

1

A step towards Zero Silicon Bugs using Assertion
based Assumption Validation

Rohit Kumar Sinha, Intel India, Bangalore, rohit.kumar.sinha@intel.com

Babu Christie, Intel India, Bangalore (christie.babu@intel.com)

Abstract— As the complexity of SoCs is exponentially increasing and IPs are being sourced from multiple external and internal
channels, the validation of asynchronous designs and ensuring that there are no potential misses in the SoC integration have
become a daunting task. During the SoC integration, we often get cases wherein pre-silicon or sometimes post-silicon bug cost an
entire respin due to meta-stability issues or due to glitches in the clock-reset paths. That’s the reason there is an absolute necessity
mainly in the SoC design to ensure that the assumption used for signing off CDC or RDC design challenges are validated using
an autonomous flow. The flow should ensure that the assumptions that have been taken to close CDC analysis are validated with
respect to the design intent such that constraints added because of the wrong interpretation can be detected upfront to avoid
costly iterations

Keywords— SVA, assertions, formal, verification, asynchronous, validation, protocols, SoC, CDC

I. INTRODUCTION

In the ongoing ARM based SOC design, there are multiple flavors of IPs being integrated and IP team often signs off their
design using their own TFM and it is nearly impossible for the SoC team to expect from IP vendor-either internal or external
to follow the TFMs as per the SoC guidelines. As a result, SoC integration quality sign off becomes very challenging and
probability of wrong constraints being used in the CDC closure is quite high.

In the previous ARM based SOC, we typically have the following CDC data which provides an overview of the complexity
of the SoC complexity.

As mentioned in the graphs, handling hue number of constraints and waivers are very challenging and hence it requires an additional
validation mechanism which ensures that the assumption used for the CDC analysis are indeed correct in the actual design implementation.

There are essentially below motivations for enabling SVA based assumption protocol validation.

A. SoC Complexity

As we know that yesterday’s SoCs are becoming today’s IP and SoC architecture is increasingly becoming complex and
that’s the reason clocking architecture, reset architecture complexity calls for a detailed analysis for the asynchronous
crossings.

365 417 2300

32600

61000

0
10000
20000
30000
40000
50000
60000
70000

No. of Abstract
Model

No. of Domains No. of Clocks No. of Constraints No. of Waivers

Design Data

2

B. Vulnerability

At times, it is difficult to understand the interpretation of the constraints, waivers and violations reported by the CDC tool
and because of which few real issues are either waived or ignored. RTL integration engineer is often vulnerable to miss
some critical crossing because of incorrect assumptions

C. Costly Respin

Every designer understands that cost associated with 1 Si respin and companies have got out of business in the past because
of the missing TTM because of the CDC issues. Mainly CDC issues are often random in nature and it leads to fatal issues
if it is detected post Si. So one must be extremely careful in handling metastability issues during the CDC analysis.

II. IMPLEMENTATION OF SVA PROCTOCL VALIDATION

The purpose of this paper is to address the mentioned issues by providing a comprehensive methodology to ensure that the
constraints and assumptions that are used for CDC closure are validated against the design intent and there are no misses
leading to potential silicon escapes.

There are essentially four major steps involved in the SVA protocol validation.

A. Translation of CDC waivers into Constraints

Firstly, we were required to associate all flavors of waiver with the corresponding SGDC constraints as none of the industry standard
CDC tool directly converts waivers into assertions. As shown in the table below, we captured most common types of waivers and then
we mapped to the equivalent SGDC constraints.

Type of Waivers Related Constraints

Stable and non-glitch prone signals Quasi_static

Pulse extender in the crossing path Clock_relation

MetaFlop in the crossing path - enable_multiflop_sync = yes (sync_cell) - enable_multiflop_sync = no, add
synchronize_cell “instance_name”

Debug modules (VISA & IDV) network signals not Impact on CDC(
crossings between test clock & functional clock are waived) -
set_clock_groups

Set_clock_groups

Xover in the crossing path - Clock_relation (posedge/negedge) Clock_relation

Signal going to Power control unit - Quasi_static

clkack/clkreq are safe Handshake protocol; qualifier -
enable

PwrGood signal is stable. Quasi_static

Rx samples the signal once Tx settles down - qualifier can be used Data_hold_check

There is no activity/transactions happening during the time of reset -

After the reset deassertion, clock is cut off because of the gating logic.

