

A SystemVerilog Framework for Easy Method

Advice in Object-oriented Test Benches

Eric Ohana

Media Processor Division

ARM Ltd.

Cambridge, United Kingdom

eric.ohana@arm.com

IEEE member – Circuits & Systems Society

Abstract
It is a common necessity, while utilizing an object-
oriented verification environment - a test bench, for
exercising the features of a Design Under Test (DUT), to
have to modify the methods of the various classes, the
verification environment comprises.
These classes can be data classes used for generating
different stimuli to the DUT or architecture classes used
to build the infrastructure of the test bench. Modifying
the methods of those classes is needed for the
implementation of the test cases, configuring the
verification or debugging purposes.
The paper focuses on test benches written in the
increasingly popular SystemVerilog language which has
object-oriented features. The standard object
orientation way, using inheritance and polymorphism is
generally used for the purpose of modifying classes’
methods. The paper proposes a framework where the
aspect orientation concept of advice on methods,
defined by [1] as a piece of code to be executed at
specific points (called join points) in the method, is
implemented to some useful extent. The method advice
features implemented by the framework are similar in
concept to these in the e Verification Language, see [2]
for more details on the latter. An advantage of the
framework over e, is the run-time method advice
feature which is also demonstrated in the paper.
Aspect-oriented advice on methods, as defined above, is
not currently supported by the SystemVerilog LRM.
The DUT used to develop the framework is written in
Verilog RTL but this fact is by no mean a limitation on
the usability of the framework.

Keywords
Object-oriented Programming, Aspect-oriented

Programming, Verilog SystemVerilog, e Verification

Language, HVL, HDVL, Advice, Test Bench, Test Case,

RTL, DUT, GPU, VMM, UVM, callback

Introduction
[3] explains that adopting a layered approach when
developing a test bench yields a reusability feature
when its building blocks are encapsulated.

The object-orientation features of SystemVerilog
actually enable the adoption of a layered approach for
constructing test benches.
There are two main types of classes in an object-
oriented test bench:

1- Classes used to create stimuli to the DUT: the
data classes. Objects created from data classes
are dynamic in essence, in the sense that
many of them are created and garbage
collected during a typical simulation.

2- Classes used to create the structure used to
convey the stimuli, to monitor, check and
model the DUT activity: the architecture
classes. Objects created from these classes are
static in essence, in the sense that they are
created only once and live throughout the
course of a typical simulation.

Modifying the behavior of the methods in data and
architecture classes is needed when creating different
test cases, configuring the environment a DUT is
instantiated in or for the debugging process. Those
modifications are achieved through inheritance and
polymorphism (method overriding) or also sometimes
by simply changing the source code of the classes.
The first approach requires some level of object-
oriented programming expertise in order to be
accomplished efficiently and not create bugs in the test
bench, which are hard to track down. It should also be
noted that the specific purpose of a test case developed
using this approach is not always as clear as it could be.
The second approach is not always possible, either
because the original code is not modifiable for various
reasons or desirable e.g. if the code is shared by several
engineers, this could potentially cause a general stall in
the verification effort, and creating many versions for a
given class can render a verification environment prone
to bugs.
A plain definition of the method advice feature of
aspect-oriented programming is basically the possibility
to modify the methods of a class without changing its
source code and without the issues brought by
inheritance and polymorphism. See [4] for a formal
explanation. The paper shows that method advice can
be particularly useful for verification purposes.
SystemVerilog does not currently offer inherent aspect-
oriented features, and modifying the tasks and functions

mailto:eric.ohana@arm.com

using this HVL implies using the approaches
aforementioned.
The paper describes a SystemVerilog framework. This
framework enables the use of the aspect-oriented
method advice feature, regardless of which simulator is
used in the verification process.
The framework was used in a test bench during the
course of a project at ARM Ltd, and appeared to be
useful during the test cases development stages of the
verification process. For the purpose of the paper, a
simplified version of the test bench is used to allow
focus on the method advice feature offered by the
framework.

1- The SystemVerilog object-oriented test
bench
This section gives a simplified overview of the test bench
where the framework was used.
The DUT is the execution core of a GPU program called
also a shader.
The work was done as a part of an ARM MPD division
project.

Figure 1. below, depicts a simplified version of the test
bench. The DUT receives two main types of stimuli: 1-
Randomized GPU programs 2- Randomized threads
executing the randomized GPU programs.
The test case defines the randomization constraints on
the types of programs and threads the DUT executes.
Some of the behavior of the DUT is modeled in
SystemVerilog. The checker ensures that the DUT and
the SystemVerilog modeling are always aligned.

