
A Unified Testbench Architecture Solution for

Verifying Variants of the PLL IP

Deepa Ananthanarayanan, Malathi Chikkanna
AMD India Pvt Ltd,

Bangalore, India

Abstract- Universal verification methodology (UVM) has managed to standardize testbench development in the

industry. UVM offers a coverage driven verification (CDV) environment that is reusable, scalable, and configurable. For

verifying multiple variants of an IP, the typical approach would be to create identical verification environments with

many of the common components replicated in each testbench. This may seem like a viable solution, but it comes with the

overhead of creating and maintaining separate testbenches.

The authors of this paper present a case where UVM was adopted to create a single plug-and-play verification

platform that can be configured and re-used for different design variants of the phase locked loop (PLL). Most of the

verification components are retained while scaling the verification suite for any additional variant of the PLL, leading to a

drastic reduction in verification bring-up time for the new PLL.

Keywords - Coverage Driven Verification (CDV), Constrained Random Verification (CRV), Intellectual Property (IP),

Phase Locked Loop (PLL) , Universal Verification Methodology (UVM), IP, Phase Locked Loop (PLL).

I. INTRODUCTION

Thorough verification is the key to the success of any design. Developing effective stimulus for sweeping the

gamut of functionality and automating response checking are the crux of verification. A robust testbench

architecture built within the framework of a well-structured methodology, such as universal verification

methodology (UVM), helps achieve verification effectiveness.

One of the main challenges of verification activities is the time spent on debugging testbench inadequacies

when scaling or reusing testbench components. We seek to make improvements to this challenge by proposing a

generic solution for building a highly scalable and reusable testbench architecture with just a one-time effort spent

on constructing the base template, and minimal time spent on extending, customizing, or reusing the components for

various use cases of the testbench.

II. THE DESIGN UNDER TEST

Phase locked loops (PLLs) are the heart of any SoC design, with applications ranging from frequency synthesis

to clock skew cancellation and clock data recovery. The PLL in the design is based on a digital architecture, which

offers area and power saving for fine line width, low voltage technology nodes. The core of the design is the

feedback loop consisting of the time to digital converter (TDC), digital loop filter (DLF), digitally controlled

oscillator (DCO), and the feedback divider as seen in Fig 1. Such an architecture is typically used for the frequency
synthesis application, such as high-speed clock generation.

TDC
Digital Loop

Filter
DCO

Feedback Divider

DCO ClockFeedback Clock

Reference
Clock

Figure 1. Digital PLL Architecture.

The design under test (DUT) is a digital phase locked loop (PLL) IP for frequency synthesis, with frequency

application specific variants. The digital PLL IP is a highly configurable design with programmable options for the

PLL bandwidth, feedback loop stability, and divider settings (i.e., reference clock, feedback path and post divider).

Application specific PLL based clock generation IPs may implement digital blocks, in addition to the core design

that typically contains:

1. Protocol specific interfaces to consuming blocks
2. Register space for configuring PLL settings

3. Design for test (DFT), scan implementation

4. Level shifters and isolation cells

5. Dividers on the reference clock or the DCO clock for more frequency options, etc.

III. PRIOR WORK – PLL VERIFICATION

 In prior programs, the PLL verification was directed in nature. Each PLL variant had a unique testbench and a

designated person to develop, maintain, and verify the PLLs. Fig 2 shows a standalone verilog based verification

infrastructure which was developed for each of the PLL IPs. This consists of stimulus generator, checker and

testcases. Digital stimulus generator drives both random and directed stimulus to the DUT. Digital Checker block

implements always on checks and task based checks. Verilog test cases were developed for specific verification

scenarios with tasks and functions for driving digital stimulus at the DUT (pins/interface).

Scripts &
Testcases

Digital
Stimulus

Generator

Digital
Checker

DUT

Digital Design
Analog

Behavioral
Model

Figure 2. Verilog based testbench.

IV. VERIFICATION CHALLENGES IN PRIOR WORK

A. Testbench Reusability

As we know, in an SoC, there are multiple variants of a PLL and each one requires standalone verification setup

for thorough testing. This poses a huge verification challenge in terms of building and maintaining multiple

testbench setups. With the verilog-based verification methodology, building a reusable testbench becomes a huge

challenge.

Attempts were made towards creating common verilog tasks and functions for implementing stimulus drivers

and automated checkers. These tasks/functions were then reused across the individual PLL testbenches. However

any addition or change to the input protocol or output check meant editing the original verilog task/function and the

associated calls to them.