Reset desertion; reset_filter_path

Registers in bypass mode Quasi_static

Both TX and RX clocks are aligned. Clock_relation

3

Going to config register that is polled by SW Quasi_static

Mutually exclusive clocks Set_clock_group

Enable signal asserts long before the valid data is accumulated qualifier

initial stage mux clocks won't be running or gated during reset de-assertion Quasi_static_rdc

As per usecase, the d input of the flops will be stable during reset
deassertion and will have the value same as reset value

qualifier –src_stable

B. Generation of SVA

Secondly, we need to generate the assertions for all the constraints which are used for the CDC closure. In order
to generate the assertions, we need to run “cdc_verify_funct” goal which ensure all the CDC constraints SVAs are
dumped for the further analysis. Below is the snapshot of the assertions used in the design

C. Binding the SVA into Simulation Environment

Next Step is to bind the SVAs into the simulation environment so that the targeted tests are run and ensure that
all the required assertions are validated. Below are the steps to bind the SVA into functional simulation
environment. In the current design, we needed to discuss with Verification Architect to identify the appropriate
tests which will ensure that all the required assertions are hit

4

D. Identify the Right Functional Simulation Test

One of the critical steps is to identify the right functional simulation test so that all the assertions get hit and get
validated. In the CPUSS design, we used the cluster based test and it helped us to get the assertions analyzed.
Below is the summary report which provides the information about assertions

Next step is to ensure that SVA assertions are analyzes once the design is "active" and out of resets so that
assertions don’t fail before reset is deasserted. Below are the steps to define the reset conditions.

Create a library for system
verilog assertion modules
and include it the design

used to run Simulation Tool

Run simulation to generate
a new sim executable

(*.simv)

Run regressions using the
newly generated simv to
validate the constraints

cdc_assertion_lib => { -hdl_spec => ["cfg/cdc_sva.hdl",], -vlog_opts =>
["\\<sim\\>+incdir+$ENV{MODEL_ROOT}/target/<dut>/cdc/*_sva/$PROJEC

T/<model>/<cdc_top>",], ## This is where the assertions will be dumped },

 $hdl_spec = { -vlog_files => ["tools/*cdc/<model>/cdc_assertions.sv",], ## Add
this path to the search paths if it does not already exist -vhdl_files =>

["verif/tb/cdc_assertions/hybrid_model_sim.vhd",],

`ifdef INTEL_CDC_ASSERTION module
cdc_assertions; `include
"sva_assumptions_<cdc_top>_bind.sv" // Eg:
sva_assumptions_adl_scf_io_top_bind.sv `include
"sva_rules_prop_<cdc_top>_bind.sv" // these bind files
will bind the assertions to the design Endmodule `include
"sva_assumptions_<cdc_top>_sim.sv

"cpuss_tb.Assumption_mod_cpuss.ADVCDC_quasi_static_9.ADVCDC_DETECT_TOGGLE", 885 attempts, 881
successes, 0 failures, 1 incompletes

"cpuss_tb.Assumption_mod_cpuss.ADVCDC_reset_filter_path_0.ADVCDC_DETECT_RFP", 1 attempts, 1 successes, 0
failures, 0 incompletes

"cpuss_tb.Assumption_mod_cpuss.ADVCDC_set_case_analysis_0.ADVCDC_WRONG_VALUE_INIT.unnamed$$_0", 1

`ifdef INTEL_CDC_ASSERTION
 module cdc_assertions;
 `include "sva_assumptions_<cdc_top>_bind.sv"
 `include "sva_rules_prop_<cdc_top>_bind.sv"
 always@(<reset_signal>)
 begin
if(!(<reset signal> === 1'bx))
 begin
 Assumption_mod.*assert = <signal signal>;
 Assertion_mod.*assert = <signal signal>;
 end else
 begin
 Assumption_mod.*assert = 1'b0;
 Assertion_mod.*assert = 1'b0;
 end
 end
 endmodule
 `include "sva_assumptions_<cdc_top>_sim.sv"

