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SoC Verification – Industry Trends 
• SoC verification is full of hard problems:

• HW/SW interactions at SoC top level
• 3rd party IP integration at subsystem level
• Exhaustive corner cases at block level
• …

Courtesy: Harry D. Foster “The 2018 Wilson Research Group ASIC and 
FPGA Functional Verification Study” [1] 

• These drive the continuous 
evolution of verification 
strategies/methodologies
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Our Hybrid Verification Strategy 
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• Goal: To extend our 
capability to verify larger 
and more complex SoCs

– Block-level: Simulation + 
Formal

– Cluster-level: Simulation

– SoC-level/System-level: 
Simulation + Emulation
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Challenges

• Hybrid strategy          Maximize ROI in verification quality

• Challenges:
– Verification gaps on boundaries

– Duplicate effort
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How to Close the Gap Between Schedule and 
Productivity?

Solution:

A Systematic formal reuse methodology to enable code reuse and cross 
proof from FV and improve interoperability between FV and other 
platforms 
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Principles for Formal Reuse
• Modularity

– Modularized components 
– Easy to reuse in different platforms and projects

• Usability
– Simple and clean interfaces
– Easy to be integrated by other verification environments

• Consistency
– Follows a consistent, easy-to-communicate form
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Complete Formal Testbench
• A complete formal testbench consists of

1. A Formal Verification Component (FVC)
2. A formal testbench environment (ENV) 
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• An FVC provides:

Formal Verification Component (FVC)

Coverage Sample Interface Free Variable Control 
Interface
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Simple and clean 
interfaces
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• An FVC provides:
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• An FVC provides:

Formal Verification Component (FVC)

Coverage Sample Interface Free Variable Control 
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• End-to-end checkers
• End-to-end constraints
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• An FVC provides:

Formal Verification Component (FVC)
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• An FVC provides:

Formal Verification Component (FVC)

Coverage Sample Interface Free Variable Control 
Interface

DUT Ports
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Intf Asserts
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A package with 
reusable data structs, 
functions, properties, 

etc.
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• An FVC provides:

Formal Verification Component (FVC)
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FVC Interfaces
• DUT Ports

– Identical to design interfaces
– Connect FVC to its DUT

• Coverage Sample Interface
– A verification interface that enables coverage reuse
– Propagate important block-level events to upper layer testbench

• Free Variable Control Interface
– A verification interface that controls FV free variables
– Free variables are commonly used in FV
– Extra driver logic in simulation or emulation is needed
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Free Variable Control Interface

interface blockA_free_var_ctrl_if
#(

parameter bit FVC_ACTIVE        = 1,
parameter int NUM_CLIENTS       = 8,
parameter int NUM_CLIENTS_WIDTH = 3

);

logic [NUM_CLIENTS_WIDTH-1:0]   client_idx;

if (FVC_ACTIVE == 1) begin
client_idx_stable: assume property (

@ (posedge clk) disable iff (!rst_n)
1 |-> ##1 ($stable(client_idx) && (client_idx < NUM_CLIENTS)));

end

endinterface

 When FVC_ACTIVE = 1: 
this assume is in effect

 When FVC_ACTIVE = 0: 
this assume is disabled 
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Block_B’s FVC    
   Block_A’s FVC

Block_A Block_B

Intf AB FBM

assert A2B

assert B2A

i/f i/f

Formal Bus Model (FBM)

Assert

Assume Assert

Assume

• Self-contained and reusable 
Assertion Based Verification IPs 
(ABVIPs)

• Bi-directional assertions and covers 

• Cross proof at the interface 
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End-to-End FV Properties

   Block_A’s FVC

Block_A

Checking Model

Prediction Models
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Free Variable Control 
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Free variables

• SVA assumes across multiple interfaces

• End-to-end modeling and SVA asserts

• Free variables in the verif interface
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Formal Coverage Model

   Block_A’s FVC
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Important Block-level 
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• Measure verification completeness