Figure 1. The SystemVerilog object-oriented test bench

Following is a non-exhaustive list of the type of
randomizations the GPU programs and the threads
packets undergo:

 The GPU programs exhibit specific sequences
of instructions

 The threads packets are always longer than a
given number

 The GPU programs use the
minimum/maximum allowed allocation of
dynamic work registers

 The threads packets are generated from a
subset of all the possible types

Following is a non-exhaustive list of modifications on
methods for data and architecture classes needed for
creating new test cases or facilitating the debugging
process:

 Change the randomization results on data
classes’ properties instantiated in the GPU
Programs block in Figure 1.

 Introduce latency cycles on a control signal in
an architecture driver class belonging to the
Threads Packets block in Figure 1.

 Displaying some debugging information when
invoking methods in the classes of the Checker
block in Figure 1.

Note that for changing the randomization results of a
data class, apart from inheritance and polymorphism
(SystemVerilog constraint construct override) and
changing the source code, it is also common to use the
post_randomize() function.
The method advice framework consists of two parts: the
first part is the library part and the second one is the
verification environment part. After describing both part
of the framework, comparisons between the object-
oriented approach and the aspect-oriented one to
achieve method modification are made considering two
aspects for the verification environment: controllability
& observability, whether conceptually or with specific
examples.

2- The library part of the method advice
framework
The library part of the framework consists of two
SystemVerilog files:

1- An Aspect-oriented Programming Advice
Package (AOPAdvicePackage.sv)

2- An Aspect-oriented Programming Advice
utilities file (AOPAdviceUtils.svh)

The second part of the framework, which is the
verification environment one, is a set of methodological
rules on how to write a data/architecture class for using
the method advice features. This is explained in the next
section with specific examples and simulation outcomes.

The role of this framework’s part is to manage a
database reflecting the activity on the method join
points. For the method join point definitions, see the
AOPAdvicePackage.sv package description below. The
database includes every method (SystemVerilog
function or task) of every class in the verification
environment.
This database concept is similar, in essence, to the UVM
configuration database one. See [5] for more details.
The database is static in the object-oriented sense and
can be modified at any point during a simulation.

The AOPAdvicePackage.sv package:
The package defines first 2 simple SystemVerilog new
types:

1- typedef enum {IS_ONLY,IS_FIRST,IS_ALSO}
joinPointEnum;

2- typedef joinPointEnum joinPointQueue[$];

joinPointEnum is an enum, which uses the same semantic
and definition as in the e Verification Language for the
method join points:
IS_ONLY: Only the method modification is executed and
not the original method
IS_FIRST: The original method is executed after the
method modification
IS_ALSO: The original method is executed before the
method modification
Note that if IS_FIRST and/or IS_ALSO is defined on a
method along with IS_ONLY, the latter takes precedence.

As for multiple method advices for IS_FIRST and IS_ALSO

join points, it should be noted here that contrarily to e,
it is sufficient to define the join points (IS_FIRST and
IS_ALSO) only once for the method of the class. The
advice code itself is added in the verification
environment part of the framework detailed in section
3.

joinPointQueue is a queue of joinPointEnum.
The usage of these two new types is clarified with the
remaining part of the AOPAdvicePackage.sv package.

The last part of the package consists of one
parameterized class.
The parameterized class has one static property and
four static methods.

The parameterized class:
class AOPAdvice #(type T=int); … endclass: AOPAdvice

The need for the class to be parameterized is explained
in the paragraph explaining its static property below.
Its static property:
static joinPointQueue dataBase [string];

This string associative array of joinPointQueue keeps for
every method name (the string argument) a queue of
the join points set or cancelled for this specific method.
As the class is parameterized, an independent static
database can then be accessed for every class type in
the verification environment.
Its four static methods prototypes:
1- static function void setAdvice(input joinPointEnum

joinPoint,input string methodName);

This function sets a join point on a method name for a
given class in the static property database:
dataBase.
Once a join point is defined on a method, it will be
executed, in accordance to the overall definition of all
the join points, until it is cancelled (see C-). The actual
execution is explained with the second
Usage example:
 AOPAdvice#(MyClass)::setAdvice(IS_ONLY,”myClas
sMethod”);

2- static function bit getAdvice(input joinPointEnum
joinPoint,input string method);