B. Lack of Constrained Random Verification
In addition to the reusability challenge, verilog based testing falls short of the need for constrained random

verification (CRV) of a PLL design with a lot of programmable use cases. Frequency testing, a subset of the

complete PLL functional verification alone involves checking for the PLL output frequency for a large combination

of:

1. Reference clock frequency and associated divider settings

2. Feedback divider settings: integer or fractional

3. Post divider settings to further divide down the PLL output clock

4. Bandwidth and feedback loop settings

 Overall functional verification completeness of the PLL IP requires not only signing off on all supported

frequencies, but on all functional features such as:

1. Low power mode support

2. Interface specific protocol compliance when programming the PLL
3. Power Aware Verification: Level Shifter and Firewalling checks

4. Calibration algorithm

 To address constrained random verification, the previous work involved developing a SystemVerilog wrapper

around the verilog testbench for implementing transaction level randomization and for defining cover points to

capture functional coverage of the PLL DUT.

 SystemVerilog helped address CRV; however scalability of the testbench remained a challenge.

V. PROPOSED SOLUTION

 The universal verification methodology using SystemVerilog constructs sets the stage for building reusable and
scalable testbench architecture with coverage driven verification (CDV) for the design under test (DUT). CDV

combines automatic test generation, self-checking testbenches, and coverage metrics to significantly reduce the time

we spent while verifying the multiple variants of PLL.

 Fig 3 depicts a typical UVM based testbench architecture comprising universal verification components (UVC or

Agent) that includes: Sequencer, Driver, Monitor, Scoreboard, Coverage collector etc. With four variants of the PLL

to verify, it was ideal to create a UVM testbench template as shown in Fig 3 and replicate it with customization for

each of the PLL variants.

UVC

Config Monitor

DriverSequencer

DUT

UVC

Config
Monitor

SequencerDriverSequence Sequence

Scoreboard/
Coverage

Figure 3. Typical UVM based verification environment.

In our approach, the need for duplicating and maintaining multiple testbenches was eliminated by developing a

configurable UVM testbench as shown in Fig. 4. A single comprehensive UVM-based verification environment was

developed with the flexibility to append unique verification methods on a case-by-case basis. The agent consists of

the PLL base class driver (pll_base_driver) , pll sequencer ,monitor (pll_base_monitor) and configuration object .
For a given PLL variant, which is determined by the configuration parameter, the base class components are

overridden by the corresponding derived components (pll_type2_driver, pll_type2_monitor, etc) and the remaining

components are re-used. This resulted in considerable reduction in the verification bring up time.

 We could thoroughly verify our design by changing testbench parameters in the configuration object or

changing the randomization seed by adopting constrained-random testing. This enabled us to devote effort into

writing time-consuming, directed tests for scenarios that were difficult to reach randomly. Coverage monitors were

added to the environment to measure the progress and identify non-exercised functionality. A common sequence

library, with a comprehensive list of sequences, was used across the variants of the PLL IP. SystemVerilog

assertion methodology was used for developing extensive temporal checks of the PLLs.

TEST

ENV

AGENT

I/F
&

SVA

DUT

PLL1/PLL2/PLL3/PLL4

S
E
Q

L
I
B
R
A
R
Y

S
E
Q
U
E
N
C
E
R

V
I

Config

TB Config

pll_base_monitor

pll_type2_monitor

pll_type3_monitor

pll_type4_monitor

pll_base_driver

pll_type2_driver

pll_type3_driver

pll_type4_driver

Figure 4. Common testbench architecture for PLLs.

 The development started with identifying and classifying common and unique features to these PLL variants. A

SystemVerilog based UVM template was created with:

 A PLL agent with base components: driver, monitor and a common sequencer.

 An agent specific configuration object for customizing the verification components.

 Virtual interface for connecting the verification environment to the DUT interface.

 Top level module with instance of the DUT and the corresponding interface.

 Common sequence library.

 Fig 5 shows the PLL agent composed of base components such as: driver (pll_base_driver), monitor

(pll_base_monitor), configuration object (pll_cfg) and common sequencer. Depending on the configuration object

parameter “is_active”, the agent is either ACTIVE (sequencer, driver, and monitor) or PASSIVE (monitor).

Figure 5. PLL agent.

 Each agent has a configuration object (pll_cfg) for setting parameters specific to a PLL variant. Fig 6 below

shows the configuration object for each of the PLL types. The code shows the divider settings for a particular

application of the PLL that is constrained to a specific range of values.

Figure 6. PLL configuration settings.

Fig. 7 below shows the code for the base class driver (pll_base_driver).The pll_base_driver has the tasks for

driving stimulus on the DUT interface based on the protocol. The virtual methods such as Coldbootpll, Freqchange,

Reset_tog, etc. are the methods common to all the PLL variants. In the task tx_driver(), the transaction item

(pll_seq_item) is fetched from the sequencer using the method get_next_item(). Depending upon the functionality

defined by tr.kind, the appropriate methods (coldbootpll, frequency change, reset etc) are executed. These methods

contain protocol specific procedures for driving the DUT signals.

