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Abstract— This paper introduces the System Verification 
Methodology (SVM) Library as an advanced TLM library for 
SystemC, which is based on the OVM-SC library, a SystemC 
implementation of an Open Verification Methodology (OVM) 
subset. SVM integrates with a functional coverage library and 
comes as a significant extension of the OVM-SC library, by 
providing domain specific components (drivers, monitors, 
scoreboards and others) and facilities for generation and 
management of stimuli. 
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I.  INTRODUCTION 

The introduction of Electronic System Level (ESL) 
supports the modeling and verification of complex mixed 
hardware and software systems. As systems grow in 
complexity, verification activities started to exceed the design 
effort. Today, it may account to more than 70% of the activities 
of the entire development cycle [12] with an increasing 
exponential growth [7].  

As such, the verification community and EDA vendors 
have spent a large effort to improve the productivity in the 
verification process, and dedicated Hardware Verification 
Languages (HVL) were introduced, such as e [11] and 
SystemVerilog [10]. Although their constructs support 
verification, the verification process productivity was subject 
of further investigations in development and standardization, 
and several verification methodologies and libraries for the 
development of reusable verification components emerged. 
Examples are Verisity/Cadence's e Reuse Methodology (eRM) 
[24] and Synopsys' Reference Verification Methodology 
(RVM) [21], which are based on the e language and OpenVera 
[22] respectively. With the outcome of SystemC [4], the 
SystemC Verification Library (SCV) [17] was introduced, in 
order to support elemental constrained-random stimuli 
techniques for RTL verification. However, SystemC lacks an 
interoperable verification methodology. In contrast, several 
verification methodologies were developed as SystemVerilog 
implementations, such as the Universal Reuse Methodology 

(URM) [5] from Cadence, the Advanced Verification 
Methodology (AVM) [13] from Mentor Graphics, and the 
Verification Methodology Manual (VMM) [3] from Synopsys. 
Later more advanced libraries were introduced, namely the 
Open Verification Methodology (OVM) [18], as a joint effort 
between Cadence and Mentor Graphics, which combined best 
practices from URM and AVM. Finally, OVM was enhanced 
to the Universal Verification Methodology (UVM) [23], with 
contributions from Synopsys based on VMM. 

Though SystemC was widely accepted for development at 
higher abstraction levels, e.g.  by using TLM 2.0 [16], its 
verification capabilities are limited in comparison to other 
languages such as SystemVerilog. Moreover, verification 
capabilities of the SCV are quite limited and mainly support 
RTL verification. In February 2009 the multiple-languages 
release of OVM (OVM-ML) was donated by Cadence Inc. to 
ovm-world.org. OVM-ML provides the OVM for SystemC 
(OVM-SC) library, which is a SystemC implementation of 
OVM subset. However, OVM-SC lacks various necessary 
features, such as domain specific components, stimuli 
generation facilities, sequence library management, sequence 
arbitration, response to request routing, commando-line 
processor and a register abstraction layer. 

This paper presents the System Verification Methodology 
(SVM) library for SystemC. SVM Library is based on OVM-
SC implementation and incorporates verification best practices 
from OVM-SC, such as factory and configuration facilities and 
simulation phasing, as well as implements missing features, 
such as the domain specific components, stimuli sequence 
generation and management, call-back facilities, response to  
request routing, transaction recording and a command-line 
processor for dynamic test bench loading. 

The remainder of this paper is organized as follows. The 
next section presents related work. Section 3 introduces main 
features and some details of our SVM library. In Section 4 we 
provide an application example. Finally, Section 5 closes with 
conclusions and future directions. 



II. RELATED WORKS 

In the area of (add-on) verification libraries, the Open 
Verification Library (OVL) [1] is maintained by Accellera and 
provides checkers for assertion, assumption or coverage point 
checkering. The most recent version, namely 2.5 supports 
SystemVerilog, Verilog and VHDL. Unfortunately, there is 
currently no support for SystemC. Additionally, except 
SystemVerilog the supported languages are limited to RTL 
level, impeding verification on higher levels of abstraction on 
more abstract data types. 

