
A Tale of Two Languages - SystemVerilog and SystemC
By David C Black, Senior MTS and Trainer at Doulos America Inc

Austin, Texas

Abstract

There is a lot of confusion on why there are two EDA
languages with the word "System" in their title. Many
believe these are in competition with each other.
Some believe duplication means one or the other is
redundant, and thus should be removed. Yet another
group resents the possibility of competition or the
possibility they might have to learn more complicated
syntax. This paper examines these issues and puts
forth conclusions on the need for both languages.

Introduction

This paper hopes to dispel myths of conflict between
two of the dominant EDA languages. The goal is to
educate the reader to understand the need for two
languages and see strengths in both. The author hopes
also to stimulate the industry to produce more tools
that help with the development of models and
promote a methodology that encourages system-level
modeling.

In particular, we examine, contrast and compare the
two EDA languages SystemVerilog and SystemC.
The terms SystemVerilog and SystemC have often
confused folks because they both have the word
“system” in their titles. In fact at various points in
time, both have been considered for use as “system-
level” modeling languages, but as we shall see, they
are really very different in their application.

To get the proper perspectives, we will first describe
each “language” separately and then compare
them directly.

SystemVerilog History

SystemVerilog comes from a long history of several
hardware description and verification languages
including Verilog, Vera, Superlog, PSL and even
draws ideas from VHDL and SystemC.
Fundamentally SystemVerilog is an extension of a
solid RTL hardware design language (I.e. Verilog)
adding features that allow for robust verification with
a relatively concise syntax. Some would say that in
pursuing a single language to “do it all”, the
SystemVerilog committee in fact produced a single
standard that encompasses three different languages:
a robust RTL design language, a hardware

verification language, and an assertion language
(SVA).

1984 Verilog debuts
1987 Commercial RTL Synthesis - Synopsys

Design Compiler
1987 IEEE 1076-1987 - VHDL standard released
1990 Verilog-XL acquired by Cadence Design

Systems Inc.
1996 IEEE 1364-1995 - Verilog standard released
1998 VERA appears and acquired by Synopsys
2000 Accellera formed from OVI & VHDL

International
2001 IEEE 1364-2001 - Verilog improvements
2002 Synopsys acquires Superlog by acquiring

Co-Design
2005 IEEE 1800-2005 SystemVerilog standard

released
2009 IEEE 1800-2009 SystemVerilog updated
2012 IEEE 1800-2012 expected

Table 1: SystemVerilog History

SystemVerilog Features, Strengths & Weaknesses

As a Hardware Design and Verification Language
(HDVL), SystemVerilog has many strongpoints. First
as a design implementation language it directly
supports RTL synthesis with specialized constructs
such as always_comb, always_latch, and always_ff.
These specify user intent and allow simulators to
properly model the behavior of RTL to reduce the
chances of simulation mismatches between the RTL
and final gate-level netlist. There are also keywords
such as unique and priority to allow simulations to
match synthesis directives and ensure correct design.

Consider figure 1 where the always_comb statement
demands that simulators verify the contained logic is
combinatorial and the separate if clauses should be
checked and implemented as parallel cases.

A Tale of Two Languages/ 2

SystemVerilog also added a handful of features to
ease coding by drawing on the familiar syntax of C.
For instance in figure 2 there are two value data types
(int and byte) rather than the traditional four value
logic. SystemVerilog allows for optional
initialization and the ability to declare variables
inside loops and code blocks without labeling. Also
loop controls, continue and return, were added
freeing us from the awkward use of the disable
statement for the same purpose.

While the RTL improvements are exciting, the real
power in SystemVerilog comes from the great wealth
of features added for verification. Concepts added
include Packages, User defined types, Interfaces,
Assertions, Object Oriented Programming (OOP),
functional coverage, constrained randomization,
dynamic processes, dynamic arrays, queues,
associative arrays, mailboxes and semaphores. Figure
3 illustrates some of these features.

