
A Tale of Two Languages:
SystemVerilog & SystemC

by
David C Black
Senior MTS

Doulos

Sponsored By:

2 of 20

Two languages…

New corporate policy

• HR memos must be written in Borg.
• Programmers will henceforth use Romulan.
• Hardware designs shall be written in Klingon.

This looks
normal…

When's the
first class?

Sponsored By:

3 of 20

System*?
• Unfortunate "System" prefix confuses many

– SystemVerilog
• A system for hardware design & verification
• Significantly improved Verilog combining HDL with HVL

– SystemC
• A system for using C++ for abstract modeling
• Used to model large electronic system-level designs (ESL)

• Intended for very different applications
• Best practice: use both cooperatively

Sponsored By:

4 of 20

What is SystemVerilog?
• Great RTL description

language
– Features to align

gate-level simulation
to RTL

– C-style data and
operators

module mux (

input byte a, b, c,

input [1:0] sel,

output integer f);

// combinational

always_comb
//parallel case

unique if (sel == 2'b10)

f += a;

else if (sel == 2'b01)

f = b;

else

f = c;

endmodule

Sponsored By:

5 of 20

What is SystemVerilog?
• Fantastic language for

constrained random &
coverage driven
verification

• Solid OOP language
for UVM & other
reusable hardware
verification methodologies

class instruction;
rand bit [2:0] m_opcode;
rand bit [1:0] m_mode;
rand shortint unsigned m_data;
constraint assert_mode {

m_opcode[2]==0 ->
m_mode==2'b11;

}
covergroup cg @(posedge clk);

coverpoint m_opcode;
coverpoint m_mode;
coverpoint m_data {

bins tiny [8] = {[0:7] };
bins moderate[8] = {[8:255]};
bins huge [8] = {[256:$]};

}
endgroup

endclass: instruction

Sponsored By:

6 of 20

What is "System" C?

Approach using a C++ library to create abstract hardware/software
models with less detail than RTL to enable early analysis & software
development

• Less detail means
– Fast creation (earlier)

• More experiments
• Early performance analysis

– Fast simulation
• Allows software development
• Verification reference model

• C++ enables
– Draw on vast libraries
– Common language

with software team
• Open-source enables

– Wide distribution for
very large teams

– Share with customers

Sponsored By:

7 of 20

What is SystemC?
• Systems at RTL level simulate too slowly…

CPU ROM DMARAM

Interrupt Timer Bridge

Bridge

DSP ROM RAM

A/DInterrupt TimerI/O

Memory
interface

I/O DMARAM Custom
peripheral

Software

D/A

Software
Multiple software stacks

Digital and analog hardware IP blocks

Multiple buses and bridges

Sponsored By:

8 of 20

Co-existence
• Mixed abstraction levels play well

VHDL
VerilogISS

Sponsored By:

9 of 20

Co-existence with UVM

top

test1

DUTif1 if3

env1

vsqr1 vseq1

seq1 seq2 seq3

scbd1 cvg1

agent3

sqr3

drv3 mon3

co
nf

ig
3

agent1

sqr1

drv1 mon1

co
nf

ig
1

ESL reference

agent2

sqr2

drv2 mon2
co

nf
ig

2

if2

Sponsored By:

10 of 20

Side by Side: Modules

SystemVerilog
module Design

(input logic [7:0] d

, output logic [7:0] q

);

…

endmodule: Design

SystemC
SC_MODULE(Design) {

sc_in <sc_lv<8> > d;
sc_out<sc_lv<8> > q;
…

};

(Containers for blocks of code)

Sponsored By:

11 of 20

Side by Side: Data

SystemVerilog
logic [3:0] l;

int i;

bit b;

string txt;

typdef struct { int a, b; } S;

S s = ‘{1,2};

time t;

SystemC
sc_lv<4> l;
int i;

bool b;

string txt;

struct S { int a, b; };

S s{1,2};//C++11

sc_time t;

Sponsored By:

12 of 20

Side by Side: Containers

SystemVerilog
T1 fixedArray[N];
T1 dynamicArray[];
T1 associativeAry[T2];
T1 queue[$];

SystemC
std::array<T1,N> fixedArray;
std::vector<T1> dynamicArray;
std::map<T2,T2> associativeAry;
std::deque<T1> queue;

Sponsored By:

13 of 20

Side by Side: Conditionals

SystemVerilog
if (EXPR) STMT1

else STMT2

case (EXPR)

EXPR: STATEMENT

default: STATEMENT
endcase

SystemC
if (EXPR) STMT1

else STMT2

switch (EXPR) {

case CONST: STATEMENT; break;

default: STATEMENT;
}

Sponsored By:

14 of 20

Side by Side: Loops

SystemVerilog
while(EXPR) STATEMENT
do STATEMENT while (EXPR);

for (int i=0;i!=max;++i) STMT

forever STATEMENT

foreach (CONTAINER[i]) STMT

SystemC
while(EXPR) STATEMENT
do STATEMENT while (EXPR);

for (int i=0; i!=max; ++i) STMT

for(;;) STATEMENT
for (auto i:CONTAINER)STATEMENT

Sponsored By:

15 of 20

Side by Side: Processes

SystemVerilog
input clock;

input int d;

output int q;

always_ff @(posedge clock)

begin :REGS

q <= d;

end

SystemC
sc_in<bool> clock;
sc_in<int> d;
sc_out<int> q;

SC_METHOD(REGS);
sensitive << clock.pos();
…

void REGS(void) {
q->write(d);

}

Sponsored By:

16 of 20

Side by Side: Fork/Join

SystemVerilog
fork

begin STATEMENTS… end
begin STATEMENTS… end

join

SystemC
FORK
sc_spawn([&](){STATEMENTS…}),
sc_spawn([&](){STATEMENTS…})

JOIN

Sponsored By:

17 of 20

Side by Side: Dynamic Processes

SystemVerilog
process h;

fork
begin

h = process::self();

STATEMENTS…

end
join_none

wait(h.status !=
process::FINISHED);

SystemC
auto h = sc_spawn([&](){

STATEMENTS…

});

wait(h.terminated_event());

Sponsored By:

18 of 20

A Project Schedule
• Rationales for selecting language

Architect

ESL
Model

Software
Development

Verification
Environmen

t
Verification Tests

Hardware logic
Development

Hardware
Realization Fabrication Integrate

Sponsored By:

19 of 20

Open issues
• Interoperability between SystemVerilog & SystemC

– Need TLM 2.0 standard interface
– Need configuration controls (for tools & models)

• Common register abstraction
• Native C++ DPI

Sponsored By:

20 of 20

Concluding Remarks
• Different needs – different languages

– Architecture
– Software
– Verification
– Hardware

• Co-existence and interoperability required
– Enable the entire team
– No surprises

• Education key
– Understand the goal
– Learn to appropriately use the language

Sponsored By:

21 of 20

	A Tale of Two Languages:�SystemVerilog & SystemC
	Two languages…
	System*?
	What is SystemVerilog?
	What is SystemVerilog?
	What is "System" C?
	What is SystemC?
	Co-existence
	Co-existence with UVM
	Side by Side: Modules
	Side by Side: Data
	Side by Side: Containers
	Side by Side: Conditionals
	Side by Side: Loops
	Side by Side: Processes
	Side by Side: Fork/Join
	Side by Side: Dynamic Processes
	A Project Schedule
	Open issues
	Concluding Remarks
	Slide Number 21

