
A SystemC Library for Advanced TLM Verification

Marcio F. S. Oliveira, Christoph Kuznik, Wolfgang Mueller
C-Lab, University of Paderborn

Paderborn, Germany
marcio@c-lab.de

christoph.kuznik@c-lab.de
wolfgang@acm.org

Wolfgang Ecker, Volkan Esen
Infineon Technologies

Munich, Germany
Wolfgang.Ecker@infineon.com

Volkan.Esen@infineon.com

Abstract— This paper introduces the System Verification
Methodology (SVM) Library as an advanced TLM library for
SystemC, which is based on the OVM-SC library, a SystemC
implementation of an Open Verification Methodology (OVM)
subset. SVM integrates with a functional coverage library and
comes as a significant extension of the OVM-SC library, by
providing domain specific components (drivers, monitors,
scoreboards and others) and facilities for generation and
management of stimuli.

Keywords- SystemC; OVM; UVM; Verification Library;
Electronic System Level

I. INTRODUCTION

The introduction of Electronic System Level (ESL)
supports the modeling and verification of complex mixed
hardware and software systems. As systems grow in
complexity, verification activities started to exceed the design
effort. Today, it may account to more than 70% of the activities
of the entire development cycle [12] with an increasing
exponential growth [7].

As such, the verification community and EDA vendors
have spent a large effort to improve the productivity in the
verification process, and dedicated Hardware Verification
Languages (HVL) were introduced, such as e [11] and
SystemVerilog [10]. Although their constructs support
verification, the verification process productivity was subject
of further investigations in development and standardization,
and several verification methodologies and libraries for the
development of reusable verification components emerged.
Examples are Verisity/Cadence's e Reuse Methodology (eRM)
[24] and Synopsys' Reference Verification Methodology
(RVM) [21], which are based on the e language and OpenVera
[22] respectively. With the outcome of SystemC [4], the
SystemC Verification Library (SCV) [17] was introduced, in
order to support elemental constrained-random stimuli
techniques for RTL verification. However, SystemC lacks an
interoperable verification methodology. In contrast, several
verification methodologies were developed as SystemVerilog
implementations, such as the Universal Reuse Methodology

(URM) [5] from Cadence, the Advanced Verification
Methodology (AVM) [13] from Mentor Graphics, and the
Verification Methodology Manual (VMM) [3] from Synopsys.
Later more advanced libraries were introduced, namely the
Open Verification Methodology (OVM) [18], as a joint effort
between Cadence and Mentor Graphics, which combined best
practices from URM and AVM. Finally, OVM was enhanced
to the Universal Verification Methodology (UVM) [23], with
contributions from Synopsys based on VMM.

Though SystemC was widely accepted for development at
higher abstraction levels, e.g. by using TLM 2.0 [16], its
verification capabilities are limited in comparison to other
languages such as SystemVerilog. Moreover, verification
capabilities of the SCV are quite limited and mainly support
RTL verification. In February 2009 the multiple-languages
release of OVM (OVM-ML) was donated by Cadence Inc. to
ovm-world.org. OVM-ML provides the OVM for SystemC
(OVM-SC) library, which is a SystemC implementation of
OVM subset. However, OVM-SC lacks various necessary
features, such as domain specific components, stimuli
generation facilities, sequence library management, sequence
arbitration, response to request routing, commando-line
processor and a register abstraction layer.

This paper presents the System Verification Methodology
(SVM) library for SystemC. SVM Library is based on OVM-
SC implementation and incorporates verification best practices
from OVM-SC, such as factory and configuration facilities and
simulation phasing, as well as implements missing features,
such as the domain specific components, stimuli sequence
generation and management, call-back facilities, response to
request routing, transaction recording and a command-line
processor for dynamic test bench loading.

The remainder of this paper is organized as follows. The
next section presents related work. Section 3 introduces main
features and some details of our SVM library. In Section 4 we
provide an application example. Finally, Section 5 closes with
conclusions and future directions.

II. RELATED WORKS

In the area of (add-on) verification libraries, the Open
Verification Library (OVL) [1] is maintained by Accellera and
provides checkers for assertion, assumption or coverage point
checkering. The most recent version, namely 2.5 supports
SystemVerilog, Verilog and VHDL. Unfortunately, there is
currently no support for SystemC. Additionally, except
SystemVerilog the supported languages are limited to RTL
level, impeding verification on higher levels of abstraction on
more abstract data types.