This function returns 1’b1 if a join point on a method
name for a given class in the static property database
dataBase exists.
Usage example:
 AOPAdvice#(MyClass)::getAdvice(IS_ONLY,”myClas
sMethod”);

3- static function void reset(input string methodName);

This function’s role is to cancel all the join points defined
for a method name of a given class. This is the way to
resume original execution on a method.
Usage example:
 AOPAdvice#(MyClass)::reset(”myClassMethod”);

4- static function void print();
This function displays the method names and their join
points for a given class, if any has been set and/or
cancelled that is.
Usage example:
 AOPAdvice#(MyClass)::print();

A typical output of the function call above would be:
Method(s) for class MyClassPackage::MyClass:
myClassDisplay -
IS_ONLY
post_randomize -
IS_ALSO
The AOPAdviceUtils.svh utilities file:
This file should be included in every class, which needs
to use the method advice feature.
It consists of:

1- One external function and one external task
for adding method advices.

2- Four macros:
a. `FUNCPRE(string)
b. `FUNCPOST(string)
c. `TASKPRE(string)
d. `TASKPOST(string)

The usage of these utilities is clarified with the
verification environment part of the framework.

3- The verification environment part of the
method advice framework
The verification environment part of the framework has
an impact only on the classes which want to take
advantage of the method advice framework. The other
classes remain unchanged and coexist peacefully in the
same verification environment.
For a given class, this part consists of:

1- Defining an external function and/or an
external task. The role of this external
function/task is to invoke the advices on
the class’s functions/tasks, respectively, if
some join points are defined for these
class’s functions/tasks. The external
function is named addAdviceFunction and
the external task is named addAdviceTask.
This definition occurs automatically by
including the AOPAdviceUtils.svh file in
the class definition.

2- Adding the macros: `FUNCPRE(string),
`FUNCPOST(string),
`TASKPRE(string),`TASKPOST(string) to the
functions and tasks where join points

need to be defined. They actually act as
callbacks at the start and at the end of
functions and tasks.

The `FUNCPRE(string),`FUNCPOST(string) callback macros
are for join points in functions and the
`TASKPRE(string),`TASKPOST(string) callback macros are for
join points in tasks. The differentiation is needed
because SystemVerilog does not allow time-consuming
instructions in functions.

The external function and the external task:
Below is the prototype for the external function:
extern function bit addAdviceFunction(input string
methodName,input bit start = 1’b1);

Its content is basically the instantiation of a case
statement which interrogates the method advice
database for every possible join point existence for a
function name and invokes a modified method call if
true. It is typically defined in a class specific package,
which includes the class itself and imports the
AOPAdvicePackage.sv package described in the library
part of the framework.
The case template is described in Template 1.

case (functionName)
"myFunctionName":
begin
if (AOPAdvice#(MyClass)::getAdvice(IS_ONLY,methodName)
&& addAdviceFunctionStart)
begin // Modified function call occurs here return 1'b1; end
if (AOPAdvice#(MyClass)::getAdvice(IS_FIRST,methodName)
&& addAdviceFunctionStart)
begin // Modified function call occurs here return 1'b0; end
if (AOPAdvice#(MyClass)::getAdvice(IS_ALSO,methodName)
&& !addAdviceFunctionStart)
begin // Modified function call occurs here return 1'b0; end
return 1'b0;
end // case: "myFunctionName
default: return 1’b0;
endcase // case (functionName)

Template 1. The case instantiation template for the

addAdviceFunction external function

Below is the prototype for the external task:
extern function addAdviceTask(input string methodName,ref
bit addAdviceTaskStart = 1’b1);

The case template for the task is slightly different from
the function one, as a task does not return any value in
Systemverilog. It is described in Template 2.

case (taskName)
"myTaskName":
begin
if (AOPAdvice#(MyClass)::getAdvice(IS_ONLY,methodName)
&& addAdviceTaskStart)
begin // Modified task call return; end
if (AOPAdvice#(MyClass)::getAdvice(IS_FIRST,methodName)
&& addAdviceTaskStart)
begin // Modified task call addAdviceTaskStart = 1’b0; return;
end
if (AOPAdvice#(MyClass)::getAdvice(IS_ALSO,methodName)
&& ! addAdviceTaskStart)
begin // Modified task call end
addAdviceTaskstart = 1’b0;
end // case: "myTaskName
default: addAdviceTaskstart = 1’b0;

endcase // case (taskName)

