
A Systematic Approach to Power State Table (PST)
Debugging

Bhaskar Pal Suman Nandan Kaushik De and Rajarshi Mukherjee
Synopsys India Pvt Ltd

Bangalore, India - 560016
Email: {bpal,snandan,kaushikd,rmukherj}@synopsys.com

Abstract—Unified Power Format (UPF), allows designers to
describe low power design intent and help the way complex
low power integrated circuits can be designed, verified and
implemented. The power architecture intent specification include
structural specification like specification of the power supply
network, power switches, retention cells, etc and functional
specification like specification of the supply port/net states and
the Power State Table (PST). Static Low Power checkers like
MVRC takes the UPF PST as the golden reference and per-
forms most of the static checks (e.g. like isolation/level shifter
requirements). With the growing low power complexities of the
designs, the number of PSTs in a design can be in the order
of hundreds. Therefore it is becoming very difficult to ensure
correctness/completeness/consistencies among these hundred of
PSTs. Tools employ certain merging principles to merge these
hundred of PSTs and inconsistent/incomplete specification of
PSTs can lead to a merged PST which may not satisfy the
actual low power intent. Therefore, an under-constrained or over-
constrained merged PST leads to incorrect verification results.
Manual debugging of what went wrong between these large
PSTs can be very time consuming and erroneous. In this paper,
we propose a systematic approach for consistency/completeness
checks of the PSTs. Moreover if erroneous PST specification
leads to incorrect merged PST and thereby generates incorrect
verification result, we also offer a set of debugging aids to find out
the exact context (root cause) of what went wrong. We believe that
the proposed approach will significantly help the PST debugging
flow for large designs. ‘

I. INTRODUCTION

This Unified Power Format (UPF) [6], allows designers to
describe low-power design architecture. The power architec-
ture specification includes structural specification like supply
port/net, etc and functional specification like supply port/net
states and the Power State Tables (PST). Usually a large low
power integrated circuits are partitioned into multiple power
blocks/islands. Each of these power blocks can have multiple
power states representing different voltage levels at which the
block can function. The power state table (PST) of a block
defines these power states in the block level UPF in terms
of a set of supply ports/nets and a set of supply relations.
Intuitively, every row of a PST defines one or more supply
relation. In addition to these block level PSTs, there can be
a top level (global) PST which defines the chip level power
states.

Figure 1 shows the power blocks of a low power design.
Each of these power blocks (BLKA, BLKB, BLKC and
BLKD) has its own block level PSTs. The blocks interacts

Fig. 1. Example low power design with four power blocks

with each other i.e. there are power domain crossing paths in
the design.

Ideally, the global PST should represent states defined
by conjunction of all the local PSTs. However, in practical
scenarios, the global PST contains less number of power states,
thereby constraining the power state space defined by the local
block level PSTs.

On the other-hand, a local PST can constrain the global PST
if the specification of local PST becomes incorrect/inconsistent
with the rest. Merging of local PSTs can also produce addi-
tional new supply relations. Therefore if the global PST does
not constrain the supply relations appropriately, the resultant
PST generated by merging PSTs can have additional supply
relations as well.

Today, the number of PSTs in a design can be in the
order of hundreds. Tools [2] employ certain merging prin-
ciples to merge these PSTs. As we have mentioned earlier,
inconsistent/incomplete specification of these PSTs can lead
to a merged PST which may not satisfy the actual low power
intent. Due to these factors, enumerating the valid power states
becomes difficult which in turn makes PST based debugging
problem very tough.

To illustrate further, let us see what can be the impact of
all these scenarios on the low power verification. Here we
restrict our discussion on illustrating impact of PST debugging
in the context of low power verification only. Static LP
checkers like MVRC [2] takes the UPF PSTs as the golden
reference and performs the static checks. Therefore, any in-

consistent/incomplete specification of these PSTs would lead
to incorrect/improper verification results. Manual debugging
of what went wrong between these large PSTs can be very
time consuming and erroneous.

