
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

A Specification-Driven Methodology for the Design and

Verification of Reset Domain Crossing Logic

Priya Viswanathan, Kurt Takara, Chris Kwok, Islam Ahmed
Mentor, a Siemens Business, Fremont, CA

Abstract

With the increasing complexity of today's System-on-a-Chip

(SoC) designs, reset architectures have also increased in

complexity. Traditional reset design and verification techniques

have not evolved to address this increase in complexity. In order

to avoid ad-hoc reset methods, this paper presents a

specification-driven methodology to enable the design and

verification of reset domain crossing (RDC) paths in large SoC

designs. This methodology is a 3-step process that provides a

requirements-based approach for RDC design and verification.

Specification Driven Methodology

Step 2: RDC Design and Verification

Specify the design techniques for RDC synchronization and reset

distribution. Some common techniques include reset staging

methods and RDC synchronization.

Staged Reset Generation

The staged reset synchronization structure enables sequenced

removal of resets, minimizing the dangers of asynchronous and

concurrent reset assertion. The staged resets avoid power surges

by sequencing the assertion of resets to design blocks. Staged

reset removal structures enforce implicit de-assertion ordering on

data transmitted between adjacent reset domains. For example

(Figure 1), if ‘rsta’ is the first staged synchronizer output and the

‘rstb’ is the second staged synchronizer output, all RDC crossings

from the ‘rsta’ domain to the ‘rstb’ domain are ordered and follow

the correct de-assertion sequence. Automatic verification of the

function of such staged reset structures improves the RDC

verification efficiency.

Reset Sequencing

Another technique for sequencing resets is to insert delays within

an asynchronous reset domain. Understanding of the reset

architecture also enables the inference of the reset assertion

sequence from insertion of register delays within the same clock

domain. In Figure 2, the assertion of RST will cause DFF2 to

reset while DFF1 is still in functional state. The inconsistent reset

delay between adjacent registers causes incorrect data at the

downstream logic. The reset structure assumes that RST is

asserted for more than 3 cycles. If RST is only asserted 2 cycles,

then when RST deasserts, DFF2 will be corrupted by DFF1

before DFF1 gets the reset signal.

One common RDC synchronization method is to isolate the

receiving domain register from the source domain register. This

requires an enable signal to be generated in receiving register’s

clock and reset domain which isolates the receiving register from

the transmitting register when the reset is asserted. Isolation by

gating can happen through the data path or the clock path of the

receiving register, as shown in Figure 3 and Figure 4.

Specification of the isolation mechanisms for RDC includes the

method of implementation, the source of the isolation enables,

the structural details and the possible mapping to the source and

destination reset and clock domains.

Real World Results

Summary

This methodology was applied on both an IP block and a digital

networking SoC design (Figure 6). Both designs used clock gate

isolation methods in the RDC structures. These designs also

show how reset domain crossing paths may overlap with CDC

paths, so traditional CDC synchronization structures may address

both RDC and CDC issues.

In the specification-driven RDC flow, the specification determines

the RTL RDC synchronization implementation and also guides

the RDC analysis. The XML testplan and UCDB coverage

database are generated from the RDC analysis results. In this

flow, the RDC structural checks are mapped to functional

coverage covergroup bins in the UCDB and a functional coverage

viewer is used to view the UCDB coverage database.

The RDC design requirements specification is a critical part of the

reset architecture design. The design specification includes the

definition of the asynchronous clock and reset domains, reset

assertion ordering, and RDC synchronization methods. By clearly

defining the reset architecture, design teams will facilitate proper

RDC design, improve verification efficiency, and avoid RDC

issues late in the design flow. The definition of the asynchronous

reset domains will influence the RDC paths and RDC

synchronization methods. The RDC specification will also include

specifying reset ordering, RDC clock isolation enables, and RDC

data isolation enables.

• Step 1: RDC design requirements specification and

verification plan

• Step 2: RDC design and verification

• Step 3: RDC results progress tracking and completion

metrics

Benefits:

• Integrated requirements management capability to enable

requirements traceability

• Systematic approach for designing and verifying the

reset architecture

• Correlation between the design requirements and

verification efforts to enable closure for the verification

process

Step 1: RDC Design Requirements Specification and Plan

(Figure 2)

Reset Specification Example:

netlist reset hrst –async –active_low

netlist reset srst –async –active_high

Clock Specification Example:

netlist clock clock clk1

Reset Ordering Specification Example:

resetcheck order assert –from srst –to hrst

(Figure 1)

Advanced RDC methodologies utilize a structured flow for

verifying designs for RDC issues. In order to efficiently manage

RDC verification efforts, RDC solutions must report verification

results and generate coverage metrics. By quantifying the

verification tasks, design teams have explicit criteria for

completing each step in RDC verification methodology. RDC

verification coverage metrics will quantify the verification

methodology including the setup, analysis, review, and debug

tasks and these coverage metrics will be correlated to the initial

RDC verification plan (Figure 5). The correlation between the

requirements and coverage will allow the project team to

determine the complete and incomplete RDC verification tasks

and will also enable the design team to demonstrate RDC

verification completion and design tape-out readiness. This specification-driven methodology is a systematic and

repeatable solution for the design and verification of RDC paths.

The incorporation of RDC design requirements into this

methodology improves the design and verification process and

creates a systematic approach for designing and verifying the

reset architecture. Finally, the incorporation of coverage metrics

with an integrated requirements management capability allows

the correlation between the design requirements and verification

results and enables closure for the verification process. The

tracking of design and verification requirements and verification

closure metrics are important for safety-critical applications such

as the DO-254 flight safety specification and the ISO 26262

automotive safety standard.

Step 3: RDC Results Tracking & Completion Metrics

Design 1 Design 2

Number of Asynchronous RDC issues in same clock domain 185 15519

Number of Asynchronous RDC issues in multiple clock domains 318 584

Number of Reset domain crossings with Synchronizers 0 258

Number of Isolated Reset domain crossings through clock gating 503 7293

The last step in this methodology is to make sure that all

requirements have been verified in order to achieve verification

closure. A coverage utility was used to generate a XML testplan

and an UCDB coverage database from the RDC results

database. The coverage results were annotated to the testplan

and the results were viewed in a coverage viewer as shown in

Figure 7. A 100% coverage on any testplan item indicates the

requirement has been completed, but any requirement without

100% coverage indicates that additional work is required by the

project team.

(Figure 3)

(Figure 4)

(Figure 7)

(Figure 5)

(Figure 6)

