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Abstract 

There is a lot of confusion on why there are two EDA 
languages with the word "System" in their title. Many 
believe these are in competition with each other. 
Some believe duplication means one or the other is 
redundant, and thus should be removed. Yet another 
group resents the possibility of competition or the 
possibility they might have to learn more complicated 
syntax. This paper examines these issues and puts 
forth conclusions on the need for both languages. 
 

Introduction 

This paper hopes to dispel myths of conflict between 
two of the dominant EDA languages. The goal is to 
educate the reader to understand the need for two 
languages and see strengths in both. The author hopes 
also to stimulate the industry to produce more tools 
that help with the development of models and 
promote a methodology that encourages system-level 
modeling. 
 
In particular, we examine, contrast and compare the 
two EDA languages SystemVerilog and SystemC. 
The terms SystemVerilog and SystemC have often 
confused folks because they both have the word 
“system” in their titles. In fact at various points in 
time, both have been considered for use as “system-
level” modeling languages, but as we shall see, they 
are really very different in their application. 
 
To get the proper perspectives, we will first describe 
each “language” separately and then compare 
them directly. 
 

SystemVerilog History 

SystemVerilog comes from a long history of several 
hardware description and verification languages 
including Verilog, Vera, Superlog, PSL and even 
draws ideas from VHDL and SystemC. 
Fundamentally SystemVerilog is an extension of a 
solid RTL hardware design language (I.e. Verilog) 
adding features that allow for robust verification with 
a relatively concise syntax. Some would say that in 
pursuing a single language to “do it all”, the 
SystemVerilog committee in fact produced a single 
standard that encompasses three different languages: 
a robust RTL design language, a hardware 

verification language, and an assertion language 
(SVA). 
 

1984 Verilog debuts 
1987 Commercial RTL Synthesis - Synopsys 

Design Compiler 
1987 IEEE 1076-1987 - VHDL standard released 
1990 Verilog-XL acquired by Cadence Design 

Systems Inc. 
1996 IEEE 1364-1995 - Verilog standard released 
1998 VERA appears and acquired by Synopsys 
2000 Accellera formed from OVI & VHDL 

International 
2001 IEEE 1364-2001 - Verilog improvements 
2002 Synopsys acquires Superlog by acquiring 

Co-Design 
2005 IEEE 1800-2005 SystemVerilog standard 

released 
2009 IEEE 1800-2009 SystemVerilog updated 
2012 IEEE 1800-2012 expected 

Table 1: SystemVerilog History 

SystemVerilog Features, Strengths & Weaknesses 

 
As a Hardware Design and Verification Language 
(HDVL), SystemVerilog has many strongpoints. First 
as a design implementation language it directly 
supports RTL synthesis with specialized constructs 
such as always_comb, always_latch, and always_ff. 
These specify user intent and allow simulators to 
properly model the behavior of RTL to reduce the 
chances of simulation mismatches between the RTL 
and final gate-level netlist. There are also keywords 
such as unique and priority to allow simulations to 
match synthesis directives and ensure correct design.  
 
Consider figure 1 where the always_comb statement 
demands that simulators verify the contained logic is 
combinatorial and the separate if clauses should be 
checked and implemented as parallel cases. 
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SystemVerilog also added a handful of features to 
ease coding by drawing on the familiar syntax of C. 
For instance in figure 2 there are two value data types 
(int and byte) rather than the traditional four value 
logic. SystemVerilog allows for optional 
initialization and the ability to declare variables 
inside loops and code blocks without labeling. Also 
loop controls, continue and return, were added 
freeing us from the awkward use of the disable 
statement for the same purpose. 

 
While the RTL improvements are exciting, the real 
power in SystemVerilog comes from the great wealth 
of features added for verification. Concepts added 
include Packages, User defined types, Interfaces, 
Assertions, Object Oriented Programming (OOP), 
functional coverage, constrained randomization, 
dynamic processes, dynamic arrays, queues, 
associative arrays, mailboxes and semaphores. Figure 
3 illustrates some of these features. 
 