Other works try to extend the SCV library, improving or
providing missing features for verification in the SystemC
language, such as coverage [19][20], assertions [9][14], and
randomization/constraint solver [8]. Although basic
verification extensions for standard SystemC are meaningful, a
library offering components for test bench development, like in
UVM, is an even more crucial building block for efficient,
qualified and interoperable test bench development. As such,
OVM-SC became available, implementing a limited OVM
subset, mainly part of the OVM base package, in SystemC.
UVM was introduced as a SystemVerilog implementation with
many improvements compared to OVM. It presents a more
dedicated API, introduces more control over the simulation
phases, adds a command line processor, and a register
abstraction layer. However, the UVM multiple- languages
package does not support all those improvements for SystemC.

Our SVM SystemC library is based on the OVM multiple-
languages - SystemC package v2.1.1 and OVM for
SystemVerilog v2.1.1. The base package is being refactored, to
reflect the improvements from the transition of OVM to the
UVM standard. Moreover, the base package was improved by
call backs, transaction routing and recording facilities. We also
included a package with the structural components to build the
verification environment. We implemented stimuli sequences,
and sequence scheduler facilities, as well as a command-line
processor. A coverage library [25], which implements the
functional coverage part of the IEEE 1800-2009
SystemVerilog standard, was integrated into SVM to improve
basic SystemC verification features.

III. AN ADVANCED SYSTEMC LIBRARY FOR TLM

VERIFICATION

Our SVM SystemC library for TLM verification
implements building blocks to ease the development of
verification components and test environment. It includes base
classes, utilities and macros, which support the engineer to
construct disciplined artifacts, improving the reuse of
verification components and stimuli. However, taking

advantages from SystemC abstract modeling and refinement
features, SVM follows the principles of OVM and UVM. In
this sense, our library is developed in compliance with OVM
and UVM keeping the interoperability between these libraries
as best it is possible. However, the differences between
SystemVerilog and SystemC impose some adaptations to keep
the conformance with the OSCI SystemC simulator or to
exploit SystemC advantages.

A. SVM Library Structure

SVM was implemented to be compatible with IEEE
standard SystemC simulators. Its packages are defined for a
seamless integration of the library into different verification
flow and legacy verification components. Assertions,
Randomization/Constraint Solver and Coverage packages,
implement dedicated TLM verification features. Actually, they
are packages intended to provide missing features required to
perform adequate verification in the SystemC ecosystem.
Therefore, the packages providing Assertions, Randomization /
Constraint Solver and Coverage are comparable to the OSCI
SCV library in contrast to a verification methodology library,
such as UVM or the one presented in this paper. Figure 1 gives
an overview of the SVM library packages, in the illustration
the dashed boxes indicate packages provided by our research
partners [26].

Figure 1. SVM Library Structure

B. Library Basis

This package was inherited from the OVM multiple-
languages v2.1.1, a donation of Cadence to the OVM
community, which includes a SystemC implementation.
Originally, this package contained elements for factory
automation, environment configuration, simulation control, and
a component, which is the base for all other verification
component. Into this package we include call-back facility,
command-line processor, and a transaction routing and
recording feature. We also move the base component to the

component package, reflecting our alignment with the
improvement from OVM to UVM.

1) Factory automation:

The SVM library implementation follows the factory
design pattern, which introduces higher abstraction in the
process of instantiating components/objects. In this context, it
is possible to change an object behavior, by providing different
implementations with same interface without changes in the
object itself that applies that interface. Examples of the
application of the factory in the verification process are when it
is required to change stimuli, e.g., using a stimuli generator
with more constraints, or providing a different driver to adapt
the way data is sent to the DUT, e.g., considering a refinement
from TLM to RTL level. The factory implementation provides
facilities to overwrite types and to control the effect of object
creation in the entire environment or to a specific object.

