
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

It is a common necessity, while utilizing an object-oriented verification environment - a 
test bench, for exercising the features of a Design Under Test (DUT), to have to modify 
the methods of the various classes, the verification environment comprises. 
These classes can be data classes used for generating different stimuli to the DUT or 
architecture classes used to build the infrastructure of the test bench. Modifying the 
methods of those classes is needed for the implementation of the test cases, configuring 
the verification or debugging purposes. 
The paper focuses on test benches written in the increasingly popular SystemVerilog
language which has object-oriented features. The standard object orientation way, using 
inheritance and polymorphism is generally used for the purpose of modifying classes’ 
methods. The paper proposes a framework where the aspect orientation concept of 
advice on methods, defined by [1] as a piece of code to be executed at specific points 
(called join points) in the method, is implemented to some useful extent. The method 
advice features implemented by the framework are similar in concept to these in the e
Verification Language, see [2] for more details on the latter. An advantage of the 
framework over e, is the run-time method advice feature which is also demonstrated in 
the paper. Aspect-oriented advice on methods, as defined above, is not currently 
supported by the SystemVerilog LRM. 
The DUT used to develop the framework is written in Verilog RTL but this fact is by no 
mean a limitation on the usability of the framework. 

ABSTRACT

THE VERIFICATION ENVIRONMENT

The method advice framework consists of two parts: the library part and the verification 
environment part:

1- THE LIBRARY PART
This part mainly defines the SystemVerilog properties a verification environment uses to 
activate the framework:

- typedef enum {IS_ONLY,IS_FIRST,IS_ALSO} joinPointEnum; 
joinPointEnum is an enum, which uses the same semantic and definition as in the e
Verification Language for the method join points:
IS_ONLY: Only the method modification is executed and not the original method 
IS_FIRST: The original method is executed after the method modification
IS_ALSO: The original method is executed before the method modification 
Note that if IS_FIRST and/or IS_ALSO is defined on a method along with IS_ONLY, the 
latter takes precedence. 

- typedef joinPointEnum joinPointQueue[$]; 
This property is used in the class below.

- class AOPAdvice #(type T=int); ... endclass: AOPAdvice
AOPAdvice is parameterized with a class type in the verification environment which uses 
advices on its methods.
AOPAdvice has the following static property: static joinPointQueue dataBase [string];
where the string is the name of a method in AOPAdvice parametrized class type.
AOPAdvice has methods to set (setAdvice), get (getAdvice), print (print) and reset (reset)
Its dataBase property.

Finally four macros are defined:
- `FUNCPOST(string)
- `TASKPRE(string)
- `TASKPOST(string)
- `TASKPRE(string)

The usage of these macros is clarified with the verification environment part of the 
framework. 

2- THE VERIFICATION ENVIRONMENT PART
The verification environment part of the framework has an impact only on the classes 
which want to take advantage of the method advice framework. 
The other classes remain unchanged and coexist peacefully in the same verification 
environment. 
For a given class, this part consists of:

- Defining an external function and/or an external task. The role of this external 
function/task is to invoke the advices on the class’s functions/tasks, respectively, if some 
join points are defined for these class’s functions/tasks. The external function is named 
addAdviceFunction and the external task is named addAdviceTask. Please not that this 
definition occurs automatically by including the framework’s AOPAdviceUtils.svh file in 
the class definition. The actual advices for the methods, as needed by the verification 
engineer, are called from this external function/task.

- Adding the macros: 
`FUNCPRE(string), 
`FUNCPOST(string),
`TASKPRE(string),
`TASKPOST(string) 
to the functions and tasks where join points 
need to be defined. They actually act as callbacks at the start and at the end of functions 
and tasks. 

The `FUNCPRE(string),`FUNCPOST(string) callback macros are for join points in functions 
and the `TASKPRE(string),`TASKPOST(string) callback macros are for join points in tasks.
The differentiation is needed because SystemVerilog does not allow time-consuming 
instructions in functions. 

THE FRAMEWORK

The diagram below compares the test case simulation flow with an object-oriented 
approach and using the framework.

Stage 0 is similar for both approaches. 
Stage 1A assumes the extended classes which integrate the modified tasks and functions 
for the test case implementation, have been developed and compiled. 
Stage 2A assumes from the verification engineer a clear view of the whole verification 
environment structure. 
During the execution of stage 3A, reverting to base classes behavior is not a 
straightforward or flexible process.
Stage 1B assumes the framework has been integrated and the addAdviceFunction/Task 
methods implemented (if needed) for every class which require method modification for 
this specific test case. 
During the execution of Stage 2B, reverting to base class behavior as well as changing the 
join points for a task or a function is a straightforward process. 