To elaborate further, every block level power verification is
performed assuming that the supply relations encoded in the
PST are correct and complete. However, when a block gets
connected with its environment (chip level), if some of these
supply relations get eliminated (either by the constraining
global PST or while merging with other block level PSTs),
the block-level verification results get changed. The change is
very difficult to debug as, for the designer, the block level PST
remains the same.

In this paper, we first elaborate different scenarios in which
the PST specification becomes incorrect/inconsistent. Then,
we propose a systematic approach for consistency/correctness
checks of the PSTs. We further link the PST specification er-
rors with verification results, leading to a root cause detection
mechanism. The specific contributions are given as follows:

1) Block level checks: We check whether supply constraints
are properly specified in the PSTs. We also detect
potential partial specification of PST entries.

2) Chip level checks:
• We propose connectivity based checks to see if the

block level supply constraints hold at the chip level.
• We detect partial specification of PSTs that can lead

to potential design bugs.
• We propose algorithms that can find out the exact

context (root cause) for which supply assumptions
gets broken leading to different verification results.

• We propose a set of debug routines which can be
used to debug/query different supply relations.

We describe an overview of the proposed PST debugging
approach with an example. We demonstrate the proposed
approach on some industry level designs. The results show that
the proposed approach can catch potential PST errors and pro-
vide sufficient debug information to the designer/verification
engineer to analyze the violations emitted by the static check-
ers. This approach can also be used by simulation based tools
like MVSIM [3] for better coverage analysis.

The paper is organized as follows. We elaborate the PST
debugging problem with the example design (see Figure 1)
in Section II. A formal model and detailed algorithms are
presented in Section III-E. The tool flow is presented in
Section IV. The experimental results are shown in Section V.
Section VI presents other works in this area and how this
approach differs from those. Finally, the concluding remarks
are presented in Section VII.

II. A MOTIVATING EXAMPLE

In this section we elaborate the PST debugging problem
and the related issues/impacts with the example design (see
Figure 1). There are four power blocks in the design. The block
level PSTs (PSTA, PSTB, PSTC and PSTD) and the global
PST (PSTG) are shown in Figure 2. There are overall five

Fig. 2. Block level PSTs and global PST

Fig. 3. Supply port states

supplies in the design S1, S2, S3, S4 and S5. The port/power
states of the supplies in the design are shown in Figure 3.

In this example, we have considered single voltage value
port/power states. However, this approach is also scalable
to multi-voltage values port/power states (which uses min-
nom-max format). In these cases we convert the multi-voltage
port/power states into single voltage value port/power states.

Fig. 4. Isolation devices inserted in BLKA and BLKB

Fig. 5. PSTA and PSTG to clarify the example

Note that PST for BLKA, PSTA, has a supply relation {(S1,
off), (S2, ON)} in row A11. Therefore if there exists power
domain crossing paths from S1 to S2, an isolation device
needs to be inserted in each of these paths to stop the X-
value propagation. BLKA has these isolation devices inserted
in these paths and therefore block level static checks give no
errors/warnings. Same supply relation holds between supply
S2 and S3 in PSTB. BLKB also has proper isolation devices
inserted in it. Figure 4 shows BLKA and BLKB with the
devices.

However, once the chip level integration and static checks
take place, these block level verification results change in
the following manner We only elaborate the example in this
section. The formal definition and algorithms are presented in
Section III-E.

• Supply relation in Block level PST gets overridden by
global PST: In our example, the supply relation {(S1, off),
(S2, ON)} in PST state A11 in PSTA is not maintained by
PSTG. PSTG represents stricter supply relations between
supplies S1 and S2 (see Figure 5). Therefore this supply

Fig. 6. Another set of PSTs PST1 and PST2 to clarify the examples

relation does not appear in the final merged PST. As a
result, in the chip level static checks, all the isolation
devices inserted between power domain crossing paths
between S1 and S2 would be reported as redundant. This
verification result may surprise the designer/verification
engineer as the block level PSTs remain the same. Some
may argue that a closer investigation of the global PST
would clarify this scenario. Surely it does, but in a large
design, with hundreds of PSTs and thousands of such
violations, this debugging can be very difficult. As these
violations appear due to inconsistencies between PSTs,
the verification tool should consider these violations in a
separate category and link these to the exact root cause
to ease the debugging.