2) Environment Configuration

The library also provides a configuration facility, which
allows the registration of a configuration to affect the entire
environment or a specific object. By registering a
configuration, a verification - component – or object - queries
for an existing configuration that applies to it and performs the
required adaptation. The configuration can adapt the
component topology - the types and number of subcomponents,
and its fields. For example, one can consider a component
reading from its configuration table, the name of the file it
should use to read stimuli or the number and type of
components, which should be instantiated and bound to a
communication bus. Although automatic configuration is
provided by the latest OVM SystemVerilog version, due
performance and reusability problems [6] we decided not to
support this feature in the first SVM release.

3) Transaction

We include a transaction facility because transactions
represent the flow of data in a system, such as flow of
instructions, pixels and data items. The transaction facilities
allow user to record transactions, route response to specific
requests and control timing information for a transaction.

4) Call Backs

We implement also call backs facility. Call back is an
extension mechanism, which allows changing the behavior of
components without change the component itself. It can be
used to modify the component parameter definition during
generation of a testbench or to provide flexible mechanism to

allow execution of personalized behavior before or after
executing some function.

5) Simulation Control

The simulation kernels of SystemC and SystemVerilog
perform different execution phases. They must be harmonized
in order to change the environment, the configuration of
objects, start multiple sections, etc. The OVM methodology
defines multiple phases, improving the simulation phases as
given by the SystemVerilog simulation standard. We started
with the phase implementation from OVM-SC as it is aligned
with the OSCI SystemC simulator and already widely known.
Although there is a basic alignment in OVM-SC between the
phases of OVM and SystemC some further adaptation is
required. Figure 2 compares OVM, which is aligned to
SystemVerilog, and the SystemC simulation phases.

Figure 2. Comparison of OVM and SystemC Simulation phases.

Construction: This first OVM phase compares to the first
phase of SystemC. It executes the constructors of components
from top to bottom in the topology. However, some coding
styles can improve the configuration at further steps. For
instance, ports and exports of a component, which are typically
member fields, need to be declared as pointers, as well as their
child components. This coding style is present in [4].
Nevertheless, it had to be adapted to exploit the OVM phases
and configuration/factory facilities.

Build: It compares to the Before End of Elaboration phase
and, consistent with the SystemC OSCI LRM, performs
creation of the bulk of components. The Build phase exploits
the configuration API provided in the configuration manager to
change the type and number of instances before creating the
child using the factory facilities. Note that, as the bulk of
creation is performed at the Build phase, the specific binding
with full hierarchical path names of ports/exports is not
available because the topology is not fully constructed at this
time. However, this issue must be addressed in future, as we
want to keep the compatibility with OSCI SystemC.

Connection: Although available in the API, this phase-
callback is not automatically called by SystemC kernel, so that
binding has to be performed inside of Build phase. However, in
order to improve the conformance to OVM, the Connection
phase is called automatically after the execution of the Build
method of each component. Notice that it still executing in the
Build phase and full hierarchical name cannot be used in this
phase. However, by using this two distinguished phases, Build
and Connection, the code for connect components is easily
identified and ready to be used in a real connection phase, in
the case of OSCI adopt such phasing organization.

End of Elaboration: In this phase it is possible to make
final adjustments and, as the complete environment is created
and connected, it is possible to analyze the system’s net list.

Start of Simulation: This phase executes some pre-run
activities, such as reporting the topology and configuration,
printing information, initialization of channels and ports.

Run: It compares to the SystemC Execution phase. The
operation at this phase can consume simulation time. The
behavior of a verification component, as described in the
following sections, is described in a callback named run and it
implemented as SC_THREAD of the base component.

Extract: The End of Simulation SystemC phase was
extended for a more specialized phase control. The Extract
phase is the first of three phases the SystemC phase End of
Simulation has to be divided into. In this phase the user can
extract information about coverage, assertions, or internal data
from the simulated components. The motivation to create a
different phase for extraction is to ensure that all data from
different sources are available prior to the Check phase.

Check: This phase is used to analyze and validate the
simulation results, extracted in the previous phase.

Report: This phase is used to write the results to an output.

C. SVM Components

OVM-SC provides one verification component which must
be used as base class for all other components. In comparison
to OVM-SC, we add an additional package with structural
components, which support the development of verification
environments and tests in a well-structured way. It includes
classes such as Agents, Drivers, Monitors, etc. These modules
allow the construction of a topology easy to use, to understand,
and reuse. They reduce some implementation details, improve
automation and are the base for future improvements. Figure 3
illustrates a sample topology constructed with the base classes
provided in our SVM library.

