from 
this UVM-based DFT verification environment among verification environments and tests from block to system 
level.  By doing this, test writers can focus on test sequences as such rather than the complex operation of accessing 
every TDR hierarchically located in the network. 

For non-UVM-based environments, the normal way is to define a base class according to its protocol (for 
example, to define an IEEE1500 TDR base class and an IEEE 1149.1 TDR base class) and wrap up a TDR access 
operation inside its extension.  When the DFT access network changes, the wrapped-up access operation in each 
TDR class has to be updated accordingly.  Such work is usually time-consuming.  However, the method of 
modelling DFT TDR in UVM-based environments is rarely seen in literature to the author’s knowledge. 



	  
  10 

This paper presents a way to abstract TDR in UVM-based environments that is neat and easy to maintain, as 
shown in Figure 16. 

We can encode a TDR’s location information into its address, as shown in Figure 17, and model an equivalent 
TDR access network named dft_tdr_network in dft_tdr_monitor, as shown in Figure 16. 

In Figure 1, the reg2bus direction is shown in red lines, where the dft_tdr_trans_to_jtag_trans_sequence fetches 
dft_tdr_transactions, unpacks address, decodes SIB code to get the TDR location information, and then generates 
jtag_transactions to jtag_sequencer [3].  For the bus2reg direction shown in blue lines, the dft_tdr_network 
maintains network status using jtag_transactions from jtag_monitor.  When the sib_nodes value hit the SIB code in 
the dft_tdr_block, dft_tdr_monitor writes a dft_tdr_transaction to dft_tdr_predictor. 

In this way, the TDR class definition can be very neat, and only needs to declare each bit field of it.  Figure 19 is 
an example of a TDR class definition.  When TDR access network changes, we only need to update dft_tdr_network 
and dft_tdr_trans_to_jtag_trans_sequence, while all TDR class definitions do not need any update, which can save 
a lot of test environment setup time. 
 

 
 

Figure 15. DFT TDR access network example. 
 

 
 

Figure 16. dft_tdr_layering block diagram. 
 

 
 

Figure 17.  TDR address encode. 
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   DFT TDR Access Network Modelling 
In the DFT TDR access network, a SIB bit and a TDR bit can be modelled as shown in Figure 18. 
The out_update () method is to model the active clock edge that triggers the shift register bit during shift 

operation, and the value_update () method is to model the active clock edge that triggers the update register bit 
during the update operation. 

dft_tdr_network uses sib_node and reg_node to construct a network equivalent to the DUT. 
And it only needs to model each 1500 client’s IR and a WDR (Wrapper Data Register) whose length is dynamic, 

which can calculate from jtag_transaction coming from jtag_monitor and current network chain length.  It needs 
not to actually model every TDR, because each time only a TDR can be configured in a 1500 client. 
   DFT TDR Class Definition 
The DFT TDR class definition is similar to other function registers, which extend from uvm_reg class.  A bypass 

TDR that has only one bit field is defined in Figure 19 for an example. 
 

 
 
 

 
 

Figure 18. TDR access network element modelling. 
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Figure 19. DFT TDR definition example. 
 
   dft_tdr_transaction Class and bus_reg_ext Class 
The bus_reg_ext class is used for sending golden values to jtag_driver when doing register read or write in RAL.  

dft_tdr_adpter colons the extension information to the handle of extension in dft_tdr_transaction in bus2reg 
direction. 

Figure 20 and Figure 21 show all properties of the dft_tdr_transaction and bus_reg_ext class. 
read_not_write indicates whether the current register operation is a UVM_READ or UVM_WRITE kind. 
address is the encoded TDR address. 
If the current register access kind is UVM_WRITE, dft_tdr_adapter shifts write data to wr_data_q.  If the current 

register access kind is UVM_READ, dft_tdr_adapter shifts the default value of the register to wr_data_q. 
extension is an object of the bus_reg_ext class.  It is used to transfer the side information for TDO pad checking 

in RAL. 
reg_length stores the current register’s length. 
In the bus2reg direction, if the current register access kind is UVM_WRITE, dft_tdr_adapter returns data in 

wr_data_q, otherwise it returns data in rd_data_q. 
IV.   STIL TEST PATTERN VERIFICATION 

In order to verify the content and behaviours of the generated STIL file, we can use STIL VerifyTM to generate a 
Verilog testbench and re-run simulation before delivering to ATE test engineers.  The STIL file is verified if the 
simulation passes in STIL VerifyTM generated Verilog testbench. 