• Sampled when corresponding 
checkers trigger

• Certain events propagated for reuse
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Transactor-Based Emulation
• Emulation enables system-level HW/SW co-verification

• Our transactor-based emulation platform contains:
– A SystemVerilog testbench synthesized together with the SoC DUT
– System-level tests in C++ language
– Transactors that communicate information between the emulator and its host

RTL 
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Emulation TB

SoC DUT

EmulatorHost PC

Tests
C++ DPI-C

Transactor
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Integrating FVC into Emulation
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Proof of Concept (PoC) Results
• PoC Experiment: Reusing two block FVCs in a SoC emulation platform

Quantitative Metrics Return on Investment (RoI)

Block_A Block_B Total
Line of FV code reused 5392 1714 7106

# Assert/assume props reused assert: 632
assume: 293

assert: 6
assume: 39

assert: 638
assume: 332

# Failed assert/assume props in 
emulation

assert: 10
assume: 2

assert: 1
assume: 2

assert: 11
assume: 4

# Block-level cover points reused 82 13 95

# System-level inter-block covers 
added

18

DUT gate count (percentage) 0.8% 6% 6.8%

Cost: FVC gate count 
(percentage)

0.6% 0.02% 0.62%

 Overall reuse statistics:
 ~7000 LoC
 ~1000 Props

 Quality improvement 
(Block-level)

 Efficiency improvement 
(System-level)

 Manageable cost
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FVC Quality Improvement: 
An Over-constraint Case  

• Very important to prove assumptions made at block boundaries
– Pay attention to your clocks and resets!

Timer_decr: assume property (
(sync_dn != `0 |-> ##1 sync_dn == $past(sync_dn)-1);

Block_A

Sync 
Timer

Clock 
Gate

SoC
CLK clk_timer

clk_blockA

sync_dn
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FVC Quality Improvement: 
FV Model Synthesized as Intended? 

• Assertion Instr_ptr_update
– passed in formal 
– failed in emulation 

• Root cause: inferred latch!

• Pay attention to tool 
warnings!

Instr_ptr_update: assert property (
(decode_fetch |-> ##1 instr_ptr == 

$past(instr_ptr_exp));

…
always_comb begin: model_ptr_gen

if(!rst_n)
instr_ptr_exp = 0;

else if(decode_fetch) begin
if(condition_1)

instr_ptr_exp = '1;
else if(condition_2)

instr_ptr_exp = pending_ptr;
else if(condition_3)

instr_ptr_exp = fetch_address[13:0];
end

end
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Emulation Efficiency Improvement:
A System-level Use Case Cover

• FVCs enable use case 
coverage:
– Important block events 

– Inter-block event sequences

– System-level use cases

FW Block_A Block_B

Block_B receives  low 
power entry 
command

Block_A triggers 
power control 
sequence

FW clears pending 
traffic and interrupt

Block_A becomes
idle

Block_B moves to 
low power state

Block_A re ceives CPU 
idle state and 
completes power 
control sequence
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Emulation Efficiency Improvement:
Debuggability

• Embedded FVC checkers can greatly reduce debug effort!

Case 1: Reproduce A Post-Silicon Bug in Emulation
 Created an assertion for the RTL bug
 Reproduced system failure with the target assertion failed
 Rapid root cause analysis in Block_B

Case 2: Root Cause An Emulator Tool Bug
 Random system hanging due to a tool bug
 Root caused by an assertion in Block_A within a few days
 Saved weeks of debug time
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Conclusion
• Modern complex SoCs require a greater rigorous verification signoff 

methodology
– Simulation
– Formal
– Emulation

• Our systematic formal reuse methodology helps to increase productivity
– Efficiency: avoiding duplicate effort
– Quality: cross-proof between different platforms
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Future Work

• Guidelines on how to create system-level use case covers

• Emulation-friendly scoreboard

• Building FVCs for more IPs/blocks
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