Figure 3. General verification modules structure.

Test: This module has to be extended by the user in order to
generate a self-contained test for DUT verification. Instances of
different Test modules can be used to perform a set of tests,
which can be executed in batch mode. Each test can contain
one or more Environments in order to verify multiple
properties or views.

Environment (Env): This module encapsulates the
configuration and instantiation of the topology of verification
components. It may contain Agents, Monitors and Scoreboards,
etc., which are configured for different environments.

Agent: This module is an abstract container for Driver,
Monitor and Sequencer. It is used to emulate the DUT or a
functional behavior of components that must be connected to
the DUT. Active Agents emulate devices connected to DUT
and passive Agents are used to monitor DUT activity. Figure 4
illustrates a partial code for the agent used in section 5. It
contains a Sequencer, a Monitor and a Driver. In the code it is
possible to notice macros for register the component within a
factory. In the Build member the subcomponents are created by
using the factory features.

#include <systemc.h>

#include <tlm.h>

#include <svm.h>

class ActorAgent : public svm_agent {

public:

 tlm::tlm_analysis_port<tlm::tlm_generic_payload > aport;

 ActorDriver *pDriver;

 ActorMonitor *pMonitor;

 ActorSequencer *pSequencer;

 ActorAgent(sc_core::sc_module_name name);

 SVM_COMPONENT_UTILS(ActorAgent)

 void ActorAgent::build(){

 svm_agent::build();

 get_config_int("debug", debug);

 pSequencer = DCAST<ActorSequencer*>(

 svm_factory::create_component("ActorSequencer", "",

 "pSequencer"));

 …

 }

…

};

SVM_COMPONENT_REGISTER(ActorAgent);

Figure 4. Example of a Agent based on svm_agent.

Driver: This module drives the signal to the DUT ports.
Drivers receive Sequence Items (transaction data) and pass
them to DUT. It has detailed information about the DUT
interface and its logic and can be used to refine or adapt
Sequence Items to a DUT interface.

Monitor: This module extracts transactions, signals and
other information from DUTs and makes them available to
other components. Typically, a monitor is a subcomponent of
an Agent, so that it checks only data relevant for the parent
Agent.

Subscriber: This module is used to perform coverage
analysis and check the information from DUT provided by
Monitors. Multiple Subscribers can be connected to a Monitor.
Each Subscriber is responsible to encapsulate different
coverage and verification logic.

Scoreboard: Scoreboards may receive different pieces of
information from different Monitors for self-checking
Environments. Additionally, it can provide coverage
information and verify the design at the functional level.

D. Stimuli Sequence

The central task in the verification process is to generate

and coordinate the stimuli for the DUT. Beyond standard
stimuli generation technologies, such as Constrained Random
Generation, the management and arbitration of generated
stimuli require special attention to create reusable stimuli. For
this purpose, we add a package in our SVM library that
contains classes which support the definition of stimuli and
sequences of stimuli. These classes encapsulate the procedure
to generate data for the DUT and allow the organization of
different data in sequence of stimuli, which can be
hierarchically or sequentially organized in libraries. Moreover,
different arbitration modes are available to provide the right
sequence distribution.

Sequence Item: Sequence Item represents data for stimulus
and response of the DUT. It may represent a command, a bus
transaction, or a protocol package. The fields in a Sequence
Item may be randomized to generate different stimuli in
different runs. Figure 5 shows a Sequence Item used in the
Section 5. It contains three fields, which are randomized
following the constraint during the construction.

class IfxCommandItem : public svm_sequence_item, public rand_obj

{

public:

 randv<IfxCommandValT> command;

 randv<unsigned int> degree;

 randv<unsigned int> percent;

 void create_constraints();

 IfxCommandItem(const std::string& name) :

 svm_sequence_item(name) { create_constraints(); }

 …

 SVM_OBJECT_UTILS(IfxCommandItem);

};

Figure 5. Sequence Item example

Sequence: Sequence implements the procedure to create
Sequence Items. Sequences can be reused or combined
hierarchically to generate complex stimuli. When Sequences
are used sequentially they can represent the different phases of
a stimulus, such as configuration phase prior to a
communication phase.