STIL VerifyTM is a free verification utility provided by Mentor Graphics for checking the conformity of STIL 
files, which ensures that STIL files are syntactically correct, and features a Verilog testbench that allows EDA 
(Electronic Design Automation) and ATE tool developers to run and display STIL content in any Verilog simulator 
taking STIL file and DUT as input [4]. 

V.   DISCUSSION 
In Figure 1, pad_agent is mostly a physical layer agent that only drives and samples pads directed by 

pad_rw_transactions, and has no knowledge about the interface protocols, although it groups pads based on their 
interface protocols.  If needed, the user can implement an upper layer agent to convert protocol-related transactions 
to pad_info_transactions and pass them down to pad_agent. 

For the sake of simplification, this paper focuses on describing how to build a verification environment that can 
convert UVM tests to test patterns for ATE test during simulation, and the common components such as coverage 
collectors and scoreboards are not shown, the user can easily implement them using sequence items coming from 
jtag_monitor, dft_tdr_monitor, and pad_monitor.  

Figure 22 is an example of building an upper layer agent that includes a scoreboard and a coverage collector using 
the sequence items from pad_monitor, above the pad_agent.  Inside scan_agnet, scan related protocols are 
implemented in scan_trans_to_pad_rw_trans_sequence, which converts each scan_transaction to a serial of 
pad_rw_transactions.  scan_monitor collects pad_rw_transactions and converts them into scan_transactions. 
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Figure 20. dft_tdr_transaction properties definition. 

 
 

Figure 21. bus_reg_ext properties definition. 
 

 
 

Figure 22. An example of building upper layer agent above pad_agent 
 

Because we enforce every pad drive and sample should be done by a driver except for the reference clock pads 
and each driver passes STIL information to the STIL_generator whenever it drivers and samples a pad, the 
generated STIL pattern is in function equivalent to its corresponding UVM test.  Coverage statistics, which is 
gathered from coverage collectors to rank a UVM test, is also used to rate the generated STIL pattern. 

VI.   CONCLUSION 
This UVM-based DFT environment can be easily adopted in most projects for DFT function verification by 

overriding dft_env_configuration, grouping pads as shown in Section B, and defining related interfaces. 
By modifying the call_stil_gen () method in each driver to transfer pad drive and measure information to the 

format of the other test language required, this environment could also generate other format patterns ATE needs, 
not just the STIL format. 

Using this method, it saves usually a team’s work to translate DFT function tests to STIL patterns in a project, and 
more important, it avoids errors introduced in the manual translation process to save turnaround debug efforts. 

The approach to lift TDR in RAL is also a general way and can be applied in most projects by modelling related 
dft_tdr_network and overriding dft_tdr_trans_to_jtag_trans_sequence.  Moreover, it makes it easy to migrate 
UVM tests developing from this UVM-based DFT verification environment among verification environments and 
tests from block to system levels. 

This UVM-based DFT environment works well in an experiment project and the generated STIL test pattern files 
pass simulation using STIL VerifyTM, which indicates it could be applied in real projects. 

The next step of work will be to use this environment in real projects and validate it in post-silicon debug. 
REFERENCES 

[1] IEEE Standard Test Interface Language (STIL) for Digital Test Vector Data, Section 5. STIL orientation and capabilities tutorial 
(informative), p. 10. 

[2] S. Sutherland, and T. Fitzpatrick, “UVM rapid adoption: a practical subset of UVM,” DVCON 2015, p. 21. 
[3] Mentor Graphics, Online UVM Cookbook (http://verificationacademy.com/cookbook), pp. 302–307. 
[4] Mentor Graphics (https://www.mentor.com/products/silicon-yield/getting_started_stil). 