First, interfaces provide a common rallying point 
between RTL and verification. From an RTL point of 
view, interfaces greatly simplify interconnection of 
buses. For verification, interfaces provide clean 
access point to allow greater independence and reuse 
of verification IP. Clocking blocks provide additional 
isolation from the effects of gate-level timing. 
Figure 4 is an example of a SystemVerilog interface 
declaration. This example of a trivial bus has a clock, 
address and data. The RTL has access to all the 
signals via RTL specific modports (views), but with 
directionality corrected depending on whether the 
RTL represents master or slave processing. A 
testbench modport (tb) is provided for read-only 
access by a verification environment. 

module mux ( 
  input a, b, c, 
  input [1:0] sel, 
  output logic f); 
  // combinational 
  always_comb 
    // parallel case for synthesis 
    unique if ( sel == 2'b10 ) 
      f = a; 
    else if ( sel == 2'b01 ) 
      f = b; 
    else 
      f = c; 
endmodule 

Figure 1: SystemVerilog RTL feature 

// C-style for-loop  
for (int i = 0; i < 8; i++) 
begin 
  // initialization of 2-state logic 
  byte count = 8; 
  if (input[i]) begin 
    // pre-decrement operator 
    --count; 
    // C-style loop control 
    continue; 
  end 
  if (count == 0) 
    return i; //< C-style return 
end 

Figure 2: SystemVerilog C-style conveniences 

package pkg;//< VHDL style package 
 // user-defined type 
 typedef int T[8]; 
 typedef enum bit[1:0] { 
   RESET, IDLE, READ, WRITE } E; 
 // C-style struct with extensions 
 typedef struct signed packed { 
   logic [3:0] a; 
   logic [7:0] b; 
 ) S; 
 // 
 function void puts( 
   const ref S s 
 ); 
   $display(“%p”,s); 
 endfunction :puts 
endpackage 
 
module ... 
  import pkg::*; 
  E e = IDLE; 
  // initialize struct 
  S s = ‘{4’d2, 8’bx}; 
  T t; //< create array of 8 int’s 
  ... 
endmodule 

Figure 3: SystemVerilog packages and data types 
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Assertions aid the creation of automated checking 
(esp. protocols) as illustrated by the syntax in 
figure 5. This example checks to see that a request is 
following by grant within 1 to 5 clocks and rant is 
held high for 2 to 4 clocks before returning low.  

 
Functional coverage assures designers that important 
features have been exercised for which sample syntax 
in figure 6 is shown. This illustrates gathering data to 
ensure all opcodes, modes and specific data ranges 
are managed. 

 
Constrained randomization ensures that a variety of 
valid stimuli are used to check the design. Figure 7 
illustrates some of the constrained random syntax. In 
this we randomize three fields, and ensure that 
m_mode is 3 when bit 2 of m_opcode is zero. We 
also force the mode to 2 when m_data is less than 
256. 

 
Inheritance and other OOP concepts help to make 
verification IP reusable and flexible with a minimum 
of effort. Figure 8 shows inheritance declaration. 

 

interface Bus_if; 
  logic clock; 
  logic [15:0] addr; 
  logic [7:0] data; 
  clocking cb @(posedge clock); 
    output #1 addr; 
    input  #1step data; 
  endclocking 
  modport rtl_master( 
    input  clock, 
    output addr, 
    inout  data); 
  modport rtl_slave( 
    input clock, addr, 
    inout data); 
  modport tb(clocking cb); 
endinterface 
module CPU (Bus_if.master bus); 
module Dut (Bus_if.slave  bus); … 
 
Bus_if inst (); 
 
Dut dut1 ( .iport(inst.rtl) ); 

Figure 4: SystemVerilog Interfaces 

interface pins; 
  logic clock; 
  logic req, grant; 
  assert property ( 
    @(posedge clock) 
    req |-> #[1:5] grant 
  ); 
  assert property ( 
    @(posedge clock) 
    $rose(grant) 
         |-> grant [*2:4] #1 !grant 
  ); 
endinterface 

Figure 5: SystemVerilog assertions 

class instruction; 
  bit [2:0] m_opcode; 
  bit [1:0] m_mode; 
  shortint unsigned m_data; 
  covergroup cg @(posedge clk); 
    coverpoint m_opcode; 
    coverpoint m_mode; 
    coverpoint m_data { 
      bins tiny    [8] = {[0:7]  }; 
      bins moderate[8] = {[8:255]}; 
      bins huge    [8] = {[256:$]}; 
    } 
  endgroup 
  ... 
endclass: instruction 