First, interfaces provide a common rallying point
between RTL and verification. From an RTL point of
view, interfaces greatly simplify interconnection of
buses. For verification, interfaces provide clean
access point to allow greater independence and reuse
of verification IP. Clocking blocks provide additional
isolation from the effects of gate-level timing.
Figure 4 is an example of a SystemVerilog interface
declaration. This example of a trivial bus has a clock,
address and data. The RTL has access to all the
signals via RTL specific modports (views), but with
directionality corrected depending on whether the
RTL represents master or slave processing. A
testbench modport (tb) is provided for read-only
access by a verification environment.

module mux (
 input a, b, c,
 input [1:0] sel,
 output logic f);
 // combinational
 always_comb
 // parallel case for synthesis
 unique if (sel == 2'b10)
 f = a;
 else if (sel == 2'b01)
 f = b;
 else
 f = c;
endmodule

Figure 1: SystemVerilog RTL feature

// C-style for-loop
for (int i = 0; i < 8; i++)
begin
 // initialization of 2-state logic
 byte count = 8;
 if (input[i]) begin
 // pre-decrement operator
 --count;
 // C-style loop control
 continue;
 end
 if (count == 0)
 return i; //< C-style return
end

Figure 2: SystemVerilog C-style conveniences

package pkg;//< VHDL style package
 // user-defined type
 typedef int T[8];
 typedef enum bit[1:0] {
 RESET, IDLE, READ, WRITE } E;
 // C-style struct with extensions
 typedef struct signed packed {
 logic [3:0] a;
 logic [7:0] b;
) S;
 //
 function void puts(
 const ref S s
);
 $display(“%p”,s);
 endfunction :puts
endpackage

module ...
 import pkg::*;
 E e = IDLE;
 // initialize struct
 S s = ‘{4’d2, 8’bx};
 T t; //< create array of 8 int’s
 ...
endmodule

Figure 3: SystemVerilog packages and data types

A Tale of Two Languages/ 3

Assertions aid the creation of automated checking
(esp. protocols) as illustrated by the syntax in
figure 5. This example checks to see that a request is
following by grant within 1 to 5 clocks and rant is
held high for 2 to 4 clocks before returning low.

Functional coverage assures designers that important
features have been exercised for which sample syntax
in figure 6 is shown. This illustrates gathering data to
ensure all opcodes, modes and specific data ranges
are managed.

Constrained randomization ensures that a variety of
valid stimuli are used to check the design. Figure 7
illustrates some of the constrained random syntax. In
this we randomize three fields, and ensure that
m_mode is 3 when bit 2 of m_opcode is zero. We
also force the mode to 2 when m_data is less than
256.

Inheritance and other OOP concepts help to make
verification IP reusable and flexible with a minimum
of effort. Figure 8 shows inheritance declaration.

interface Bus_if;
 logic clock;
 logic [15:0] addr;
 logic [7:0] data;
 clocking cb @(posedge clock);
 output #1 addr;
 input #1step data;
 endclocking
 modport rtl_master(
 input clock,
 output addr,
 inout data);
 modport rtl_slave(
 input clock, addr,
 inout data);
 modport tb(clocking cb);
endinterface
module CPU (Bus_if.master bus);
module Dut (Bus_if.slave bus); …

Bus_if inst ();

Dut dut1 (.iport(inst.rtl));

Figure 4: SystemVerilog Interfaces

interface pins;
 logic clock;
 logic req, grant;
 assert property (
 @(posedge clock)
 req |-> #[1:5] grant
);
 assert property (
 @(posedge clock)
 $rose(grant)
 |-> grant [*2:4] #1 !grant
);
endinterface

Figure 5: SystemVerilog assertions

class instruction;
 bit [2:0] m_opcode;
 bit [1:0] m_mode;
 shortint unsigned m_data;
 covergroup cg @(posedge clk);
 coverpoint m_opcode;
 coverpoint m_mode;
 coverpoint m_data {
 bins tiny [8] = {[0:7] };
 bins moderate[8] = {[8:255]};
 bins huge [8] = {[256:$]};
 }
 endgroup
 ...
endclass: instruction