Other works try to extend the SCV library, improving or 
providing missing features for verification in the SystemC 
language, such as coverage [19][20], assertions [9][14], and 
randomization/constraint solver [8]. Although basic 
verification extensions for standard SystemC are meaningful, a 
library offering components for test bench development, like in 
UVM, is an even more crucial building block for efficient, 
qualified and interoperable test bench development. As such, 
OVM-SC became available, implementing a limited OVM 
subset, mainly part of the OVM base package, in SystemC. 
UVM was introduced as a SystemVerilog implementation with 
many improvements compared to OVM. It presents a more 
dedicated API, introduces more control over the simulation 
phases, adds a command line processor, and a register 
abstraction layer. However, the UVM multiple- languages 
package does not support all those improvements for SystemC. 

Our SVM SystemC library is based on the OVM multiple-
languages - SystemC package v2.1.1 and OVM for 
SystemVerilog v2.1.1. The base package is being refactored, to 
reflect the improvements from the transition of OVM to the 
UVM standard. Moreover, the base package was improved by 
call backs, transaction routing and recording facilities. We also 
included a package with the structural components to build the 
verification environment. We implemented stimuli sequences, 
and sequence scheduler facilities, as well as a command-line 
processor. A coverage library [25], which implements the 
functional coverage part of the IEEE 1800-2009 
SystemVerilog standard, was integrated into SVM to improve 
basic SystemC verification features.  

III. AN ADVANCED SYSTEMC LIBRARY FOR TLM 

VERIFICATION 

Our SVM SystemC library for TLM verification 
implements building blocks to ease the development of 
verification components and test environment. It includes base 
classes, utilities and macros, which support the engineer to 
construct disciplined artifacts, improving the reuse of 
verification components and stimuli. However, taking 

advantages from SystemC abstract modeling and refinement 
features, SVM follows the principles of OVM and UVM. In 
this sense, our library is developed in compliance with OVM 
and UVM keeping the interoperability between these libraries 
as best it is possible. However, the differences between 
SystemVerilog and SystemC impose some adaptations to keep 
the conformance with the OSCI SystemC simulator or to 
exploit SystemC advantages. 

A. SVM Library Structure 

SVM was implemented to be compatible with IEEE 
standard SystemC simulators. Its packages are defined for a 
seamless integration of the library into different verification 
flow and legacy verification components. Assertions, 
Randomization/Constraint Solver and Coverage packages, 
implement dedicated TLM verification features. Actually, they 
are packages intended to provide missing features required to 
perform adequate verification in the SystemC ecosystem. 
Therefore, the packages providing Assertions, Randomization / 
Constraint Solver and Coverage are comparable to the OSCI 
SCV library in contrast to a  verification methodology library, 
such as UVM or the one presented in this paper. Figure 1 gives 
an overview of the SVM library packages, in the illustration 
the dashed boxes indicate packages provided by our research 
partners [26]. 

  
Figure 1.  SVM Library Structure 

B. Library Basis 

This package was inherited from the OVM multiple-
languages v2.1.1, a donation of Cadence to the OVM 
community, which includes a SystemC implementation. 
Originally, this package contained elements for factory 
automation, environment configuration, simulation control, and 
a component, which is the base for all other verification 
component. Into this package we include call-back facility, 
command-line processor, and a transaction routing and 
recording feature. We also move the base component to the 



component package, reflecting our alignment with the 
improvement from OVM to UVM. 

1) Factory automation: 
 

The SVM library implementation follows the factory 
design pattern, which introduces higher abstraction in the 
process of instantiating components/objects. In this context, it 
is possible to change an object behavior, by providing different 
implementations with same interface without changes in the 
object itself that applies that interface. Examples of the 
application of the factory in the verification process are when it 
is required to change stimuli, e.g., using a stimuli generator 
with more constraints, or providing a different driver to adapt 
the way data is sent to the DUT, e.g., considering a refinement 
from TLM to RTL level. The factory implementation provides 
facilities to overwrite types and to control the effect of object 
creation in the entire environment or to a specific object. 

2) Environment Configuration 
 

The library also provides a configuration facility, which 
allows the registration of a configuration to affect the entire 
environment or a specific object. By registering a 
configuration, a verification - component – or object - queries 
for an existing configuration that applies to it and performs the 
required adaptation. The configuration can adapt the 
component topology - the types and number of subcomponents, 
and its fields. For example, one can consider a component 
reading from its configuration table, the name of the file it 
should use to read stimuli or the number and type of 
components, which should be instantiated and bound to a 
communication bus. Although automatic configuration is 
provided by the latest OVM SystemVerilog version, due 
performance and reusability problems [6] we decided not to 
support this feature in the first SVM release.  