Figure 6: SystemVerilog Functional Coverage 

 

class instruction; 
  rand bit [2:0] m_opcode; 
  rand bit [1:0] m_mode; 
  rand shortint unsigned m_data; 
  ... 
  constraint assert_mode { 
    m_opcode[2]==0 -> m_mode==2'b11; 
  } 
  constraint assert_data { 
    m_mode == 2'b10 -> m_data < 256; 
  } 
  ... 
endclass: instruction 

Figure 7: SystemVerilog Constrained Random 

class jump_instruction  
            extends instruction; 
  constraint jump { 
    m_opcode[2:1] == 2'b11; 
  } 
endclass 

Figure 8: SystemVerilog Class Inheritance 
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All of this makes for an excellent language to 
perform both RTL design implementation and high 
level verification. In other words, you can design an 
entire SoC (System on a Chip) using one language. 
 
On the downside is the somewhat unavoidable 
problem that the SystemVerilog language is huge. 
With the upcoming 201x standard there will be 245 
keywords, and the standards reference manual weighs 
in at over 1,200 pages! Never-the-less, the 
engineering community has been rushing to embrace 
SystemVerilog as its hardware verification language 
of choice. Consider that UVM, the Universal 
Verification Methodology provides an open-source 
implementation in SystemVerilog.  EDA vendors 
eagerly rush out new versions of all types tools to 
support the demand. 
 

SystemC History 

SystemC was developed originally as a joint effort 
with the University of California at Irvine and  
Synopsys. Other companies joined such as Frontier 
Design, Infineon, and IMEC. Eventually, work was 
migrated to the Open SystemC Initiative (OSCI). 
Their work resulted in an open-source “proof-of-
concept” implementation that was made available for 
free download from systemc.org. More recently, 
OSCI merged with Accellera to become the Accellera 
Systems Initiative (ASI), and current versions may be 
downloaded from accellera.org. Here is more detailed 
history. 
 

1999 SystemC v0.9 

2000 OSCI formed 

2002 SystemC v2.0.1 

2005 SystemC v2.1 

2005 IEEE 1666-2005 released 

2006 SystemC v2.2 

2011 ASI merges Accellera & OSCI 

2011 IEEE 1666-2011 released w/ TLM 2.0 

2012 SystemC v2.3 

Table 4: SystemC History 

This brief history does not cover the fact that several 
side groups are actively working on elements that 
may enter the standard at a future date. Active 
committees include the Configuration, Control and 
Inspection (CCI) working group, the SystemC 
Analog/Mixed Signal (AMS) working group, the 
SystemC Synthesis working group, and the SystemC 
Verification working group. 

 

SystemC Features, Strengths and Weaknesses 

As a System-Level design language, SystemC has 
many strengths and weaknesses. First, as an 
architectural design language, its C++ nature lends 
itself well to the natural incorporation of algorithms 
and other software that is already in C or C++. With 
relatively simple additions, algorithms may be 
wrapped inside SystemC containers to resemble 
hardware blocks with communication abstractions 
ranging from transaction-level to pin-level and 
incorporate timing annotations. This may be used to 
obtain rough estimates of performance that guide the 
selection of hardware and software architectures 
early in the design process. 
 
The availability of an open-source implementation 
has been crucial to SystemC’s  success. This has 
made SystemC more accessible to the general 
software community (esp. academic), which in turn 
provides ideas and software components that help the 
SystemC community. This has been met with mixed 
feelings by the EDA vendor’s community since 
their success depends on their ability to sell tools at 
premium prices to support their large R&D 
investments. The prices would preclude the software 
and academic communities from participation. On the 
other hand, there are plenty of opportunities for good 
SystemC design tools to augment the modeling 
design process. 
 
Many early SystemC efforts seemed to focus on an 
RTL representation. An unfortunate problem for 
SystemC is that too many see it as an RTL 
description language. Instead, SystemC descriptions 
are more successful at focusing on everything above 
RTL. Although, SystemC can do RTL, it does not do 
so eloquently nor efficiently. More importantly, 
SystemC is not intended for RTL design as a primary 
focus. Rather the RTL features of SystemC are 
intended to allow interworking between high-level 
architectural/behavioral models and lower-level RTL. 
RTL can also serve as glue or be used in situations 
where RTL predates the modeling effort. Figure 9 is 
an example of SystemC RTL that implements a 
simple registered adder. 
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Behavioral modeling at higher levels of abstraction is 
where SystemC really shines. By not simulating the 
details of wires, pins and gates, SystemC realizes 
performance that can even be faster than realtime. 
We can also take advantage of the large number of 
C++ libraries available through such entities as 
Boost.org. For instance, it would be easy to model 
polygon processing using the boost geometry classes 
as the hypothetical code following suggests. The 
highlighted code is SystemC and Boost elements. 