• The previous scenario represents the simplest way in
which a block level PST loses one of its supply rela-
tions. However, there can be scenarios where a supply
relation gets eliminated by other block level PSTs and
this elimination may not be caused by a single block
level PST. Inconsistent PST specification can eliminate a
supply relation in multiple steps. Figure 6 shows another
example (different from our example) in which a supply
relation in one PST (PST1) gets eliminated/constrained
by the other PST (PST2). Although this is also a direct
elimination, debugging this eliminating scenario among
hundreds of block level PSTs becomes very difficult.

• Supply relations in a block level PST can get eliminated
by other block level PSTs in multiple steps. For example,
the supply relation {(S2, off), (S3, ON)} represented by
PST state B11 in PSTB does not get eliminated by the
global PST PSTG (see Figure 2) as PSTG also holds
this supply relation in PST state/row G13. This supply
relation does not get eliminated directly by any other
block level PSTs. So visually it is not possible to find
out the eliminating PST. However, we will see (in the
next section) how this supply relation gets eliminated
in multiple steps by multiple PSTs during PST merging.
Debugging such scenarios is very hard and non-intuitive.
Therefore it needs hints from the checker tool to analyze
such scenarios and link violations resulting from these to
their exact root cause.

Fig. 7. Indirect elimination of supply relation

III. FORMAL MODELS AND ALGORITHMS

In this section we first define some of the concepts that
we use throughout the paper. We illustrate the concepts with
examples. In Section III-A, we illustrate how the PST merging
takes place for a UPF with multiple PSTs. In Section III-B, we
illustrate the concept of eliminator PSTs which is a key notion
used in this paper. Section III-C elaborates how different PST
entries (we refer as supplyVoltPair below) gets associated with
each other leading to a PST entry with eliminator PST. In Sec-
tion III-D, we illustrate the approach to find eliminating PST
sequence for a supply relation. Next we present outline of the
algorithms to find out eliminating PST sequence responsible
for elimination of a supply relation in Section III-E. Finally in
Section III-G, we illustrate how violations get linked to their
root cause.

To begin with, lets first define the PST entries formally. We
call a PST entry a supplyVoltPair.

• supplyVoltPair: This is a pair (S, Volt) where S is the
supply port/net and Volt is a voltage value specified by
one of the add port states/add power states in the UPF.

Typically every PST entry can be represented as a supply-
VoltPair. For example in PSTB (see Figure 7), PST state B11
has two supplyVoltPairs – (S2, off) and (S3, ON). The speci-
fication of supplyVoltPairs in a PST play a significant role in

Fig. 8. Merging of two PSTs

PST merging process leading to influence the outcome of the
checkers. In this paper we use this concept of supplyVoltPairs
to illustrate how incorrect/incomplete usage of supplyVoltPairs
in PSTs are closely related to each other and influence the
final outcome from the checkers. Next we use this concept to
formalize our algorithms.

A. PST merging - how it happens

Given a set of PSTs for a design which includes block
level as well as global PST, static checkers use a set of
steps/algorithms to find out the resultant PST. This resultant
PST is called the merged PST and act as a golden reference.
In [1], discussions related to different aspects of PST merging
have been presented.

PST merging is a process which merges the PSTs in the
UPF taking a pair at a time (it can be any order) and in each
step generates a new merged PST. The outline of the algorithm
is given in Figure III-A.

To illustrate further, if we try to merge PSTA and PSTB (see
Figure 7), we see that the common supply in this case is S2.
We start with PST state A11 of PSTA. As (S2, ON) is also

Fig. 9. Merging of PSTA and PSTB

Fig. 10. Merging of PSTC and PSTD

present in PST state B12 of PSTB, PST state/row A11 can
be merged with state/row B12. Similarly, A12 can be merged
with B12 and A13 can be merged with B11 and B13. The
ultimate merged PST is shown in Figure 9.