Figure 6: SystemVerilog Functional Coverage

class instruction;
 rand bit [2:0] m_opcode;
 rand bit [1:0] m_mode;
 rand shortint unsigned m_data;
 ...
 constraint assert_mode {
 m_opcode[2]==0 -> m_mode==2'b11;
 }
 constraint assert_data {
 m_mode == 2'b10 -> m_data < 256;
 }
 ...
endclass: instruction

Figure 7: SystemVerilog Constrained Random

class jump_instruction
 extends instruction;
 constraint jump {
 m_opcode[2:1] == 2'b11;
 }
endclass

Figure 8: SystemVerilog Class Inheritance

A Tale of Two Languages/ 4

All of this makes for an excellent language to
perform both RTL design implementation and high
level verification. In other words, you can design an
entire SoC (System on a Chip) using one language.

On the downside is the somewhat unavoidable
problem that the SystemVerilog language is huge.
With the upcoming 201x standard there will be 245
keywords, and the standards reference manual weighs
in at over 1,200 pages! Never-the-less, the
engineering community has been rushing to embrace
SystemVerilog as its hardware verification language
of choice. Consider that UVM, the Universal
Verification Methodology provides an open-source
implementation in SystemVerilog. EDA vendors
eagerly rush out new versions of all types tools to
support the demand.

SystemC History

SystemC was developed originally as a joint effort
with the University of California at Irvine and
Synopsys. Other companies joined such as Frontier
Design, Infineon, and IMEC. Eventually, work was
migrated to the Open SystemC Initiative (OSCI).
Their work resulted in an open-source “proof-of-
concept” implementation that was made available for
free download from systemc.org. More recently,
OSCI merged with Accellera to become the Accellera
Systems Initiative (ASI), and current versions may be
downloaded from accellera.org. Here is more detailed
history.

1999 SystemC v0.9

2000 OSCI formed

2002 SystemC v2.0.1

2005 SystemC v2.1

2005 IEEE 1666-2005 released

2006 SystemC v2.2

2011 ASI merges Accellera & OSCI

2011 IEEE 1666-2011 released w/ TLM 2.0

2012 SystemC v2.3

Table 4: SystemC History

This brief history does not cover the fact that several
side groups are actively working on elements that
may enter the standard at a future date. Active
committees include the Configuration, Control and
Inspection (CCI) working group, the SystemC
Analog/Mixed Signal (AMS) working group, the
SystemC Synthesis working group, and the SystemC
Verification working group.

SystemC Features, Strengths and Weaknesses

As a System-Level design language, SystemC has
many strengths and weaknesses. First, as an
architectural design language, its C++ nature lends
itself well to the natural incorporation of algorithms
and other software that is already in C or C++. With
relatively simple additions, algorithms may be
wrapped inside SystemC containers to resemble
hardware blocks with communication abstractions
ranging from transaction-level to pin-level and
incorporate timing annotations. This may be used to
obtain rough estimates of performance that guide the
selection of hardware and software architectures
early in the design process.

The availability of an open-source implementation
has been crucial to SystemC’s success. This has
made SystemC more accessible to the general
software community (esp. academic), which in turn
provides ideas and software components that help the
SystemC community. This has been met with mixed
feelings by the EDA vendor’s community since
their success depends on their ability to sell tools at
premium prices to support their large R&D
investments. The prices would preclude the software
and academic communities from participation. On the
other hand, there are plenty of opportunities for good
SystemC design tools to augment the modeling
design process.

Many early SystemC efforts seemed to focus on an
RTL representation. An unfortunate problem for
SystemC is that too many see it as an RTL
description language. Instead, SystemC descriptions
are more successful at focusing on everything above
RTL. Although, SystemC can do RTL, it does not do
so eloquently nor efficiently. More importantly,
SystemC is not intended for RTL design as a primary
focus. Rather the RTL features of SystemC are
intended to allow interworking between high-level
architectural/behavioral models and lower-level RTL.
RTL can also serve as glue or be used in situations
where RTL predates the modeling effort. Figure 9 is
an example of SystemC RTL that implements a
simple registered adder.