 

 
 
Boost contains many classes for modeling things 
such as matrix arithmetic, higher-level mathematics, 
state machines and data processing. 
 
Because of SystemC’s ability to abstract 
communication, SystemC can easily leverage models 
written in C++ (or even Java or Python) by the 
System Architect to ensure fidelity to the original 
concepts and specifications. With the standardization 
of the transaction level modeling API, known as 
TLM 2.0, SystemC facilitates the rapid creation of 

loosely-timed (LT) models that simulate fast enough 
to enable virtual platforms for software development.  
 
Systems architects use the approximately-timed 
coding style of TLM 2.0 to provide timing details for 
performance analysis. This analysis is typically used 
to verify the design has adequate performance. 
 
TLM 2.0 has enabled vendors to provide off-the-shelf 
IP models that are essentially plug-n-play. By 
enabling rapid modeling of virtual platforms, this in 
turn allows software to begin development early in 

SC_METHOD(accumulate_method); 
sensitive << clock.pos() << reset; 
… 
void accumulate_method() { 
  if (reset) acc->write(0); 
  else       acc->write(a + b); 
} 

Figure 9: SystemC RTL register 

#include <boost/geometry/geometries/adapted/boost_tuple.hpp> 
BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(cs::cartesian) 
typedef sc_fixed<16,8> data_t; 
data_t fence_post_x() {…} 
data_t fence_post_y() {…} 
… 
void polygon_thread() { 
  vector<model::point> fence_posts; 
  while (fence_post_available())  
     fence_posts.push_back(model::point(fence_post_x(), fence_post_y())); 
  sc_assert(fence_posts.size() > 2); // make sure it’s legal 
  model::polygon<model::d2::point_xy<data_t> > enclosure; 
  append(enclosure, fence_posts); 
  data_t fenced_area = area(enclosure); 
  wait(AREA_CALCULATION_TIME_ESTIMATE); 
  sc_assert(fenced_area > 0); 
  area_display->write(fenced_area); //< put on operator display 
  Get_beacon_data(); //< from TLM model 
  boost::tuple<data_t, data_t> prisoner_locn  
                             = boost::make_tuple(beacon_x(), beacon_y()); 
  wait(PROXIMITY_DETECTION_TIME_ESTIMATE); 
  if (within(prisoner_locn, enclosure)) { 
    SC_REPORT_INFO(“”,”Prisoner OK”); 
  } else { 
    SC_REPORT_WARNING(“”,”Prisoner escaped!”); 
  } 
} 

Figure 10: SystemC Behavior using Boost Geometry Library 
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the project schedule before RTL has even 
materialized. 
 
Because SystemC models can execute extremely 
quickly, it is possible to simulate an entire system. 
This is known as an Electronic System-Level (ESL) 
model. When a processor is involved and an 
Instruction Set Simulator (ISS) is provided, the 
model is called a Virtual Platform. A Virtual 
Platform should run fast enough that software 
development is reasonable. 
 
The best scenario for use of SystemC is for the 
project team to adopt the principle that the ESL 
model or Virtual Platform is golden. Because co-
simulation with SystemVerilog is available, updates 
to the RTL design are to be routinely compared to the 
ESL model. As necessary, the models are adjusted to 
ensure their behaviors match. The software team can 
rest assured their efforts will integrate with the final 
hardware because design fidelity is checked. This is a 
huge win for everyone. 
 

Because the hardware is modeled as software, this 
also makes for excellent debug facilities that are not 
present on real hardware. This can even be used post-
silicon when debugging extremely difficult situations 
as the scenario can be reproduced with a level of 
control and observability that is simply not possible 
in physical hardware. 
 

Side by side comparisons 

The following table compares syntactic features of 
modern SystemVerilog to SystemC. The point of this 
table is not to say that one syntactic feature is better 
than another, but rather to point out is just a matter of 
syntax. For the most part, every feature available in 
SystemVerilog can be reproduced in SystemC and 
vice versa. Similar comparisons might be made with 
VHDL, and the point is that engineers simply get 
used to a particular syntax. As previously noted, 
SystemC does not directly support SVA or coverage. 
These examples utilize the latest SystemVerilog, 
SystemC and C++ standards. Language keywords 
and features are highlighted in bold. 