Template 2. The case instantiation template for the

addAdviceTask external task

The callback macros for the functions and tasks:
The callback macros are different for functions and
tasks, as SystemVerilog does not allow time-consuming
instructions in functions.
There are two places for instantiating the callback
macros: one before the execution of the original content
of the method (*PRE macros) and one after the
execution of the original content of the method (*POST
macros). Care should be taken to ensure the desired
functionality is implemented when instantiating the
`FUNCPOST(string) &`TASKPOST(string) macros: if the
original methods return before reaching them, as they
won’t be executed.
Examples are described in Template 3.

task myTask();
`TASKPRE(“myTask”); // Handles IS_ONLY and IS_FIRST join
points
// Here comes the original content of the task
`TASKPOST(“myTask”); // Handles IS_ALSO join points
endtask: myTask

function myFunction();
`FUNCPRE(“myFunction”); // Handles IS_ONLY and IS_FIRST
join points
// Here comes the original content of the function
`FUNCPOST(“myFunction”); // Handles IS_ALSO join point
endtask: myFunction

Template 3. The callback additions for tasks and

functions

The callback macros validate the join points and call the
actual modifications.

4- Controllability for the verification
environment
Application to test case development
A test case development mainly involves one or both of
the following actions on the verification environment:
1- Modifying the randomization parameters for the DUT
stimuli data classes
2- Modifying the functionality of one or more of the test
bench architecture classes’ methods (task or functions.
Examples of such classes could be driver classes, checker
classes, monitor classes and so on.
Figure 2.compares the test case simulation flow with an
object-oriented approach and using the framework.

Figure 2. Test case simulation flows compared

Stage 0 of Figure 2. is similar for both approaches.
- Stage 1A of Figure 2., assumes the extended

classes which integrate the modified tasks and
functions for the test case implementation,
have been developed and compiled.

- Stage 2A assumes from the verification
engineer a clear view of the whole verification
environment structure.

- During the execution of stage 3A of Figure 2.,
reverting to base classes behavior is not a
straightforward or flexible process.

- Stage 1B of Figure 2., assumes the framework
has been integrated and the
addAdviceFunction/Task methods implemented
(if needed) for every class which require
method modification for this specific test case.

- During the execution of Stage 2B of Figure 2.,
reverting to base class behavior as well as
changing the join points for a task or a
function is a straightforward process.

Template 4. describes a test execution process in a
SystemVerilog program construct, from the setting of
the method advice database through environment
construction and execution. In this specific example, the
method advice database is reset in the middle of the
test to cancel all join points and revert to basic method
functionality.

program automatic test;
import AOPDefinitions::*;

import AOPAdvicePackage::*;
// Verification environment package:
import EnvironmentPackage::*;
// Verification environment handle:
Environment environment;
initial
begin
// Build join point database for test case …
// drivePacket task of driver class is modified:
AOPAdvice#(DriverClass)::setAdvice(IS_ONLY,”drivePacket”);
// Construct & run the environment:
environment = new();
environment.run();
.
// Redefine database during test case …
// Original drivePacket task is needed:
AOPAdvice#(DriverClass)::reset();
.
end
endprogram: test
Template 4. Test execution process with method advice

The example in Template 4 creates a test case by
replacing completely the drivePacket task functionality
with the IS_ONLY join point (e.g. the packets are driven
to the DUT with higher latencies), this is achieved by the
first underlined piece of code. At some point during the
test, the verification engineer wants/needs to revert to
the original functionality of the drivePacket task, this is
achieved by the second underlined piece of code.
This example also highlights an advantage of the
framework as the different method advices can be
dynamically controlled at run-time, something which is
not possible with the e Verification Language.
Also, the lines of code underlined in Template 4. are the
lines to be modified when using an object-oriented
approach: the extended class objects should be created
at this stage, and then different class handles in the test
bench should point to these new created objects, for
example the following line from Template 4:
AOPAdvice#(DriverClass)::setAdvice(IS_ONLY,”drivePacket”);

Should be replaced by:
ExtendedDriverClass extendedDriverClass;
extendedDriverClass = new();

This assumes the existence of a new extended class
(ExtendedDriverClass extends DriverClass) which includes an
overriding method for drivePacket().
After the environment creation, all the handles pointing
to a DriverClass object should be reassigned.
For one reassignment, that would be:
environment.<hierarchical path to the handle> .driverClass =
extendedDriverClass;

It is remarked here that providing join points to the
SystemVerilog post_randomize() function of a data class is
the current approach of the author to modifying a class
randomization output. The SystemVerilog constraint
constructs, although they can be overridden, are limited
in terms of method call within the expression of the
constraint itself. [7] details the exact features and
limitations of SystemVerilog constraints.