Sequencer: Sequencers are used to generate and to
coordinate the Sequences submitted to the Driver or the
response to it. Using Sequencers, the user may model time in
different scenarios and call the randomization mechanism in
Sequences and Sequence Items to generate stimuli. They
provide different arbitration modes to select the next Sequence
in the library: First-In-First-Out (FIFO), Weighted Priority
Distribution, Random, Strict FIFO, Strict Random, and a user
implemented arbitration comparison.

Additionally, Sequences may be combined, in order to
create a hierarchy of stimuli or to generate stimuli in parallel to
multiple interfaces of a DUT. They are Virtual Sequences,
which are associated to Virtual Sequencers, containing
subsequences to coordinate the flow of stimuli. This feature
allows the user to generate complex stimuli, combining
Sequences from a library.

E. Comparisom between OVM, UVM and SVM

This section provides a comparison overview of OVM,

UVM, UVM for SystemC and SVM. The base for comparison
is the OVM version 2.2.1, as OVM is the first standardized
verification methodology. Late, OVM incorporates some
features from its successor, UVM 1.1. The most prominent is
the UVM Register Kit for OVM p which originates from
Synopsys VMM and joined work from Synopsys and Mentor
Graphics. The UVM provides additional features, and
improves other features already present in OVM.

In February 2009 Cadence donated the OVM-ML package
to ovm-world.org, containing the OVM-SC version. At the
same time, a functionally similar UVM for SystemC version
(UVM-SC), with minor changes, was donated by Cadence to

uvmworld.org under the UVM multiple-languages package
umbrella.

The SVM Library improves the OVM/UVM for SystemC,
by adding features based on the OVM for SystemVerilog
version 2.2.1. Additionally, we integrate libraries to provide
Assertion, Randomization/Constraints and Coverage, in order
to support advanced RTL/TLM for SystemC. The Table 1
provides the feature comparison between those methodologies.

TABLE I. FFEATURES COMPARISON OF OVM, UVM AND SVM

Feature OVM UVM UVM-SC SVM

Call-backs Yes Yes No Yes

Comparison Yes Yes No No

Command-line
processor

No Yes No Yes

Configuration Yes Yes Yes Yes

Factory-Creation /
Register

Yes Yes Yes Yes

Methodology
Components

Yes Yes Yes Yes1

Objection Yes Yes No No

Packing Yes Yes Yes Yes

Phasing Yes I Yes Yes

Polices Yes Yes No No

Recording Yes Yes SCV I

Register
Abstraction Layer

C2 Yes No Yes3

Reporting Yes Yes SC SC

Routing Yes Yes No Yes

Sequenceing /
Stimuli

Yes Yes No Yes

Synchonization Yes Yes SC SC

Assertion SV SV No I

Coverage SV SV SCV I

Randomization /
Constraints

SV SV SCV I3

Yes - The library provides the feature; No - The library does not provide the feature; C - There is a
contribution package that implements the feature; I - Improved feature when compared to OVM 2.2.1;

SC - Feature from the SystemC Language; SV - Feature from the SystemVerilog Language; SCV -
Feature from the SystemC Verification Library; 1- The components are tailored for RTL/TLM DUTs;

 2 - It is a UVM package adapted to OVM, which requires UVM components too;
3 - Provided by research partners and is to be integrated into the SVM.

Because the first release of UVM was a full version of

OVM, on comparing the UVM and OVM one notices they are
quite similar. Further releases included new features, mainly a
command-line processor and register abstraction layer. They
also improved the simulation control and the API. The table
highlights the big difference between the UVM-SC to UVM,
the original version for SystemVerilog. UVM-SC lacks most of

the features provided by UVM. SVM provide most of all
missing features in UVM-SC, in particular the sequence
package and the methodology components. Moreover, it
improves some features, in order to provide advanced TLM
verification methodology library, such as some methodological
components, recording and coverage features.

IV. EXAMPLE

We applied the SVM library to create an interface
verification component for a sensor/actor subsystem as part of
the overall verification infrastructure of this system.