 

Feature SystemVerilog SystemC 

Packaging package my_stuff; 
endpackage : my_stuff 
import my_stuff::*; 

namespace my_stuff { 
} 
using namespace my_stuff; 

Behavioral 
Process 

initial begin :BLOCK 
    STATEMENTS… 
end 

SC_THREAD(BLOCK); 
void BLOCK(void) { 
   STATEMENTS… 
} 

RTL 
Process 

always_ff @(posedge clk)  
begin :REGS 
  q <= d; 
end 

SC_METHOD(REGS); 
sensitive << clk.pos(); 
… 
void REGS(void) { 
    q->write(d); 
} 

Module module Design 
( input  logic [7:0] d 
, output logic [7:0] q 
); 
    … 
endmodule: Design 

SC_MODULE(Design) { 
    sc_in <sc_lv<8> > d; 
    sc_out<sc_lv<8> > q; 
    … 
}; 

Data logic [3:0] l; 
int         i; 
bit         b; 
string      txt; 
typdef struct { int a, b; } S; 
S           s = ‘{1,2}; 
time        t; 

sc_lv<4> l; 
int      i; 
bool     b; 
string   txt; 
struct S { int a, b; }; 
S        s{1,2};//C++11 
sc_time  t; 

Events event e1, e2; 
->e1; 
->> #5ns e2; 
@(e1 or e2); 

sc_event e1, e2; 
e1.notify(); 
e2.notify(2, SC_NS); 
wait(e1 | e2); 
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Feature SystemVerilog SystemC 
#5ns; 
wait(sig == 0); 

wait(5,SC_NS); 
while (not (sig == 0)) 
  wait(sig.default_event); 

Classes 
(OOP) 

class C extends B; 
  int m_i; 
  extern function new(int i); 
  function int get; 
    return m_i; 
  endfunction 
  function void inc; 
    m_i += val; 
  endfunction 
  static task delay; 
    @(sync); 
  endtask 
  local static event sync; 
endclass: C 
 
C::delay(); 
C obj1 = new(101); 
obj1.inc(); 
C obj2; 
obj2 = new(102); 
$display(obj2.get()); 

struct C : B { 
  int m_i; 
  C(int i); 
  int get(void) const { 
    return m_i; 
  } 
  void inc(void) { 
    m_i += val; 
  } 
  static void delay(void) { 
    wait(sync); 
  } 
private: 
  static sc_event sync; 
}; 
C::delay(); 
C obj1{101}; 
obj1.inc(); 
C* obj2; 
obj2 = new C(102); 
cout << obj2->get() << endl; 

Conditional if (EXPR) STATEMENT 
else STATEMENT 
case (EXPR) 
  EXPR1: STATEMENT 
 
  default: STATEMENT 
endcase 

if (EXPR) STATEMENT 
else STATEMENT 
switch (EXPR) { 
  case CONSTANT: STATEMENT 
    break; 
  default: STATEMENT 
} 

Loops while(EXPR) STATEMENT 
do STATEMENT while (EXPR); 
for(int i=0;i!=max;++i) STMT 
forever STMT 
foreach(CONTAINER[i]) STMT 

while(EXPR) STATEMENT 
do { STATEMENTS } while (EXPR); 
for(int i=0; i!=max; ++i) STMT 
for(;;) STMT 
for(auto i:CONTAINER) STMT 

Dynamic 
Processes 

fork 
  begin STATEMENTS… end 
  begin STATEMENTS… end 
join 
 
process h; 
fork 
  begin 
    h = process::self(); 
    STATEMENTS… 
  end 
join_none 
 
wait(h.status != 
       process::FINISHED); 

FORK 
 sc_spawn([&](){STATEMENTS…}), 
 sc_spawn([&](){STATEMENTS…}) 
JOIN 
 
auto h = sc_spawn([&](){ 
  STATEMENTS… 
}); 
 
 
 
 
 
wait(h.terminated_event()); 