5

III. RECOMMENDED FLOW

SGDC

SignOff Assumption
Validation

Fix the
DUT

Yes

Design

Signoff CDC and RDC

Waivers

Coverage High

Assertions hit

Yes

Switch to
another

functional
test

Yes

Assertion Pass

Generate SVA for
Assumptions & Bind the assertions into Simulation

Environment

Fix Initialization Issues

False
failures

waivers into SGDC
Constraints

No

No
No

Yes

6

IV. RESULTS

The recommended flow was implemented in the ARM based SoC design and the run results are presented for
the A53 CPUSS. In this case we had more 5000+ CDC constraints which were used to close the CDC analysis.
Below are some of the example of the critical issues that were identified

A. Issues with reset_filter_path constraints

B. Issues with set_case_analysis constraint

* Identify applicable sponsor/s here. If no sponsors, delete this text box (sponsors).

Deassertion filter paths assumption at block level doesn’t hold good
 example- reset_filter_path –from reset <rst1> -to_clock <clk1>
Assumption failure (constraint 'reset_filter_path' at /nfs/sc/disks/tbh_rtl_010/rohitks/cpuss-tbh-
a0/verif/tests/static_checks/*_cdc/cpuss/cpuss.sgdc:910): Reset
cpuss.par_noc_cpuss.par_noc_north_cpu01.cpuss_cpr_wrap.cpuss_cpr.cpuss_cpr_tap_ovrd.tap_mux_dbg_rst_n.o
asserted after
cpuss.par_noc_cpuss.par_noc_north_cpu01.cpuss_cpr_wrap.cpuss_cpr.cpuss_cpr_tap_ovrd.tap_mux_a53_ncpupor
eset_1.o

Modal constraints defined for DFT Signals (MBIT, TAP) found to be incorrect
Assumption failure (constraint 'set_case_analysis' at
/nfs/sc/disks/tbh_rtl_003/aanto/CDC/func_cdc_ww45_4/cpuss-tbh-
a0/verif/tests/static_checks/*_cdc/cpuss/cpuss_clocks.sgdc:404): Value 1 on signal

7

C. Issues with set_case_analysis constraint

Additionally, if you have run simulation tool compile, elab and regressions with the switches mentioned as
below, simulation test will dump summary.log in the same area that has acerun.log or <test_name>.log

This file will have summary of all the assertions exercised, passed and failed in that test. You can use
cdc_sva_coverage.pl as follows to get the coverage numbers for all CDC SVAs from all the tests you ran.
The output of this script will be a text file that has the info about total number of CDC SVAs, total number of
failed SVAs (along with their names) and total number of unattempted SVAs (along with their names).

V. SUMMARY

In this paper, we recommended a methodology for the validation of assumption constraint that could be wrongly added
during the CDC closure. This methodology addresses the error-prone waiver handling mechanism and it provides design-
intent based CDC closure wherein all the waivers are translated into respective constraints and all the assumption
constraints are validated using SVA protocol methodology. Below is the summary-

 CDC constraint Assumption validation using SVA Protocol is a MUST especially in SoC Design

 It uncovers the corner cases bug which is impossible through manual reviews

 Binding into the regression suite helps designer to reduce TAT

 Assertion Coverage Data ensures the Sign-off Quality of the validation

 Identifying the appropriate Functional Tests ensure that assertions are hit and validated

 Future Enhancement Recommended covering more constraints for SVA protocol validation

 Formal Technology need to be used for CDC Assumption Validation

ACKNOWLEDGMENT

Thanks to my mentors, peers, CAD team as well as vendors for helping in the whole process

REFERENCES

[1] Rohit Kumar Sinha, Babu Christie, “A step towards zero Silicon Bugs: SVA Protocol Based Assumption Validation

Powergood assumptions defined as the quasi-state are wrong
Assumption failure (constraint 'set_case_analysis' at
/nfs/sc/disks/tbh_rtl_003/aanto/CDC/func_cdc_ww45_4/cpuss-tbh-
a0/verif/tests/static_checks/*_cdc/cpuss/cpuss_clocks.sgdc:404): Value 1 on signal
3. cpuss_dut.CSTR_SVA_U1_cpuss.ADVCDC_quasi_static_31.ADVCDC_DETECT_TOGGLE: started
at 484220000000fs

trex -ace_args -mcrd -simv_args "+fsdb+sva_success" -ace_args- -ace_args -simv_args '"'-assert
summary -assert report=summary.log'"' -ace_args- -fsdb -fsdb_sva_full