A Tale of Two Languages/ 5

Behavioral modeling at higher levels of abstraction is
where SystemC really shines. By not simulating the
details of wires, pins and gates, SystemC realizes
performance that can even be faster than realtime.
We can also take advantage of the large number of
C++ libraries available through such entities as
Boost.org. For instance, it would be easy to model
polygon processing using the boost geometry classes
as the hypothetical code following suggests. The
highlighted code is SystemC and Boost elements.

Boost contains many classes for modeling things
such as matrix arithmetic, higher-level mathematics,
state machines and data processing.

Because of SystemC’s ability to abstract
communication, SystemC can easily leverage models
written in C++ (or even Java or Python) by the
System Architect to ensure fidelity to the original
concepts and specifications. With the standardization
of the transaction level modeling API, known as
TLM 2.0, SystemC facilitates the rapid creation of

loosely-timed (LT) models that simulate fast enough
to enable virtual platforms for software development.

Systems architects use the approximately-timed
coding style of TLM 2.0 to provide timing details for
performance analysis. This analysis is typically used
to verify the design has adequate performance.

TLM 2.0 has enabled vendors to provide off-the-shelf
IP models that are essentially plug-n-play. By
enabling rapid modeling of virtual platforms, this in
turn allows software to begin development early in

SC_METHOD(accumulate_method);
sensitive << clock.pos() << reset;
…
void accumulate_method() {
 if (reset) acc->write(0);
 else acc->write(a + b);
}

Figure 9: SystemC RTL register

#include <boost/geometry/geometries/adapted/boost_tuple.hpp>
BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(cs::cartesian)
typedef sc_fixed<16,8> data_t;
data_t fence_post_x() {…}
data_t fence_post_y() {…}
…
void polygon_thread() {
 vector<model::point> fence_posts;
 while (fence_post_available())
 fence_posts.push_back(model::point(fence_post_x(), fence_post_y()));
 sc_assert(fence_posts.size() > 2); // make sure it’s legal
 model::polygon<model::d2::point_xy<data_t> > enclosure;
 append(enclosure, fence_posts);
 data_t fenced_area = area(enclosure);
 wait(AREA_CALCULATION_TIME_ESTIMATE);
 sc_assert(fenced_area > 0);
 area_display->write(fenced_area); //< put on operator display
 Get_beacon_data(); //< from TLM model
 boost::tuple<data_t, data_t> prisoner_locn
 = boost::make_tuple(beacon_x(), beacon_y());
 wait(PROXIMITY_DETECTION_TIME_ESTIMATE);
 if (within(prisoner_locn, enclosure)) {
 SC_REPORT_INFO(“”,”Prisoner OK”);
 } else {
 SC_REPORT_WARNING(“”,”Prisoner escaped!”);
 }
}

Figure 10: SystemC Behavior using Boost Geometry Library

A Tale of Two Languages/ 2

the project schedule before RTL has even
materialized.

Because SystemC models can execute extremely
quickly, it is possible to simulate an entire system.
This is known as an Electronic System-Level (ESL)
model. When a processor is involved and an
Instruction Set Simulator (ISS) is provided, the
model is called a Virtual Platform. A Virtual
Platform should run fast enough that software
development is reasonable.

The best scenario for use of SystemC is for the
project team to adopt the principle that the ESL
model or Virtual Platform is golden. Because co-
simulation with SystemVerilog is available, updates
to the RTL design are to be routinely compared to the
ESL model. As necessary, the models are adjusted to
ensure their behaviors match. The software team can
rest assured their efforts will integrate with the final
hardware because design fidelity is checked. This is a
huge win for everyone.

Because the hardware is modeled as software, this
also makes for excellent debug facilities that are not
present on real hardware. This can even be used post-
silicon when debugging extremely difficult situations
as the scenario can be reproduced with a level of
control and observability that is simply not possible
in physical hardware.