One feature of the sensor/actor system is to receive
commands, which immediately affect the actor part of this
system. We use the interface verification component to create
random sequences of commands and apply them to the
subsystem. The overall structure of this subsystem is outlined
in Figure 6. The following explanations focus on the overall
verification component structure, rather than the formulation of
constraints and coverage, as details on the constrained
randomization, provided by our research partners, and the
coverage library are found respectively in [28] and [25].

Figure 6. Overall Structure

Figure 7. outlines the structure of the verification
component. The interface verification component (SVM-IF-
VIP) consists of one agent, which is composed of one TLM2
Driver and a monitor. Furthermore, it contains a set of
sequences which generate particular commands and a
sequencer which handles the execution of sequences and their
interaction with the driver. The command that needs to be
pushed into the subsystem is formed by two transactions. The
first transaction holds the command value and the second
transaction holds the command parameter. Hence, we defined a
sequence item, which contains two variables holding the
command and parameter value. One sequence generates one
item while performing randomization and applying constraints.
This item is then pushed to / or pulled from the driver.
Following that, the driver interprets the item and executes two

transactions – one holding the command and one holding the
parameter.

Figure 7. Verification Component Structure

When it comes to stimulating TLM2 interfaces the question
of how to organize a driver and a monitor arises. In RTL
verification this split is fairly simple, since the driver is
connected via signals to the DUT. The monitor hence, needs to
be connected to the same signals for observing the behavior. In
TLM however, a connection is usually done on a port to port
basis, i.e., initiator to target connections. Hence, it was
necessary to incorporate a so called “TLM-Proxy”. This proxy
broadcasts any incoming transaction to both the monitor and
towards the DUT. However, the broadcast to the monitor
happens twice – once at the beginning of the transaction and
once when the transaction call has returned from the DUT.
This allows a monitor to observe pre- and post-conditions of a
transaction.

The connection to the DUT is established through a regular
SystemC TLM2 initiator to target binding. Hence, a delta-free
connection could be established between the DUT and the
verification component. This also enables the verification
environment to perform tests which check the behavior of a
TLM model, which uses performance optimization techniques
such as the Quantum Keeping mechanism as suggested by the
TLM2 standard.

While developing this example we also compared this setup
to a similar SystemVerilog setup, which however was created
for the RTL version of the DUT. While the languages induces
some differences, the main structure, as well as the verification
methodology has stayed the same. The development time of the
SVM-based verification component regarding the parts, which
are independent from the DUT abstraction was comparable to
the development time of a similar SystemVerilog structure.
However, the attempt to apply a SystemVerilog structure to a
SystemC TLM-design showed drawbacks in the setup time,

because a simulator-dependent solution is needed to bridge
both languages at the TLM-level. In most cases these solutions
also induce delta-cycles between the verification component
and the DUT, which makes it much more difficult to verify
higher level concepts which are based on timing abstractions
such as TLM+ [27] or the quantum keeping.

V. CONCLUSIONS

We presented SVM as an advanced SystemC library for
TLM verification. The SVM SystemC library is based on
OVM-SC. SVM provides advanced features for TLM
verification, such as the factory and configuration facilities and
extended it by almost all OVM features. As such, we added
structural verification components, such as Agents, Monitors,
Scoreboards, and so on. They are defined as a set of base
classes provided to support a well-structured structural
implementation of a test bench, which improve the reuse of
verification components. Moreover, we implemented classes to
support hierarchical stimuli generation, sequence library
management and arbitration, allowing the construction of
complex behavior, such as hierarchical protocols. This was
combined with a functional coverage library [25] and is
currently integrated with an improved Randomization /
Constraint Solver [26] .

The described example has demonstrated that the overall
methodology using the SVM library does adhere to the
methodology defined by OVM and that the utilization of
SystemC as the “language” for the verification component has
reduced the effort for connection a verification environment to
SystemC TLM DUTs.

The future work will cover extensions for UVM
compliance, the inclusion of a register abstraction layer,
assertions, and better configuration capabilities. This work will
be done in cooperation with other research partners from the
SANITAS project [26].

ACKNOWLEDGMENT

This work was partly funded by the DFG SFB 614 and the
German Ministry of Education and Research (BMBF) through
the project SANITAS (01M3088I) and the ITEA2 projects
VERDE (01S09012H) and TIMMO-2-USE (01IS10034A). We
greatly appreciate the cooperation with the project partners.