Final final begin 
  … 
end 

void end_of_simulation(void) { 
  … 
} 

Containers T1 fixedArray[N]; 
T1 dynamicArray[]; 
T1 associativeArray[T2]; 

std::array<T1,N> fixedArray; 
std::vector<T1>  dynamicArray; 
std::map<T2,T2>  associativeArray; 
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Feature SystemVerilog SystemC 
T1 queue[$]; std::deque<T1>   queue; 

Channels var  logic [1:0] sig; 
sig <= a + b; 
 
wire logic [7:0] w; 
assign w = a + b; 

sc_signal<sc_int<2>> sig; 
sig.write(a + b); 
 
sc_signal_rv<char> w; 
sc_spawn([&](){for(;;){ 
  wait(a|b); 
  w.write(a + b); 
}}); 

Table 5: Side by side syntax 

 
There are features that one side or the other do not 
currently support natively; although, there is nothing 
fundamentally that cannot be solved. For instance, 
SystemC does not support SystemVerilog Assertions 
(SVA); although, one commercial company has 
provided a solution, and at least one instance of a 
internal solution have been demonstrated. (Also PSL 
is designed for SystemC). The issue with SVA is 
primarily that there has been no overwhelming need 
for temporal assertions for high level modeling 
efforts. SVA as implemented in SystemVerilog is 
focussed on verification of RTL issues such as pin-
level bus protocols. 
 
SystemC also is not able to efficiently simulate RTL 
because some of the tricks employed by 
SystemVerilog simulators are not germane to the 
standard C/C++ compilers used with SystemC. For 
instance, identifying all clocked code fragments and 
combining them into a single context switch is 
simply something no C/C++ compiler could have any 
understanding of. 
 
SystemVerilog on the other hand does not trivially 
integrate into the world of C/C++ open-source. For 
instance, consider the pain required if one desired to 
use some of the algorithms present in the open-source 
BOOST libraries. Certainly, Direct Programming 
Interface feature has made it easier; however, it 
frequently requires data conversions and the 
semantics are generally pass-by-value. Consider that 
TLM 2.0 payload extensions are almost impossible. 
But then again, SystemVerilog was designed with 
RTL in mind; whereas, SystemC is all about melding 
in with the C/C++ coding world. 

Applying Languages to Designs 

So how should a project make use of these two 
languages? Part of the answer comes when a project 
is broken down into a schedule, and its needs are 
examined. For modern designs, software dominates 
the schedule, which dictates a need to be able to start 

coding early. Furthermore, hardware becomes a 
bottleneck for verification. If the product team can 
agree to designate an ESL model as golden, then a 
high-performance version can be used to develop 
software. The verification team can begin to verify 
this model as the basis for their test environment, 
while the hardware team develops the RTL. Best of 
all, the final design can use of co-simulation to verify 
the RTL against the original ESL model. 

Is one language better than the other? No, not really. 
Each has strengths and weaknesses, but more 
importantly, each has a particular domain for which it 
is suited. 

Eliminating FUD 

Fear, Uncertainty and Doubt (FUD) can be 
hindrances to progress. In an uncertain world, 
engineers and managers alike sometimes see new 
design methodologies and tool technologies as a 
threat. They see it as a threat because they’ve just 
spent the last N years of their life mastering the 
current technology (e.g. Verilog RTL), and now they 
may have to re-enter the race as newbies learning 
new skills (e.g. SystemVerilog, SystemC, UVM or 
TLM 2.0). It may also mean the tools they have 
grown fond of, customized and use daily may be 
changing. The fact that upper level management 
wants products out the door faster than ever, does not 
help the stress level. It’s challenging enough to 
master the technologies that are going into the next 
products without adding the potential stress of new 
tools or languages. What is an engineer to do? It is 
interesting to consider that engineers are facilitators 
of change, but in this situation, they often resist the 
change to their own world. 
 
A lot of questions to be answered to determine what 
you need. The following list has some food for 
thought. You may choose to adjust the 
recommendations. Additionally, each question has a 
weight relative to the project itself. For example, if 
software dominates the project schedule then 
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obviously recommendations relative to it should be 
weighted higher. 