Side by side comparisons

The following table compares syntactic features of
modern SystemVerilog to SystemC. The point of this
table is not to say that one syntactic feature is better
than another, but rather to point out is just a matter of
syntax. For the most part, every feature available in
SystemVerilog can be reproduced in SystemC and
vice versa. Similar comparisons might be made with
VHDL, and the point is that engineers simply get
used to a particular syntax. As previously noted,
SystemC does not directly support SVA or coverage.
These examples utilize the latest SystemVerilog,
SystemC and C++ standards. Language keywords
and features are highlighted in bold.

Feature SystemVerilog SystemC

Packaging package my_stuff;
endpackage : my_stuff
import my_stuff::*;

namespace my_stuff {
}
using namespace my_stuff;

Behavioral
Process

initial begin :BLOCK
 STATEMENTS…
end

SC_THREAD(BLOCK);
void BLOCK(void) {
 STATEMENTS…
}

RTL
Process

always_ff @(posedge clk)
begin :REGS
 q <= d;
end

SC_METHOD(REGS);
sensitive << clk.pos();
…
void REGS(void) {
 q->write(d);
}

Module module Design
(input logic [7:0] d
, output logic [7:0] q
);
 …
endmodule: Design

SC_MODULE(Design) {
 sc_in <sc_lv<8> > d;
 sc_out<sc_lv<8> > q;
 …
};

Data logic [3:0] l;
int i;
bit b;
string txt;
typdef struct { int a, b; } S;
S s = ‘{1,2};
time t;

sc_lv<4> l;
int i;
bool b;
string txt;
struct S { int a, b; };
S s{1,2};//C++11
sc_time t;

Events event e1, e2;
->e1;
->> #5ns e2;
@(e1 or e2);

sc_event e1, e2;
e1.notify();
e2.notify(2, SC_NS);
wait(e1 | e2);

A Tale of Two Languages/ 2

Feature SystemVerilog SystemC
#5ns;
wait(sig == 0);

wait(5,SC_NS);
while (not (sig == 0))
 wait(sig.default_event);

Classes
(OOP)

class C extends B;
 int m_i;
 extern function new(int i);
 function int get;
 return m_i;
 endfunction
 function void inc;
 m_i += val;
 endfunction
 static task delay;
 @(sync);
 endtask
 local static event sync;
endclass: C

C::delay();
C obj1 = new(101);
obj1.inc();
C obj2;
obj2 = new(102);
$display(obj2.get());

struct C : B {
 int m_i;
 C(int i);
 int get(void) const {
 return m_i;
 }
 void inc(void) {
 m_i += val;
 }
 static void delay(void) {
 wait(sync);
 }
private:
 static sc_event sync;
};
C::delay();
C obj1{101};
obj1.inc();
C* obj2;
obj2 = new C(102);
cout << obj2->get() << endl;

Conditional if (EXPR) STATEMENT
else STATEMENT
case (EXPR)
 EXPR1: STATEMENT

 default: STATEMENT
endcase

if (EXPR) STATEMENT
else STATEMENT
switch (EXPR) {
 case CONSTANT: STATEMENT
 break;
 default: STATEMENT
}

Loops while(EXPR) STATEMENT
do STATEMENT while (EXPR);
for(int i=0;i!=max;++i) STMT
forever STMT
foreach(CONTAINER[i]) STMT

while(EXPR) STATEMENT
do { STATEMENTS } while (EXPR);
for(int i=0; i!=max; ++i) STMT
for(;;) STMT
for(auto i:CONTAINER) STMT

Dynamic
Processes

fork
 begin STATEMENTS… end
 begin STATEMENTS… end
join

process h;
fork
 begin
 h = process::self();
 STATEMENTS…
 end
join_none

wait(h.status !=
 process::FINISHED);

FORK
 sc_spawn([&](){STATEMENTS…}),
 sc_spawn([&](){STATEMENTS…})
JOIN

auto h = sc_spawn([&](){
 STATEMENTS…
});

wait(h.terminated_event());

Final final begin
 …
end

void end_of_simulation(void) {
 …
}

Containers T1 fixedArray[N];
T1 dynamicArray[];
T1 associativeArray[T2];

std::array<T1,N> fixedArray;
std::vector<T1> dynamicArray;
std::map<T2,T2> associativeArray;