CONTROLLABILITY APPLICATION
Below is a SystemVerilog test program for an environment (Environment) having a driver 
class (DriverClass) with a drivePacket method. The test first uses a modified drivePacket
method, then at some point in the simulation, switches back to the basic drivePacket
method: 
program test;
Environment environment;
initial
begin
// drivePacket task of driver class is modified: 
AOPAdvice#(DriverClass)::setAdvice(IS_ONLY,”drivePacket”); 
// Construct & run the environment: 
environment = new(); environment.run();
…
// Original drivePacket task is restored:
AOPAdvice#(DriverClass)::reset(); 
…
end
endprogram: test

THE FRAMEWORK IN ACTION CONCLUSION

TEST BENCH CONTROLLABILITY ASPECTS
Complex test cases involving modifications of some of the data classes in the generation 
part of the test bench and some of the architecture classes in the driving part of the test 
bench can be written in a more natural manner without extending a single class, letting 
the verification engineer focus on creating the sheer functionality sought from the test 
bench. 

TEST BENCH OBSERVABILITY ASPECTS 
Debugging the generation, driving or checking classes of the test bench with their various 
functional advices is efficiently achieved by using additional observation advices. 
Moreover, these observation advices allow for the visualization of dynamic objects 
alongside DUT signals, using SystemVerilog interface constructs and a waveform viewer. 
This is an appreciable acceleration compared to the standard console/file displays with 
reverse engineering methods. 

GENERAL RESULT
The method advice feature of aspect-oriented programming is definitely a useful addition 
to standard object-oriented test benches, as shown by using this SystemVerilog
framework, especially during the test cases development phase of a verification effort 
and for achieving robust test bench architectures by easily tracking down non-DUT 
related issues. 

The SystemVerilog framework for adding the method advice feature of aspect-oriented 
programming for functions and tasks of the various classes in an object- oriented test 
bench is agnostic to the simulator used. Additionally, the reuse of the framework for 
subsequent projects is straightforward, as the advices added for a specific project do not 
interfere with the framework itself. 

REFERENCES

[1] Robinson D., 2007, Aspect-Oriented Programming with the e Verification Language, 
Burlington MA, Morgan Kaufmann Publishers, Elsevier
[2] Hollander Y., Morley M., Noy A., 2000. The e language, a fresh separation of concerns. 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=911754& tag=1 
[3] Spear C., Tumbush G., 2012, SystemVerilog for Verification. 2012, springer.com
[4] http://en.wikipedia.org/wiki/Aspect-oriented_programming [5] Rosenberg, S., Meade 
K. A., 2010. A Practical Guide to Adopting the Universal Verification Methodology (UVM). 
San Jose, California: Cadence Design Systems, Inc. 
[6] Cohen, B., Venkataramanan, S., Kumari, A., 2006, A pragmatic approach to VMM 
adoption ... a SystemVerilog framework for TestBenches. Palos Verdes Peninsula, CA: 
VhdlCohen Publishing 
[7] SystemVerilog Golden Reference Guide, Version 4.0, January 2006, Doulos Limited, 
Ringwood Hampshire 

ACKNOWLEDGMENTS/CONTACTS

The author wishes to thank ARM Ltd. for providing the environment which enabled the 
development of the framework.

For any further details, please write to the following email address:
eric.ohana@arm.com

An overview of the verification environment where the framework was used is shown in 
the diagram below. 
The DUT is the execution core of a GPU program called also a shader.
The work was done as a part of an ARM MPD division project. 
The diagram depicts a simplified version of the test bench. The DUT receives two main 
types of stimuli: 1- Randomized GPU programs 2- Randomized threads executing the 
randomized GPU programs. 
The test case defines the randomization constraints on the types of programs and threads 
the DUT executes. Some of the behavior of the DUT is modeled in SystemVerilog. The 
checker ensures that the DUT and the SystemVerilog modeling are always aligned. 

Following is a non-exhaustive list of modifications on methods for data and architecture 
classes needed for creating new test cases or facilitating the debugging process: 
 Change the randomization results on data classes’ properties instantiated in the GPU 
Programs block in the diagram above.
 Introduce latency cycles on a control signal in an architecture driver class belonging to 
the Threads Packets block in the diagram above.
 Displaying some debugging information when invoking methods in the classes of the 
Checker block in Figure in the diagram above. 

Eric Ohana
Media Processor Division ARM Ltd

A SystemVerilog Framework for Easy Method Advice in Object-oriented Test Benches 


	Slide Number 1