3) Transaction  
 

We include a transaction facility because transactions 
represent the flow of data in a system, such as flow of 
instructions, pixels and data items. The transaction facilities 
allow user to record transactions, route response to specific 
requests and control timing information for a transaction.  

4) Call Backs 
 

We implement also call backs facility. Call back is an 
extension mechanism, which allows changing the behavior of 
components without change the component itself. It can be 
used to modify the component parameter definition during 
generation of a testbench or to provide flexible mechanism to 

allow execution of personalized behavior before or after 
executing some function.  

5) Simulation Control 
 

The simulation kernels of SystemC and SystemVerilog 
perform different execution phases. They must be harmonized 
in order to change the environment, the configuration of 
objects, start multiple sections, etc. The OVM methodology 
defines multiple phases, improving the simulation phases as 
given by the SystemVerilog simulation standard. We started 
with the phase implementation from OVM-SC as it is aligned 
with the OSCI SystemC simulator and already widely known. 
Although there is a basic alignment in OVM-SC between the 
phases of OVM and SystemC some further adaptation is 
required. Figure 2 compares OVM, which is aligned to 
SystemVerilog, and the SystemC simulation phases. 

 
Figure 2.  Comparison of OVM and SystemC Simulation phases. 

Construction: This first OVM phase compares to the first 
phase of SystemC. It executes the constructors of components 
from top to bottom in the topology. However, some coding 
styles can improve the configuration at further steps. For 
instance, ports and exports of a component, which are typically 
member fields, need to be declared as pointers, as well as their 
child components. This coding style is present in [4]. 
Nevertheless, it had to be adapted to exploit the OVM phases 
and configuration/factory facilities. 

Build: It compares to the Before End of Elaboration phase 
and, consistent with the SystemC OSCI LRM, performs 
creation of the bulk of components. The Build phase exploits 
the configuration API provided in the configuration manager to 
change the type and number of instances before creating the 
child using the factory facilities. Note that, as the bulk of 
creation is performed at the Build phase, the specific binding 
with full hierarchical path names of ports/exports is not 
available because the topology is not fully constructed at this 
time. However, this issue must be addressed in future, as we 
want to keep the compatibility with OSCI SystemC. 



Connection: Although available in the API, this phase-
callback is not automatically called by SystemC kernel, so that 
binding has to be performed inside of Build phase. However, in 
order to improve the conformance to OVM, the Connection 
phase is called automatically after the execution of the Build 
method of each component. Notice that it still executing in the 
Build phase and full hierarchical name cannot be used in this 
phase. However, by using this two distinguished phases, Build 
and Connection, the code for connect components is easily 
identified and ready to be used in a real connection phase, in 
the case of OSCI adopt such phasing organization. 

End of Elaboration: In this phase it is possible to make 
final adjustments and, as the complete environment is created 
and connected, it is possible to analyze the system’s net list.  

Start of Simulation: This phase executes some pre-run 
activities, such as reporting the topology and configuration, 
printing information, initialization of channels and ports. 

Run: It compares to the SystemC Execution phase. The 
operation at this phase can consume simulation time. The 
behavior of a verification component, as described in the 
following sections, is described in a callback named run and it 
implemented as SC_THREAD of the base component. 

Extract: The End of Simulation SystemC phase was 
extended for a more specialized phase control. The Extract 
phase is the first of three phases the SystemC phase End of 
Simulation has to be divided into. In this phase the user can 
extract information about coverage, assertions, or internal data 
from the simulated components. The motivation to create a 
different phase for extraction is to ensure that all data from 
different sources are available prior to the Check phase. 

Check: This phase is used to analyze and validate the 
simulation results, extracted in the previous phase. 

Report: This phase is used to write the results to an output. 

C. SVM Components 

OVM-SC provides one verification component which must 
be used as base class for all other components. In comparison 
to OVM-SC, we add an additional package with structural 
components, which support the development of verification 
environments and tests in a well-structured way. It includes 
classes such as Agents, Drivers, Monitors, etc. These modules 
allow the construction of a topology easy to use, to understand, 
and reuse. They reduce some implementation details, improve 
automation and are the base for future improvements. Figure 3 
illustrates a sample topology constructed with the base classes 
provided in our SVM library. 

 
Figure 3.  General verification modules structure. 