A Tale of Two Languages/ 3

Feature SystemVerilog SystemC
T1 queue[$]; std::deque<T1> queue;

Channels var logic [1:0] sig;
sig <= a + b;

wire logic [7:0] w;
assign w = a + b;

sc_signal<sc_int<2>> sig;
sig.write(a + b);

sc_signal_rv<char> w;
sc_spawn([&](){for(;;){
 wait(a|b);
 w.write(a + b);
}});

Table 5: Side by side syntax

There are features that one side or the other do not
currently support natively; although, there is nothing
fundamentally that cannot be solved. For instance,
SystemC does not support SystemVerilog Assertions
(SVA); although, one commercial company has
provided a solution, and at least one instance of a
internal solution have been demonstrated. (Also PSL
is designed for SystemC). The issue with SVA is
primarily that there has been no overwhelming need
for temporal assertions for high level modeling
efforts. SVA as implemented in SystemVerilog is
focussed on verification of RTL issues such as pin-
level bus protocols.

SystemC also is not able to efficiently simulate RTL
because some of the tricks employed by
SystemVerilog simulators are not germane to the
standard C/C++ compilers used with SystemC. For
instance, identifying all clocked code fragments and
combining them into a single context switch is
simply something no C/C++ compiler could have any
understanding of.

SystemVerilog on the other hand does not trivially
integrate into the world of C/C++ open-source. For
instance, consider the pain required if one desired to
use some of the algorithms present in the open-source
BOOST libraries. Certainly, Direct Programming
Interface feature has made it easier; however, it
frequently requires data conversions and the
semantics are generally pass-by-value. Consider that
TLM 2.0 payload extensions are almost impossible.
But then again, SystemVerilog was designed with
RTL in mind; whereas, SystemC is all about melding
in with the C/C++ coding world.

Applying Languages to Designs

So how should a project make use of these two
languages? Part of the answer comes when a project
is broken down into a schedule, and its needs are
examined. For modern designs, software dominates
the schedule, which dictates a need to be able to start

coding early. Furthermore, hardware becomes a
bottleneck for verification. If the product team can
agree to designate an ESL model as golden, then a
high-performance version can be used to develop
software. The verification team can begin to verify
this model as the basis for their test environment,
while the hardware team develops the RTL. Best of
all, the final design can use of co-simulation to verify
the RTL against the original ESL model.

Is one language better than the other? No, not really.
Each has strengths and weaknesses, but more
importantly, each has a particular domain for which it
is suited.

Eliminating FUD

Fear, Uncertainty and Doubt (FUD) can be
hindrances to progress. In an uncertain world,
engineers and managers alike sometimes see new
design methodologies and tool technologies as a
threat. They see it as a threat because they’ve just
spent the last N years of their life mastering the
current technology (e.g. Verilog RTL), and now they
may have to re-enter the race as newbies learning
new skills (e.g. SystemVerilog, SystemC, UVM or
TLM 2.0). It may also mean the tools they have
grown fond of, customized and use daily may be
changing. The fact that upper level management
wants products out the door faster than ever, does not
help the stress level. It’s challenging enough to
master the technologies that are going into the next
products without adding the potential stress of new
tools or languages. What is an engineer to do? It is
interesting to consider that engineers are facilitators
of change, but in this situation, they often resist the
change to their own world.

A lot of questions to be answered to determine what
you need. The following list has some food for
thought. You may choose to adjust the
recommendations. Additionally, each question has a
weight relative to the project itself. For example, if
software dominates the project schedule then

A Tale of Two Languages/ 2

obviously recommendations relative to it should be
weighted higher.