However, if we try to merge PSTC and PSTD (see Fig-
ure 10), we see that the common supply in both the PSTs is
S4. However, the supplyVoltPair (S4, ON1) in PST row/state
C11 of PSTC does not appear in any states/rows of PSTD.
This is an example of incomplete specification of PST. For
this, during merging, PST states C11 cannot be merged with
any states/rows of PSTD and therefore this PST state/row gets
eliminated in the merged PST. Figure 10 shows this merging.

Now we formally define how to find out the eliminating
PST trace/sequence of a supply relation.

B. Eliminator PST

We first define what is an eliminator PST for a supplyVolt-
Pair.

• eliminator PST (supply, supply state): A PST P is
called an eliminator PST for a supplyVoltPair (S, St) if
supply S appears in P but the port/power state St of supply
S has not been used in P. Therefore if St of S has been
used in any other PST, say P1, merging of P with P1 will
remove all the PST rows from P1 where port/power state
St of S has been used.

For example, both in PSTC and PSTD (see Figure 10),
supply S4 has been used. However, in PSTD, supplyVoltPair
(S4, ON1) does not appear. In this case, PSTD becomes the
eliminator PST for supplyVoltPair (S4, ON1). This is because,
whenever PSTC gets merged with PSTD, PST row/state C11
gets eliminated.

Therefore, any supplyVoltPair does not appear in the final
merged PST if it has an eliminator PST.

C. Association of supplyVoltPairs

A supply value pair, which does not have an eliminator
PST, can disappear from the final merged PST if during the
merging process it gets associated with another supplyVoltPair
which has an eliminator PST.

We now illustrate how any supplyVoltPair gets associated
to another supplyVoltPair. A supplyVoltPair which is used in
some rows/states in a PST P, gets immediately associated with
all the other supplyVoltPairs used in those rows in P. For
example, in row C11 of PSTC, (S3, ON) gets immediately
associated with (S4, ON1).

A supplyVoltPair can also get indirectly associated with a
supplyVoltPair during the PST merge process. Suppose, a PST
P1 gets merged with another PST P2, and in that process a
row r1 in P1 gets successfully merged with row r2 in P2. The
merging of r1 and r2 will give birth to a row r1r2 in merged
PST P1P2. Once this happens, every supplyVoltPair in r1 and
r2, gets indirectly associated with each other in r1r2 of P1P2.

In the above example, when row B11 of PSTB gets merged
with C11 of PSTC, supplyVoltPair (S2, off) gets indirectly
associated with supplyVoltPair (S4, ON1).

Now we illustrate how a supplyVoltPair, which does not
have an eliminator PST, can be eliminated from the final
merged PST. supplyVoltPair (S3, ON) of PSTC does not have
any eliminator PST, but it is associated with supplyVoltPair
(S4, ON1) in PSTC which has an eliminator PST (which is
PSTD). Therefore, (S3, ON) gets eliminated in an indirect
manner and does not appear in the final merged PST.

Interestingly, (S2, off) also gets associated with (S4, ON1)
when PSTB gets merged with PSTC. However, (S2, off) will
survive in the merged process because (S2, off) is also present
in PST row/state B13 which does not get associated with any
supplyVoltPair which has an eliminator PST.

Therefore, a supplyVoltPair gets eliminated from a PST
altogether if it has an eliminator PST or in all the PST
rows/states in that it appears gets associated with a supply-
VoltPair with an eliminator PST during PST merge process. If

this supplyVoltPair (in any of these PST row/states) does not
get associated with a supplyVoltPair with an eliminator PST,
it survives in the merge process.

Now we define how a supply relation gets eliminated during
the PST merging process.

A supply relation {(S1, V 1), (S2, V 2),, (SN , VN)}
which exists in some of the block/global PST does not survive
in the final merge PST if any of the supplyVoltPair in it
gets eliminated in the during PST merging i.e. it has an
direct/indirect eliminator PST.

For example, the supply relation {(S2, off), (S3, ON)} gets
eliminated because (S3, ON) does not survive the PST merging
steps. However, as shows earlier, (S2, off) would be there in
the merged PST.

D. Summary of approach to find eliminating PST sequence

Interestingly, the elimination of the PST rows that represents
some supply relation may not occur at the same step. It
will depend on how the PST merge algorithm works for a
specific design. As PST merge algorithm continues in multiple
iterations, the elimination of the rows can also be distributed
over these iterations.