Test: This module has to be extended by the user in order to 
generate a self-contained test for DUT verification. Instances of 
different Test modules can be used to perform a set of tests, 
which can be executed in batch mode. Each test can contain 
one or more Environments in order to verify multiple 
properties or views.  

Environment (Env): This module encapsulates the 
configuration and instantiation of the topology of verification 
components. It may contain Agents, Monitors and Scoreboards, 
etc., which are configured for different environments. 

Agent: This module is an abstract container for Driver, 
Monitor and Sequencer. It is used to emulate the DUT or a 
functional behavior of components that must be connected to 
the DUT. Active Agents emulate devices connected to DUT 
and passive Agents are used to monitor DUT activity. Figure 4 
illustrates a partial code for the agent used in section 5. It 
contains a Sequencer, a Monitor and a Driver. In the code it is 
possible to notice macros for register the component within a 
factory. In the Build member the subcomponents are created by 
using the factory features. 

#include <systemc.h>

#include <tlm.h> 

#include <svm.h> 

 

class ActorAgent : public svm_agent { 

public: 

   tlm::tlm_analysis_port<tlm::tlm_generic_payload > aport; 

   ActorDriver *pDriver; 

   ActorMonitor *pMonitor; 

   ActorSequencer *pSequencer; 

   ActorAgent(sc_core::sc_module_name name); 

   

   SVM_COMPONENT_UTILS(ActorAgent) 

 

  void ActorAgent::build(){ 

    svm_agent::build(); 

    get_config_int("debug", debug); 

    pSequencer = DCAST<ActorSequencer*>(  

      svm_factory::create_component("ActorSequencer", "",    

         "pSequencer") ); 

 … 

  } 

… 

}; 

SVM_COMPONENT_REGISTER(ActorAgent); 

Figure 4.  Example of a Agent based on svm_agent. 



Driver: This module drives the signal to the DUT ports. 
Drivers receive Sequence Items (transaction data) and pass 
them to DUT. It has detailed information about the DUT 
interface and its logic and can be used to refine or adapt 
Sequence Items to a DUT interface. 

Monitor: This module extracts transactions, signals and 
other information from DUTs and makes them available to 
other components. Typically, a monitor is a subcomponent of 
an Agent, so that it checks only data relevant for the parent 
Agent. 

Subscriber: This module is used to perform coverage 
analysis and check the information from DUT provided by 
Monitors. Multiple Subscribers can be connected to a Monitor. 
Each Subscriber is responsible to encapsulate different 
coverage and verification logic. 

Scoreboard: Scoreboards may receive different pieces of 
information from different Monitors for self-checking 
Environments. Additionally, it can provide coverage 
information and verify the design at the functional level. 

D. Stimuli Sequence 

 
The central task in the verification process is to generate 

and coordinate the stimuli for the DUT. Beyond standard 
stimuli generation technologies, such as Constrained Random 
Generation, the management and arbitration of generated 
stimuli require special attention to create reusable stimuli. For 
this purpose, we add a package in our SVM library that 
contains classes which support the definition of stimuli and 
sequences of stimuli. These classes encapsulate the procedure 
to generate data for the DUT and allow the organization of 
different data in sequence of stimuli, which can be 
hierarchically or sequentially organized in libraries. Moreover, 
different arbitration modes are available to provide the right 
sequence distribution. 

Sequence Item: Sequence Item represents data for stimulus 
and response of the DUT. It may represent a command, a bus 
transaction, or a protocol package. The fields in a Sequence 
Item may be randomized to generate different stimuli in 
different runs. Figure 5 shows a Sequence Item used in the 
Section 5. It contains three fields, which are randomized 
following the constraint during the construction.  

class IfxCommandItem : public svm_sequence_item, public rand_obj 

{ 

public: 

   randv<IfxCommandValT> command; 

   randv<unsigned int> degree; 

   randv<unsigned int> percent; 

 

   void create_constraints(); 

   IfxCommandItem(const std::string& name)  :      

         svm_sequence_item(name) { create_constraints(); }  

  … 

  SVM_OBJECT_UTILS(IfxCommandItem); 

}; 

Figure 5.  Sequence Item example 

Sequence: Sequence implements the procedure to create 
Sequence Items. Sequences can be reused or combined 
hierarchically to generate complex stimuli. When Sequences 
are used sequentially they can represent the different phases of 
a stimulus, such as configuration phase prior to a 
communication phase. 