Question SystemVerilog SystemC

 Do you need to start the software earlier in the schedule? 0 10

 Does the architecture need bandwidth considerations analysis? 3 7

 Does software need to evaluate its impact on power or performance? 1 9

 Does the specification include FSM descriptions? 6 4

 Do you plan to purchase external RTL IP for incorporation? 5 5

 Does the design incorporate a lot of legacy RTL IP? 8 2

 Does verification desire to reuse code from other designs? 8* 2

 Are simulation mismatches between synthesis and RTL a concern? 7 3

 Is a new standard protocol involved? 8 2

 Is a new custom protocol involved? 7 3

 Are you starting from pre-existing Verilog RTL? 10 0

 Is this for architectural purposes? 3 7

 Is this for verification of the implementation? 7* 2

 Is this for implementation of RTL specifications? 10 0

 Does verification IP exist? 10* 0

 Does TLM 2.0 IP exist? 0 7

 Does an Instruction Set Simulator exist? 0 7

 Are there asynchronous design blocks? 8 2

 Are there multiple clocks? 8 0

 Does the design include major new algorithms or complex design content? 3 7
* UVM should be part of the solution

Table 6: Questions Influencing Choice of Language

Another factor challenging practicing engineers is the
fear of not becoming proficient quickly enough in a
job market that favors the employer. Some recent
graduates are coming out of some schools with
training in these technologies and employers are
snapping them up. There are several ways to alleviate
this including getting professional training, obtaining
good reference materials, proper tools and prolific
use of web resources and users groups/forums. Let’s
look at some of these approaches to proficiency.

It is amazing how many engineers underestimate the
learning challenges and choose to attempt
independent learning. By choosing professional
training, engineers can cut months off the learning
curve. Of course practice makes perfect, and simply

attending a training course won’t make you
proficient, but it does provide a better foundation.

Reference materials take several forms. The first
should be the actual standards documents themselves.
In some cases they can be obtained at no cost, but
other require an investment. In many cases,
employers have purchased copies available in a
library or on-line electronically for use by their
employees. Even though tedious, every engineer
should have these available to consult. For learning a
technology, it is probably best to also obtain a book
on the subject matter. Some of these may be obtained
from training classes and others purchased. If not in a
library, many employers will reimburse employees
for at least one or two books if requested. Older
versions and second hand copies may also be

A Tale of Two Languages/ 2

valuable as foundational material. Newer versions of
standards are frequently presented at conferences
accompanied by papers that announce the changes
and improvements.

Obtaining the right tools can also make a difference it
proficiency; although, tool vendors understandably
overstate the tool’s value versus the need for
foundational knowledge of the technologies. Do not
get confused between the language and the tools. It
should be noted that evolving standards means that
vendors may not support all the latest features yet, or
perhaps they have interpreted the standard
differently. When in doubt consult the standards
document. Rolling your own tools is probably not the
best use of your time. The real key to proficiency is a
combination of education and tools.

Finally, it should be obvious that the web provides a
wealth of information. It must be noted that
information is only as good as its source and a lot of
misinformation is out there. When you read a reply,
consider its source. Does the answer match the
definitions as stated in the relevant standards
document? Is the source an expert or simply an
amateur stating an opinion or vendor pushing a tool?
Do others agree with the opinion? Is the answer
simply a guideline or does it represent a particular
methodology? Can you find other experts to back up
the opinion?

Summary: Conclusions, Possible future directions,
Recommendations

In summary, both SystemVerilog and SystemC are
needed for modern designs and work in a
complementary manner. They should be applied to
each area of the project as appropriate. SystemC
makes sense in creating Virtual Platforms to enable
early architectural analysis, software development,
high-level verification and as a reference model.
SystemVerilog provides a solid framework for
properly verifying RTL designs, enabling the use of
structured verification methodologies such as UVM.
SystemVerilog is also enables design engineers to
reliably communicate their RTL intent and have
better control over the output of synthesis.

It is clear that evolution of the standards will continue
to occur as it always has. Designs will get more
complex and raising the abstraction levels is a means
to keeping complexity manageable.

References

[1] "IEEE Standard for SystemVerilog - Unified
Hardware Design, Specification, and
Verification Language," IEEE Std 1800-2009,
2009.

[2] “IEEE Standard for Standard SystemC®
Language Reference Manual,” IEEE Std 1666-
2011, 2012

