
A Systematic Formal Reuse Methodology:
From Blocks to SoC Systems

Hao Chen, Yi Sun, Ang Li, Dorry Cao
NVM Solutions Group

Intel Corporation

1

Agenda
• Introduction
• Reusable FV Testbench Structure
• Integrating FV Collaterals into Emulation
• Real-World Results: a SSD Controller SoC
• Conclusion

2

SoC Verification – Industry Trends
• SoC verification is full of hard problems:

• HW/SW interactions at SoC top level
• 3rd party IP integration at subsystem level
• Exhaustive corner cases at block level
• …

Courtesy: Harry D. Foster “The 2018 Wilson Research Group ASIC and
FPGA Functional Verification Study” [1]

• These drive the continuous
evolution of verification
strategies/methodologies

3

Our Hybrid Verification Strategy

Formal

Emulation

Simulation

Block
Level

Cluster
Level

SoC
Level

HW/SW
System
Level

Verification
Level

Methodology

Legend

More
Used

Less
Used

• Goal: To extend our
capability to verify larger
and more complex SoCs

– Block-level: Simulation +
Formal

– Cluster-level: Simulation

– SoC-level/System-level:
Simulation + Emulation

4

Challenges

• Hybrid strategy Maximize ROI in verification quality

• Challenges:
– Verification gaps on boundaries

– Duplicate effort

5

How to Close the Gap Between Schedule and
Productivity?

Solution:

A Systematic formal reuse methodology to enable code reuse and cross
proof from FV and improve interoperability between FV and other
platforms

6

Agenda
• Introduction
• Reusable FV Testbench Structure
• Integrating FV Collaterals into Emulation
• Real-World Results: a SSD Controller SoC
• Conclusion

7

Principles for Formal Reuse
• Modularity

– Modularized components
– Easy to reuse in different platforms and projects

• Usability
– Simple and clean interfaces
– Easy to be integrated by other verification environments

• Consistency
– Follows a consistent, easy-to-communicate form

8

Complete Formal Testbench
• A complete formal testbench consists of

1. A Formal Verification Component (FVC)
2. A formal testbench environment (ENV)

DUT

FVC
FBMs

Checking Model
Coverage Model

D
UT

Po

rt
s

Bind

ENV

Bind DU
T

Po
rt

s

Configurations

Bring up covers
Abstraction Models

9

• An FVC provides:

Formal Verification Component (FVC)

Coverage Sample Interface Free Variable Control
Interface

DUT Ports

Intf A FBM

Intf Asserts

Intf Covers

Intf B FBM Intf C FBM

Intf Asserts

Intf Covers
VIP

FVC

Checking Model

Prediction Models

SVA Asserts

Scoreboard

End-to-End
Constraints

FVC Configuration
FVC Active/Passive

Coverage Model

SVA covers

Covergroups

FVC Package

SVA Assumes

SV Data Structs
SV Functions

Simple and clean
interfaces

10

• An FVC provides:

Formal Verification Component (FVC)

Coverage Sample Interface Free Variable Control
Interface

DUT Ports

Intf A FBM

Intf Asserts

Intf Covers

Intf B FBM Intf C FBM

Intf Asserts

Intf Covers
VIP

FVC

Checking Model

Prediction Models

SVA Asserts

Scoreboard

End-to-End
Constraints

FVC Configuration
FVC Active/Passive

Coverage Model

SVA covers

Covergroups

FVC Package

SVA Assumes

SV Data Structs
SV Functions

Interface protocol
modeling and checking

11

• An FVC provides:

Formal Verification Component (FVC)

Coverage Sample Interface Free Variable Control
Interface

DUT Ports

Intf A FBM

Intf Asserts

Intf Covers

Intf B FBM Intf C FBM

Intf Asserts

Intf Covers
VIP

FVC

Checking Model

Prediction Models

SVA Asserts

Scoreboard

End-to-End
Constraints

FVC Configuration
FVC Active/Passive

Coverage Model

SVA covers

Covergroups

FVC Package

SVA Assumes

SV Data Structs
SV Functions

• End-to-end checkers
• End-to-end constraints

12

• An FVC provides:

Formal Verification Component (FVC)

Coverage Sample Interface Free Variable Control
Interface

DUT Ports

Intf A FBM

Intf Asserts

Intf Covers

Intf B FBM Intf C FBM

Intf Asserts

Intf Covers
VIP

FVC

Checking Model

Prediction Models

SVA Asserts

Scoreboard

End-to-End
Constraints

FVC Configuration
FVC Active/Passive

Coverage Model

SVA covers

Covergroups

FVC Package

SVA Assumes

SV Data Structs
SV Functions

Functional coverage

13

• An FVC provides:

Formal Verification Component (FVC)

Coverage Sample Interface Free Variable Control
Interface

DUT Ports

Intf A FBM

Intf Asserts

Intf Covers

Intf B FBM Intf C FBM

Intf Asserts

Intf Covers
VIP

FVC

Checking Model

Prediction Models

SVA Asserts

Scoreboard

End-to-End
Constraints

FVC Configuration
FVC Active/Passive

Coverage Model

SVA covers

Covergroups

FVC Package

SVA Assumes

SV Data Structs
SV Functions

A package with
reusable data structs,
functions, properties,

etc.