REFERENCES
[1] Accellera Organization Inc. Open Verification Library (OVL). (2009,

May). Available at: http://www.accellera.org/activities/ovl/

[2] Accellera Verification IP Technical Subcommittee (UVM Development
Website); http://www.accellera.org/apps/org/workgroup/vip

[3] Bergeron, J., Cerny, E., Hunter, A., Nightingale, A.. Verification
Methodology Manual for SystemVerilog. Springer, 2006.

[4] Black, D. C.; Donovan, J.; Bunton, B.; Keist, A.. SystemC From the
Ground Up. Springer, 2010.

[5] Cadence Inc. Universal Reuse Methodology (URM).

[6] Erickson, A.. Are OVM & UVM Macros Evil? A Cost-Benefit Analysis.
In Design and Verification Conference (DVCon), 2011.

[7] Foster, H.. Redefining Verification Performance (Part 2). (2010,
August). Available: http://blogs.mentor.com/verificationhorizons/
blog/2010/08/08/redefining-verification-performance-part-2/

[8] Große, D.; Ebendt, R.; Drechsler, R.. Improvements for Constraint
Solving in the SystemC Verification Library. In: 17th ACM Great Lakes
Symposium on VLSI(GLSVLSI), New York, NY, USA: ACM, 2007, p.
493-496.

[9] Habibi, A.; Tahar, S.; Towards an efficient assertion based verification
of SystemC designs. In Ninth IEEE International High-Level Design
Validation and Test Workshop, 2004., vol., no., p. 19- 22, Nov. 2004

[10] IEEE Std 1800-2009 IEEE Standard for System Verilog-Unified
Hardware Design, Specification, and Verification Language. Available
at: http://dx.doi.org/10.1109/IEEESTD.2009.5354441

[11] Iman, S.; Joshi, S. The e Hardware Verification Language. Springer.
2004.

[12] Lam, W. K.. Hardware Design Verification. 2005.

[13] Mentor Graphics - Advanced Verification Methodology

[14] NextOp Software, Inc. NextOp assertion-based verification. Available
at: http://www.nextopsoftware.com/

[15] Open SystemC Initiative, IEEE Standard SystemC Language Reference
Manual, Open SystemC Initiative Std., 2006.

[16] Open SystemC Initiative, TLM-2.0 Language Reference Manual, Open
SystemC Initiative Std., 2007.

[17] Open SystemC Initiative, SystemC Verification Library v1.0p2, 2006.
Available at: http://www.systemc.org/downloads/standards/

[18] Open Verification Methodology. Available: http://www.ovmworld.org/

[19] Schwartz, K.. A technique for adding functional coverage to SystemC.
In Design and Verification Conference (DVCon), 2007.

[20] Silva K. R. G. da, E. U. K. Melcher, G. Araujo, and V. A. Pimenta. An
automatic testbench generation tool for a SystemC functional
verification methodology. in 17th Symposium on Integrated Circuits and
System Design (SBCCI). New York, NY, USA: ACM, 2004, p. 66–70.

[21] Synopsys. Reference Verification Methodology User Guide. 2005.

[22] Synopsys. OpenVera. Available at: http://www.open-vera.com/

[23] Universal Verification Methodology. Available at:
http://www.uvmworld.org/

[24] Verisity Design. e Reuse Methodology Developer Manual, 2002-2004.

[25] Kuznik, Christoph; Müller, Wolfgang. Functional Coverage-driven
Verification with SystemC on Multiple Level of Abstraction. In Design
and Verification Conference (DVCon), 2011.

[26] Collaborative verification along the entire value-added
chain;”SANITAS” research project launched under management of
Infineon. [Online]. Available: http://www.infineon.com/cms/en/
corporate/press/news/releases/2009/INFXX200912-018.html

[27] Wolfgang Ecker, Volkan Esen, Robert Schwencker, Thomas Steininger,
Michael Velten: TLM+ modeling of embedded HW/SW systems. DATE
2010: 75-80

[28] Finn Haedicke, Hoang M. Le, Daniel Große und Rolf Drechsler:
CRAVE: An Advanced Constrained RAndom Verification Environment
for SystemC. MBMV 2012