When some debug queries like debug rail order(S1, S2)
(e.g. debugging whether there is any supply relation where S1
is off and S2 is ON) or debug voltage diff(S1, S2, voltage-
value) (e.g. debugging supply relation where the voltage dif-
ference between S1 and S2 is same as voltage-value) referring
a specific supply relation comes, the most simple way to trace
why that supply relation has been eliminated, is to continue
doing the PST merging and whenever a PST row (containing
that supply relation) gets eliminated, store that information to
the database and finally show the user all the ways in which
that supply relation got eliminated. A trace can be defined as
a cross product of a number of PST rows.

Although this approach is simple, it does not take into
account the supplyVoltPairs with eliminator PSTs. As we have
already shown that supplyVoltPair with eliminator PSTs are
the root causes for elimination of various supply relations,
the debug algorithm should perform the PST merging steps
more intelligently. Therefore, to show how a supplyVoltPair
gets disappeared in the merging process, the algorithm needs
to cleverly choose the candidate PSTs with which the next
merge happens.

For a supplyVoltPair that appears in row r1 of PST P and has
association with N other supplyVoltPair, if there are M other
PSTs with which the next merge can be done, give higher
weight age to those PSTs where associates of the (N + 1)
supplies has indirect or direct eliminator PST.

E. Outline of the algorithm

The objective of this algorithm is that - Given a supply
relation to the query engine, like debug rail order(S1, S2) or
debug voltage diff(S1, S2, voltage-value), the algorithm finds
out the minimum sequence of PST merging steps by which the
relation gets eliminated.

There can be two variants of this algorithm.

1) We build an association Graph from the PSTs in the
UPF a priori and try to answer queries from that graph.
This may have memory overhead.

2) We build some data base related to supplyVoltPairs
which have eliminator PSTs or which are associated in
a direct/indirect manner with the supplyVoltPairs which
have eliminator PSTs. This database associates weights
to each of the supplyVoltPair in the PSTs that indicates
its distance from one of the supplyVoltPair which has
an eliminator PST.
After we have this we take a debug query and try to build
a trace (sequence of PST row merges) for this specific
query. This is the dynamic variant of the algorithm.

In this paper we present this dynamic variant only. The
algorithm is given in Figure 11.

An example illustrating the steps in Figure 11 can be found
in Section III-F. The associated associationGraph is also given
in Fig 12.

Note that the above algorithm can be slightly modified to
form an association Graph which actually depicts how each
supplyVoltPair in the PSTs are connected to supplyVoltPairs
which have eliminator PSTs. Whenever step 6 happens, we
have a transition of row of one PST to row of another PST
in the graph. The definition of such association graph is given
below. But whether such a graph should be retained in memory
or not is left to the implementation.
associationGraph (supplyVoltPair(S, St))

1) A vertex on this graph is a supplyVoltPair (S, State).
2) An edge is a connection (undirected) between two

vertices labeled by a PST pair (P1, P2) which shows
a possible merging by which these two vertices can be
associated.

3) An edge can have weights indicating the distance to a
supplyVoltPair with an eliminator PST.

Once the above database (distance database) is complete,
we can start implementing the queries. Given a debug query
related to a supply relation, we first see whether it gets
eliminated in the final merged PST. If yes, we first try to
find out whether any supplyVoltPair in this supply relation
has an immediate eliminator PST. If yes, then we get the
answer. Otherwise, we next find out the sequence of PST
merge operations by which this supply relation gets killed.

To start this searching, we need to select the starter PST
which initiates this sequence/trace. If the supply relation exists
only in one PST then that becomes the starter PST. Otherwise,
we follow procedure selectStarterPST to select the starter PST.

For example, if the query is debug rail order(S1, S2), then
first find out is there any PST where this occurs. If yes take
the set of those PSTs.

Procedure selectStarterPST (supply relation).

1) If {(S1, off), (S2, ON)} is there in the merged PST, we
do not proceed, we send the states where this appears.