Sequencer: Sequencers are used to generate and to 
coordinate the Sequences submitted to the Driver or the 
response to it. Using Sequencers, the user may model time in 
different scenarios and call the randomization mechanism in 
Sequences and Sequence Items to generate stimuli.  They 
provide different arbitration modes to select the next Sequence 
in the library: First-In-First-Out (FIFO), Weighted Priority 
Distribution, Random, Strict FIFO, Strict Random, and a user 
implemented arbitration comparison. 

Additionally, Sequences may be combined, in order to 
create a hierarchy of stimuli or to generate stimuli in parallel to 
multiple interfaces of a DUT. They are Virtual Sequences, 
which are associated to Virtual Sequencers, containing 
subsequences to coordinate the flow of stimuli. This feature 
allows the user to generate complex stimuli, combining 
Sequences from a library. 

E. Comparisom between OVM, UVM and SVM 

 
This section provides a comparison overview of OVM, 

UVM, UVM for SystemC and SVM. The base for comparison 
is the OVM version 2.2.1, as OVM is the first standardized 
verification methodology. Late, OVM incorporates some 
features from its successor, UVM 1.1. The most prominent is 
the UVM Register Kit for OVM p which originates from 
Synopsys VMM and joined work from Synopsys and Mentor 
Graphics. The UVM provides additional features, and 
improves other features already present in OVM.  

In February 2009 Cadence donated the OVM-ML package 
to ovm-world.org, containing the OVM-SC version. At the 
same time, a functionally similar UVM for SystemC version 
(UVM-SC), with minor changes, was donated by Cadence to 



uvmworld.org under the UVM multiple-languages package 
umbrella. 

The SVM Library improves the OVM/UVM for SystemC, 
by adding features based on the OVM for SystemVerilog 
version 2.2.1. Additionally, we integrate libraries to provide 
Assertion, Randomization/Constraints and Coverage, in order 
to support advanced RTL/TLM for SystemC. The Table 1 
provides the feature comparison between those methodologies.  

TABLE I.  FFEATURES COMPARISON OF OVM, UVM AND SVM 

Feature OVM UVM UVM-SC SVM 

Call-backs Yes Yes No Yes 

Comparison Yes Yes No No 

Command-line 
processor 

No Yes No Yes 

Configuration Yes Yes Yes Yes 

Factory-Creation / 
Register 

Yes Yes Yes Yes 

Methodology 
Components 

Yes Yes Yes Yes1 

Objection Yes Yes No No 

Packing Yes Yes Yes Yes 

Phasing Yes I Yes Yes 

Polices Yes Yes No No 

Recording Yes Yes SCV I 

Register 
Abstraction Layer 

C2 Yes No Yes3 

Reporting Yes Yes SC SC 

Routing Yes Yes No Yes 

Sequenceing / 
Stimuli 

Yes Yes No Yes 

Synchonization Yes Yes SC SC 

Assertion SV SV No I 

Coverage SV SV SCV I 

Randomization / 
Constraints 

SV SV SCV I3 

Yes - The library provides the feature; No - The library does not provide the feature; C - There is a 
contribution package that implements the feature; I - Improved feature when compared to OVM 2.2.1; 

SC - Feature from the SystemC Language; SV - Feature from the SystemVerilog Language; SCV - 
Feature from the SystemC Verification Library; 1- The components are tailored for RTL/TLM DUTs; 

 2 - It is a UVM package adapted to OVM, which requires UVM components too;  
3 -  Provided by research partners and is to  be integrated into the SVM. 

 
Because the first release of UVM was a full version of 

OVM, on comparing the UVM and OVM one notices they are 
quite similar. Further releases included new features, mainly a 
command-line processor and register abstraction layer. They 
also improved the simulation control and the API. The table 
highlights the big difference between the UVM-SC to UVM, 
the original version for SystemVerilog. UVM-SC lacks most of 

the features provided by UVM. SVM provide most of all 
missing features in UVM-SC, in particular the sequence 
package and the methodology components. Moreover, it 
improves some features, in order to provide advanced TLM 
verification methodology library, such as some methodological 
components, recording and coverage features. 

IV. EXAMPLE 

We applied the SVM library to create an interface 
verification component for a sensor/actor subsystem as part of 
the overall verification infrastructure of this system. 