5- Observability for the verification
environment
Application to debugging

It is very useful during the debugging process of a
verification issue, whether it is test bench related and/or
DUT related, to be able to monitor specific parameters
of the dynamic state of test bench objects along with
DUT signal values. A VMM implementation of this
concept is discussed in [6].
Template 5. is the procedural part of a systemverilog
program construct where two join points on the
checkPacket function are defined. The code in the
addAdviceFunction function can for example calculate and
print useful information to understand why a call of
checkPacket(…) would returns an otherwise hard to
explain error.

initial
begin
// Build join point database for debugging …
// checkPacket function of CheckerClass is modified:
AOPAdvice#(CheckerClass)::setAdvice(IS_FIRST,”checkPacket”)
;
AOPAdvice#(CheckerClass)::setAdvice(IS_ALSO,”checkPacket”)
;
// Construct & run the environment:
environment = new();
environment.run();
end
endprogram: test

Template 5. Application to debugging example

Moreover, using the technique shown in Template 5.,
the advices can be used to compute dynamic variables
for various objects and then to print them or set them
to SystemVerilog interfaces variables. The SystemVerilog
interface variables can finally be viewed, along with DUT
signals, on any waveform tool for debugging purposes.

Conclusion

Test bench controllability and separation of efforts
aspects
Complex test cases involving modifications of some of
the data classes in the generation part of the test bench
and some of the architecture classes in the driving part
of the test bench can be written in a more natural
manner without extending a single class, letting the
verification engineer focus on creating the sheer
functionality sought from the test bench.

Test bench observability aspect
Debugging the generation, driving or checking classes of
the test bench with their various functional advices is
efficiently achieved by using additional observation
advices. Moreover, these observation advices allow for
the visualization of dynamic objects alongside DUT

signals, using SystemVerilog interface constructs and a
waveform viewer. This is an appreciable acceleration
compared to the standard console/file displays with
reverse engineering methods.

General result
The method advice feature of aspect-oriented
programming is definitely a useful addition to standard
object-oriented test benches, as shown by using this
SystemVerilog framework, especially during the test
cases development phase of a verification effort and for
achieving robust test bench architectures by easily
tracking down non-DUT related issues.
The SystemVerilog framework for adding the method
advice feature of aspect-oriented programming for
functions and tasks of the various classes in an object-
oriented test bench is agnostic to the simulator used.
Additionally, the reuse of the framework for subsequent
projects is straightforward, as the advices added for a
specific project do not interfere with the framework
itself.

Finally, it should be noted that using method advice for
verification, whether it is for test cases development or
debugging purposes appears to be a more natural
approach from the verification engineer perspective.
It is mainly due to the fact that the approach relieves
the engineer from caring about pure object-oriented
issues like inheritance and polymorphism. It also allows
her or him to focus on the sheer functionality sought
from the test bench to achieve quality verification.

Reference

[1] Robinson D., 2007, Aspect-Oriented Programming with the
e Verification Language, Burlington MA, Morgan Kaufmann
Publishers, Elsevier
[2] Hollander Y., Morley M., Noy A., 2000. The e language, a
fresh separation of concerns.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=911754&
tag=1
[3] Spear C., Tumbush G., 2012, SystemVerilog for Verification.
2012, springer.com
[4] http://en.wikipedia.org/wiki/Aspect-oriented_programming
[5] Rosenberg, S., Meade K. A., 2010. A Practical Guide to
Adopting the Universal Verification Methodology (UVM). San
Jose, California: Cadence Design Systems, Inc.
[6] Cohen, B., Venkataramanan, S., Kumari, A., 2006, A
pragmatic approach to VMM adoption … a SystemVerilog
framework for TestBenches. Palos Verdes Peninsula, CA:
VhdlCohen Publishing
[7] SystemVerilog Golden Reference Guide, Version 4.0,
January 2006, Doulos Limited, Ringwood Hampshire

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=911754&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=911754&tag=1
http://en.wikipedia.org/wiki/Aspect-oriented_programming

	Abstract
	Keywords
	Introduction
	1- The SystemVerilog object-oriented test bench
	2- The library part of the method advice framework
	3- The verification environment part of the method advice framework
	4- Controllability for the verification environment
	5- Observability for the verification environment
	Conclusion
	Reference