14

• An FVC provides:

Formal Verification Component (FVC)

Coverage Sample Interface Free Variable Control
Interface

DUT Ports

Intf A FBM

Intf Asserts

Intf Covers

Intf B FBM Intf C FBM

Intf Asserts

Intf Covers
VIP

FVC

Checking Model

Prediction Models

SVA Asserts

Scoreboard

End-to-End
Constraints

FVC Configuration
FVC Active/Passive

Coverage Model

SVA covers

Covergroups

FVC Package

SVA Assumes

SV Data Structs
SV Functions

Active/Passive
configuration

15

FVC Interfaces
• DUT Ports

– Identical to design interfaces
– Connect FVC to its DUT

• Coverage Sample Interface
– A verification interface that enables coverage reuse
– Propagate important block-level events to upper layer testbench

• Free Variable Control Interface
– A verification interface that controls FV free variables
– Free variables are commonly used in FV
– Extra driver logic in simulation or emulation is needed

16

Free Variable Control Interface

interface blockA_free_var_ctrl_if
#(

parameter bit FVC_ACTIVE = 1,
parameter int NUM_CLIENTS = 8,
parameter int NUM_CLIENTS_WIDTH = 3

);

logic [NUM_CLIENTS_WIDTH-1:0] client_idx;

if (FVC_ACTIVE == 1) begin
client_idx_stable: assume property (

@ (posedge clk) disable iff (!rst_n)
1 |-> ##1 ($stable(client_idx) && (client_idx < NUM_CLIENTS)));

end

endinterface

 When FVC_ACTIVE = 1:
this assume is in effect

 When FVC_ACTIVE = 0:
this assume is disabled

17

Block_B’s FVC
 Block_A’s FVC

Block_A Block_B

Intf AB FBM

assert A2B

assert B2A

i/f i/f

Formal Bus Model (FBM)

Assert

Assume Assert

Assume

• Self-contained and reusable
Assertion Based Verification IPs
(ABVIPs)

• Bi-directional assertions and covers

• Cross proof at the interface

18

End-to-End FV Properties

 Block_A’s FVC

Block_A

Checking Model

Prediction Models

SVA Asserts

Scoreboard

End-to-End
Constraints

SVA Assumes

i/f i/f

Free Variable Control
Interface

Free variables

• SVA assumes across multiple interfaces

• End-to-end modeling and SVA asserts

• Free variables in the verif interface

19

Formal Coverage Model

 Block_A’s FVC

Block_A

Checking Model

Prediction Models
SVA Asserts

Scoreboard

i/f i/f

DUT Ports

Coverage Model
SVA covers

Covergroups

Coverage Sample Interface

Important Block-level
events

Sampling
events

• Measure verification completeness

• Sampled when corresponding
checkers trigger

• Certain events propagated for reuse

20

Agenda
• Introduction
• Reusable FV Testbench Structure
• Integrating FV Collaterals into Emulation
• Real-World Results: a SSD Controller SoC
• Conclusion

21

Transactor-Based Emulation
• Emulation enables system-level HW/SW co-verification

• Our transactor-based emulation platform contains:
– A SystemVerilog testbench synthesized together with the SoC DUT
– System-level tests in C++ language
– Transactors that communicate information between the emulator and its host

RTL
Driver

Emulation TB

SoC DUT

EmulatorHost PC

Tests
C++ DPI-C

Transactor

22

Integrating FVC into Emulation

Block_C

CPU

Host
Transactor

Media
Transactor

SOC Coverage
ModelDUT

Ports
DUT
Ports

Coverage Sample
Interface

DUT
Ports

DUT
Ports FVC

Use Case
Covers

Bind FVC

Emulation
TB

Bind
DUT
SOC

Block_B

Block_A

Free
Variable
Control

Free Variable
Control Interface

Coverage Sample
Interface

Free Variable
Control Interface

Host Model1. Bind each FVC (with
FVC_ACTIVE = 0) to
its DUT

2. Connect each FVC’s
coverage sample
interface

3. Use a transactor to
drive free variables

23

Agenda
• Introduction
• Reusable FV Testbench Structure
• Integrating FV Collaterals into Emulation
• Real-World Results: a SSD Controller SoC
• Conclusion

24

Proof of Concept (PoC) Results
• PoC Experiment: Reusing two block FVCs in a SoC emulation platform

Quantitative Metrics Return on Investment (RoI)

Block_A Block_B Total
Line of FV code reused 5392 1714 7106

Assert/assume props reused assert: 632
assume: 293

assert: 6
assume: 39

assert: 638
assume: 332

Failed assert/assume props in
emulation

assert: 10
assume: 2

assert: 1
assume: 2

assert: 11
assume: 4

Block-level cover points reused 82 13 95

System-level inter-block covers
added

18

DUT gate count (percentage) 0.8% 6% 6.8%

Cost: FVC gate count
(percentage)

0.6% 0.02% 0.62%

 Overall reuse statistics:
 ~7000 LoC
 ~1000 Props

 Quality improvement
(Block-level)

 Efficiency improvement
(System-level)

 Manageable cost

25

FVC Quality Improvement:
An Over-constraint Case

• Very important to prove assumptions made at block boundaries
– Pay attention to your clocks and resets!