One feature of the sensor/actor system is to receive 
commands, which immediately affect the actor part of this 
system. We use the interface verification component to create 
random sequences of commands and apply them to the 
subsystem. The overall structure of this subsystem is outlined 
in Figure 6. The following explanations focus on the overall 
verification component structure, rather than the formulation of 
constraints and coverage, as details on the constrained 
randomization, provided by our research partners, and the 
coverage library are found respectively in [28] and [25]. 

 
Figure 6.  Overall Structure 

Figure 7. outlines the structure of the verification 
component. The interface verification component (SVM-IF-
VIP) consists of one agent, which is composed of one TLM2 
Driver and a monitor. Furthermore, it contains a set of 
sequences which generate particular commands and a 
sequencer which handles the execution of sequences and their 
interaction with the driver. The command that needs to be 
pushed into the subsystem is formed by two transactions. The 
first transaction holds the command value and the second 
transaction holds the command parameter. Hence, we defined a 
sequence item, which contains two variables holding the 
command and parameter value. One sequence generates one 
item while performing randomization and applying constraints. 
This item is then pushed to / or pulled from the driver. 
Following that, the driver interprets the item and executes two 



transactions – one holding the command and one holding the 
parameter. 

 
Figure 7.  Verification Component Structure 

When it comes to stimulating TLM2 interfaces the question 
of how to organize a driver and a monitor arises. In RTL 
verification this split is fairly simple, since the driver is 
connected via signals to the DUT. The monitor hence, needs to 
be connected to the same signals for observing the behavior. In 
TLM however, a connection is usually done on a port to port 
basis, i.e., initiator to target connections. Hence, it was 
necessary to incorporate a so called “TLM-Proxy”. This proxy 
broadcasts any incoming transaction to both the monitor and 
towards the DUT. However, the broadcast to the monitor 
happens twice – once at the beginning of the transaction and 
once when the transaction call has returned from the DUT. 
This allows a monitor to observe pre- and post-conditions of a 
transaction. 

The connection to the DUT is established through a regular 
SystemC TLM2 initiator to target binding. Hence, a delta-free 
connection could be established between the DUT and the 
verification component. This also enables the verification 
environment to perform tests which check the behavior of a 
TLM model, which uses performance optimization techniques 
such as the Quantum Keeping mechanism as suggested by the 
TLM2 standard. 

While developing this example we also compared this setup 
to a similar SystemVerilog setup, which however was created 
for the RTL version of the DUT. While the languages induces 
some differences, the main structure, as well as the verification 
methodology has stayed the same. The development time of the 
SVM-based verification component regarding the parts, which 
are independent from the DUT abstraction was comparable to 
the development time of a similar SystemVerilog structure. 
However, the attempt to apply a SystemVerilog structure to a 
SystemC TLM-design showed drawbacks in the setup time, 

because a simulator-dependent solution is needed to bridge 
both languages at the TLM-level. In most cases these solutions 
also induce delta-cycles between the verification component 
and the DUT, which makes it much more difficult to verify 
higher level concepts which are based on timing abstractions 
such as TLM+ [27] or the quantum keeping. 

V. CONCLUSIONS 

We presented SVM as an advanced SystemC library for 
TLM verification. The SVM SystemC library is based on 
OVM-SC. SVM provides advanced features for TLM 
verification, such as the factory and configuration facilities and 
extended it by almost all OVM features. As such, we added 
structural verification components, such as Agents, Monitors, 
Scoreboards, and so on. They are defined as a set of base 
classes provided to support a well-structured structural 
implementation of a test bench, which improve the reuse of 
verification components. Moreover, we implemented classes to 
support hierarchical stimuli generation, sequence library 
management and arbitration, allowing the construction of 
complex behavior, such as hierarchical protocols. This was 
combined with a functional coverage library [25]  and is 
currently integrated with an improved Randomization / 
Constraint Solver [26] . 

The described example has demonstrated that the overall 
methodology using the SVM library does adhere to the 
methodology defined by OVM and that the utilization of 
SystemC as the “language” for the verification component has 
reduced the effort for connection a verification environment to 
SystemC TLM DUTs. 

The future work will cover extensions for UVM 
compliance, the inclusion of a register abstraction layer, 
assertions, and better configuration capabilities. This work will 
be done in cooperation with other research partners from the 
SANITAS project [26]. 
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