 

 

# Question SystemVerilog SystemC 

 Do you need to start the software earlier in the schedule? 0 10 

 Does the architecture need bandwidth considerations analysis? 3 7 

 Does software need to evaluate its impact on power or performance? 1 9 

 Does the specification include FSM descriptions? 6 4 

 Do you plan to purchase external RTL IP for incorporation? 5 5 

 Does the design incorporate a lot of legacy RTL IP? 8 2 

 Does verification desire to reuse code from other designs? 8* 2 

 Are simulation mismatches between synthesis and RTL a concern? 7 3 

 Is a new standard protocol involved? 8 2 

 Is a new custom protocol involved? 7 3 

 Are you starting from pre-existing Verilog RTL? 10 0 

 Is this for architectural purposes? 3 7 

 Is this for verification of the implementation? 7* 2 

 Is this for implementation of RTL specifications? 10 0 

 Does verification IP exist? 10* 0 

 Does TLM 2.0 IP exist? 0 7 

 Does an Instruction Set Simulator exist? 0 7 

 Are there asynchronous design blocks? 8 2 

 Are there multiple clocks? 8 0 

 Does the design include major new algorithms or complex design content? 3 7 
* UVM should be part of the solution 

Table 6: Questions Influencing Choice of Language 

Another factor challenging practicing engineers is the 
fear of not becoming proficient quickly enough in a 
job market that favors the employer. Some recent 
graduates are coming out of some schools with 
training in these technologies and employers are 
snapping them up. There are several ways to alleviate 
this including getting professional training, obtaining 
good reference materials, proper tools and prolific 
use of web resources and users groups/forums. Let’s 
look at some of these approaches to proficiency. 
 
It is amazing how many engineers underestimate the 
learning challenges and choose to attempt 
independent learning. By choosing professional 
training, engineers can cut months off the learning 
curve. Of course practice makes perfect, and simply 

attending a training course won’t make you 
proficient, but it does provide a better foundation. 
 
Reference materials take several forms. The first 
should be the actual standards documents themselves. 
In some cases they can be obtained at no cost, but 
other require an investment. In many cases, 
employers have purchased copies available in a 
library or on-line electronically for use by their 
employees. Even though tedious, every engineer 
should have these available to consult. For learning a 
technology, it is probably best to also obtain a book 
on the subject matter. Some of these may be obtained 
from training classes and others purchased. If not in a 
library, many employers will reimburse employees 
for at least one or two books if requested. Older 
versions and second hand copies may also be 
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valuable as foundational material. Newer versions of 
standards are frequently presented at conferences 
accompanied by papers that announce the changes 
and improvements. 
 
Obtaining the right tools can also make a difference it 
proficiency; although, tool vendors understandably 
overstate the tool’s value versus the need for 
foundational knowledge of the technologies. Do not 
get confused between the language and the tools. It 
should be noted that evolving standards means that 
vendors may not support all the latest features yet, or 
perhaps they have interpreted the standard 
differently. When in doubt consult the standards 
document. Rolling your own tools is probably not the 
best use of your time. The real key to proficiency is a 
combination of education and tools.  
 
Finally, it should be obvious that the web provides a 
wealth of information. It must be noted that 
information is only as good as its source and a lot of 
misinformation is out there. When you read a reply, 
consider its source. Does the answer match the 
definitions as stated in the relevant standards 
document? Is the source an expert or simply an 
amateur stating an opinion or vendor pushing a tool? 
Do others agree with the opinion? Is the answer 
simply a guideline or does it represent a particular 
methodology? Can you find other experts to back up 
the opinion? 
 

Summary: Conclusions, Possible future directions, 
Recommendations 

In summary, both SystemVerilog and SystemC are 
needed for modern designs and work in a 
complementary manner. They should be applied to 
each area of the project as appropriate. SystemC 
makes sense in creating Virtual Platforms to enable 
early architectural analysis, software development, 
high-level verification and as a reference model. 
SystemVerilog provides a solid framework for 
properly verifying RTL designs, enabling the use of 
structured verification methodologies such as UVM. 
SystemVerilog is also enables design engineers to 
reliably communicate their RTL intent and have 
better control over the output of synthesis. 
 
It is clear that evolution of the standards will continue 
to occur as it always has. Designs will get more 
complex and raising the abstraction levels is a means 
to keeping complexity manageable.  
 

References 

[1] "IEEE Standard for SystemVerilog - Unified 
Hardware Design, Specification, and 
Verification Language," IEEE Std 1800-2009, 
2009. 

[2] “IEEE Standard for Standard SystemC® 
Language Reference Manual,” IEEE Std 1666-
2011, 2012 