2) If (S1, off) or (S1, ON) has an eliminator PST then we
return that eliminator PST.

Fig. 11. Algorithm to find out eliminating PST sequence/trace

3) For each row R of the PSTs P where {(S1, off), (S2,
ON)} (i.e. any supply relation) occurs

• Weight (P) = min (N(S1, off), N(S2, ON))
• For all the associated supplies (S, V) in row R

a) Take the minimum N(S, V)
b) If N(S, V) < Weight (P), Weight (P) = N(S, V)

4) Start with PST with minimum Weight.
The above algorithm (step 3 to step 4) is generic and holds

for any supply relation. Also note that a supply relation can
be as simple a supplyVoltPair itself.

The weight of a PST is necessarily the indication of how

quickly we get to the point where {(S1, off), (S2, ON)} supply
relation gets eliminated.

Once the starter PST is computed, we search for the
best candidate PST with which this can be merged leading
to elimination of the supply relation. However, as we have
already mentioned, it may take several PST merging steps to
ultimately find out the PST sequence/trace that kills a supply
relation. Therefore once the starter PST is found, to compute
this sequence/trace, we need to find out a PST with which
this can be merged. Once this merging is done and we get
a merged PST, if we still need to continue tracing, we again
need to select a PST from the remaining PSTs to merge with
this merged PST. This process continues till we find out the
entire set of sequences. Therefore to select the best candidate
PST at each such iteration (for PST merging), we follow the
following steps.

The following procedure selectBestCandidatePST takes two
arguments:

• The merged PST, PSTM which represents a PST trace
(which initially consists of only the starter PST.

• The set of candidate PSTs (PSTs which are not used to
compute PSTM), with which PSTM can be merged next.

Procedure selectBestCandidatePST

1) For each PST row/state R in PSTM in which the supply
relation exists.

a) Let L be the set of supplyVoltPairs in row R.
b) For each row R1 of each candidate PST, Pnext

which can be merged with row R of PSTM.
• Weight (R1) = Minimum weight of the supply-

VoltPairs in R1 (distance database helps in this
step).

• Weight (Pnext) = Minimum (Weight (Pnext,
Weight (R1)).

2) Return the PST Pnext which has minimum weight.

F. Example

To illustrate further, lets look at the example design in
Figure 1. Lets assume we need to debug why supply relation
{(S2, off), (S3, ON)} gets eliminated.

To illustrate the steps, first we need to build the distance
database. Note that there is only one supplyVoltPair (S4, ON1)
which has an eliminator PST. There step by step execution of
buildDistanceDatabase is given as follows:

1) N(S4, ON1) = 0. Therefore, L = {(S4, ON1)}
2) N(S3, ON) = 1 and L = {(S3, ON)}
3) N(S2, off) = 2 and L = {(S2, off)}
4) N (S1, off) = 3 and L = {(S1, off)}
An example associationGraph for this example is shown in

Figure 12.
The supply relation exists in only one PST, PSTB, there-

fore this becomes the starter PST. Searching the PST trace
sequence is executed in the following manner.

Fig. 12. An example Association Graph

1) In step 1 the candidate PSTs are PSTC and PSTG which
can be merged with PST row/state B11 of PSTB. The
candidate PST rows are C11 and G13 respectively.

2) As the Weight of (S3, ON) = 1 and (S4, ON1) = 0, PST
row C11 of PSTC becomes the winner and therefore,
PSTC becomes the next candidate PST to merge with
PSTB.

3) Once PSTC gets merged with PSTB, supply relation gets
eliminated and therefore the PST trace becomes (PSTB
→ PSTC). This becomes the root cause for eliminating
the supply relation.

G. Linking violations with their root cause due to PST elimi-
nation

Usually any violation which gets generated based on PST
computation like isolation redundancy/missing scenarios or
level-shifter redundancy/missing scenario etc, are candidates
for this approach. Once a violation gets generated, it stores
the supply relation condition, for which it gets generated. For
example, in an isolation redundant violation, the supplies (that
drives the source/sink of the power domain crossing path), say
S1 and S2 does not have a supply relation when S1 is Off and
S2 is ON in the merged PST. Therefore for all such violations,
we internally compute debug queries like debug rail order
(S1, S2) and try to extract the PST trace/sequence that killed
it. Once we have such trace, we report that as root cause for
such violations. Figure IV shows this flow.