Figure 7. PLL base class driver.

The derived components house exclusive methods for verifying a unique PLL variant. Fig. 8 below

shows the derived component for one variant of PLL (PLL2). In the code, pll_type2_driver is extended

from the base class driver pll_base_driver and the methods are modified, reused or overridden, based on the

PLL2 feature.

Figure 8. Driver extended for a different variant of the PLL.

Fig 9 shows the top testbench configuration object pll_tb_cfg that has the parameters defined for different pll

types. The parameters such as pll_type_e (an enumeration that defines supported PLL types) and number_of_plls (

number of PLL instances to be created) are defined along with other parameters that configure the testbench.

Figure 9. Top level TB configuration.

 In Fig. 10, pll_env is an encapsulated, ready-to-use, configurable verification environment. Using factory

overrides (set_type_override_by_type) the TB components (driver, monitor and sequencer) for a specific PLL

variant is created. In the test, set the appropriate parameter (i,e pll_type) in the top configuration object (pll_tb_cfg).

When the parameter pll_type = PLL1, all the base class components are instantiated. When the parameter pll_type =

PLL2, the base class components are overridden by derived components (pll_type2_driver, pll_type2_monitor)
using the factory override as shown below.

Figure 10. Top level PLL environment.

 Fig 11 shows multiple user defined tests which are selected for execution from the command line.

The base_pll_test instantiates the top level environment (pll_env) and user defined tests (pll1_test, pll2_test etc) are

added based on the PLL variant.

Figure 9. PLL base test and derived test.

 A sequence library, as shown in Fig 12, houses various scenarios for testing PLL variants. In the planning

phase, all scenarios for verifying the PLL variants are listed out and coded into sequence libraries. One such

sequence library (pll_sequencer_sequence_library) extended from uvm_sequence_library is listed below. Sequences

that are common to all PLL variants are registered with pll_sequencer_sequence_library. For example,

cold_boot_pll_seq is a sequence that is common to all the PLL variants and is registered using the macro

`uvm_add_to_seq_lib(). This sequence is then invoked by the testcase for executing the PLL cold boot scenario.

Figure 10. Sequence library with sequences.

VI. CONCLUSION

A. Summary with results

Every time a new PLL IP has to be verified, only three steps (below) need to be followed, as the rest of the

verification suite (sequences, sequencer, common methods in base components) will be reused as is.

1. Extend the PLL test with appropriate configuration object setting.

2. Extend the driver/monitor and add exclusive methods specific to the PLL variant.

3. Establish the DUT to TB connection through virtual interface.

Using the approach described above, a UVM based common verification environment was developed for four

different variants of the PLL. Most of the verification environment is reusable and scalable with minimal effort. Our

approach reduces:

1. Verification effort: verification bring up effort is minimized due to re-use of existing verification setup.

2. Testbench development and debug time: common features may be verified/debugged using the existing

methods, thereby saving time for developing new scenarios.

3. Verification resources: with Verilog based testing, each PLL had a unique testbench requiring a dedicated

resource. However, with aforementioned UVM based methodology, only one verification resource is

required to manage multiple PLL variants.

With this implementation in our current project, we see an almost 50% reduction in overall verification

effort towards verifying the variants of the PLL.

B. Key Takeaways

 Single shared testbench architecture for all variants of PLL.

 One time creation of the overall testbench and reduced effort on extending the testbench for additional DUT

variants.

 Our solution provides a unified verification environment template for the verification of IPs with similar

design/functionality.

ACKNOWLEDGMENT

We would like to acknowledge our colleagues: G. Raju, M. Chiang, and D. Robinson. © 2014 Advanced Micro

Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, and combinations thereof are trademarks of

Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and

may be trademarks of their respective companies.

REFERENCES
[1] Accellera Systems Initiative Universal Verification Methodology (UVM) 1.1 User’s Guide, May, 2011.

[2] Accellera Systems Initiative Universal Verification Methodology (UVM) 1.1 Class Reference Manual, Jun, 2011.

[3] G. Eason, B. Noble, and I.N. Sneddon, “If SystemVerilog is so good, why do we need the UVM? Sharing responsibilities between libraries

and the core language,” Specification & Design Languages (FDL), 2013 Forum, Paris, France, Sep. 2013.

[4] IEEE, Standard 1800-2012 for SystemVerilog Hardware Design and Verification Language, New York, NJ: IEEE, 2012.

[5] Synopsys, Inc., Reference Verification Methodology, 2002.

[6] UVM World Website www.accellera.org

.