Timer_decr: assume property (
(sync_dn != `0 |-> ##1 sync_dn == $past(sync_dn)-1);

Block_A

Sync
Timer

Clock
Gate

SoC
CLK clk_timer

clk_blockA

sync_dn

26

FVC Quality Improvement:
FV Model Synthesized as Intended?

• Assertion Instr_ptr_update
– passed in formal
– failed in emulation

• Root cause: inferred latch!

• Pay attention to tool
warnings!

Instr_ptr_update: assert property (
(decode_fetch |-> ##1 instr_ptr ==

$past(instr_ptr_exp));

…
always_comb begin: model_ptr_gen

if(!rst_n)
instr_ptr_exp = 0;

else if(decode_fetch) begin
if(condition_1)

instr_ptr_exp = '1;
else if(condition_2)

instr_ptr_exp = pending_ptr;
else if(condition_3)

instr_ptr_exp = fetch_address[13:0];
end

end

27

Emulation Efficiency Improvement:
A System-level Use Case Cover

• FVCs enable use case
coverage:
– Important block events

– Inter-block event sequences

– System-level use cases

FW Block_A Block_B

Block_B receives low
power entry
command

Block_A triggers
power control
sequence

FW clears pending
traffic and interrupt

Block_A becomes
idle

Block_B moves to
low power state

Block_A re ceives CPU
idle state and
completes power
control sequence

28

Emulation Efficiency Improvement:
Debuggability

• Embedded FVC checkers can greatly reduce debug effort!

Case 1: Reproduce A Post-Silicon Bug in Emulation
 Created an assertion for the RTL bug
 Reproduced system failure with the target assertion failed
 Rapid root cause analysis in Block_B

Case 2: Root Cause An Emulator Tool Bug
 Random system hanging due to a tool bug
 Root caused by an assertion in Block_A within a few days
 Saved weeks of debug time

29

Agenda
• Introduction
• Reusable FV Testbench Structure
• Integrating FV Collaterals into Emulation
• Real-World Results: a SSD Controller SoC
• Conclusion

30

Conclusion
• Modern complex SoCs require a greater rigorous verification signoff

methodology
– Simulation
– Formal
– Emulation

• Our systematic formal reuse methodology helps to increase productivity
– Efficiency: avoiding duplicate effort
– Quality: cross-proof between different platforms

31

Future Work

• Guidelines on how to create system-level use case covers

• Emulation-friendly scoreboard

• Building FVCs for more IPs/blocks

32

References
[1] Harry D. Foster, “The 2018 Wilson Research Group ASIC and FPGA Functional
Verification Study”
[2] A. Li, H. Chen, J. K. Yu, E.L. Teoh, I. P. Anand, “A Coverage-Driven Formal
Methodology for Verification Sign-off”, DVCon 2019
[3] J. Bromley, “Double the Return from your Property Portfolio: Reuse of
Verification Asserts from Formal to Simulation”, DVCon 2015
[4] Erik Seligman, Tom Schubert, and M V A. Kiran Kumar, “Formal Verification,
An Essential Toolkit for Modern VLSI Design,” Morgan Kaufmann, 2015
[5] N. Kim, J. Park, H. Singh, V. Singhal, “Sign-off with Bounded Formal
Verification Proofs”, DVCon 2014

33

	A Systematic Formal Reuse Methodology: From Blocks to SoC Systems
	Agenda
	SoC Verification – Industry Trends
	Our Hybrid Verification Strategy
	Challenges
	How to Close the Gap Between Schedule and Productivity?
	Agenda
	Principles for Formal Reuse
	Complete Formal Testbench
	Formal Verification Component (FVC)
	Formal Verification Component (FVC)
	Formal Verification Component (FVC)
	Formal Verification Component (FVC)
	Formal Verification Component (FVC)
	Formal Verification Component (FVC)
	FVC Interfaces
	Free Variable Control Interface
	Formal Bus Model (FBM)
	End-to-End FV Properties
	Formal Coverage Model
	Agenda
	Transactor-Based Emulation
	Integrating FVC into Emulation
	Agenda
	Proof of Concept (PoC) Results
	FVC Quality Improvement: �An Over-constraint Case
	FVC Quality Improvement: �FV Model Synthesized as Intended?
	Emulation Efficiency Improvement:�A System-level Use Case Cover
	Emulation Efficiency Improvement:�Debuggability
	Agenda
	Conclusion
	Future Work
	References