IV. TOOL FLOW

Figure 13 shows the usage of the proposed approach in the
low power static checking process. The proposed approach
works in different phases. The different phases are as follows:

• Once the UPF database gets populated, there is a UPF
consistency checker which checks for simple scenarios
like whether the block level port constraints are hon-
ored by the chip-level actual connections. It also checks
scenarios like incomplete specification of PST, where a
supply has been used in a PST but its port/power states
are not used completely in the PST. This is an important
check as this can lead to eliminator PSTs.

Fig. 13. Tool flow

• Once the PST merging happens, the PST association
database gets populated. This database also contains in-
formation regarding eliminator PSTs for supplyVoltPairs.

• Once the violation database gets generated, the root cause
analyzer gets kicked in and this uses the PST association
database to link the violations to its actual root case (if
any such scenario is there).
In addition to this, the user level debug queries are also
handled by this layer.

V. RESULTS

We have implemented a prototype tool for the proposed
approaches. The tool flow has been presented in Section IV.
We have run the proposed flow on some industrial designs.
The experimental results are shown in Figure 14.

In all of these test cases, we perform the checks in the
following phases.

• We first check whether the top level ports (in block/chip
level) have proper supply constraints. This is an important
criteria that models the environment of the block/chip
properly.

• We next check whether any intermediate boundary supply
constraint is honored by its load/driver. This is required to
ensure that the block level port constraints are maintained
by the chip level connections.

Fig. 14. Experimental results

• We check whether there is inconsistencies in the PST
specification and whether these cause extra violations.

In some of the designs we have observed that either the
block port constraints were missing or not properly specified in
the PSTs. In few designs, block level constraints get eliminated
resulting to extra violations. In these designs, the global PST
represents stricter supply relations resulting in killing of block
level supply relations. Though redundant violations do not
contribute to critical failures, it is always good to inform the
user such situations to prevent critical bugs to creep in. In
some of the designs, we have intentionally changed the UPF
and injected errors to see whether the tool catches these.

In all of these runs, the runtime and memory overhead are
negligible.

VI. RELATED WORK

In [1], authors have presented scenarios that lead to
incorrect/inconsistent PST. However, first, their approaches are
dependent on some inputs from the designer which may not be
available. Second, the detailed root cause detection mechanism
and linking the root cause with resulting violation are not
presented.

Some other works that discuss PST and low power verifi-
cation issues can be found in [4], [5].

VII. CONCLUSION

In this paper we have presented an approach to system-
atically debug the PST. In addition to the simple checks
like absence of port constraints, it includes involved checks
that works on the PST merge process. The checkers are
distributed throughout the static checker work flow. Therefore
it enables early issue detection and correction. Ultimately we
have proposed approaches to link the violations with their root
cause. This root cause analysis is not generic, it only detects
scenarios created by inconsistent specification of PSTs and
PST merge process.

There are some future scopes which includes - (1) Dis-
playing the culprit PST trace/sequence in GUI for ease of
debugging, (2) Debug procedures for scenarios where addi-
tional supply relations gets added to the merged PST. Simple
additions can easily be detected but there can be scenarios
which are more involved and needs separate discussion.

REFERENCES

[1] H. Vardhan, A. Bagotra and N. Bajaj, Is Power State Table Golden,
DVCon, 2012.

[2] Synopsys-MVRC
www.synopsys.com/tools/veri cation/lowpowerveri cation/pages/mvrc.aspx

[3] VCS with MVSIM
www.synopsys.com/Tools/Verification/.../Pages/MVSIM.aspx

[4] Power State Table for Low Power UPF and VP
www.scribd.com/doc/43157041/40/Power-State-Table

[5] Low Power Methodology Manual
www.synopsys.com/community/partners/arm/pages/lpmm.aspx

[6] Unified Power Format (UPF 2.0) Standard [Draft Version], IEEE
P1801/D18,23rd October, 2008.

