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Abstract

With the increasing complexity of today's System-on-a-Chip 

(SoC) designs, reset architectures have also increased in 

complexity. Traditional reset design and verification techniques 

have not evolved to address this increase in complexity. In order 

to avoid ad-hoc reset methods, this paper presents a 

specification-driven methodology to enable the design and 

verification of reset domain crossing (RDC) paths in large SoC 

designs. This methodology is a 3-step process that provides a 

requirements-based approach for RDC design and verification.

Specification Driven Methodology

Step 2: RDC Design and Verification

Specify the design techniques for RDC synchronization and reset 

distribution. Some common techniques include reset staging 

methods and RDC synchronization.

Staged Reset Generation

The staged reset synchronization structure enables sequenced 

removal of resets, minimizing the dangers of asynchronous and 

concurrent reset assertion. The staged resets avoid power surges 

by sequencing the assertion of resets to design blocks.  Staged 

reset removal structures enforce implicit de-assertion ordering on 

data transmitted between adjacent reset domains.  For example 

(Figure 1), if ‘rsta’ is the first staged synchronizer output and the 

‘rstb’ is the second staged synchronizer output, all RDC crossings 

from the ‘rsta’ domain to the ‘rstb’ domain are ordered and follow 

the correct de-assertion sequence. Automatic verification of the 

function of such staged reset structures improves the RDC 

verification efficiency. 

Reset Sequencing

Another technique for sequencing resets is to insert delays within 

an asynchronous reset domain. Understanding of the reset 

architecture also enables the inference of the reset assertion 

sequence from insertion of register delays within the same clock 

domain.  In Figure 2, the assertion of RST will cause DFF2 to 

reset while DFF1 is still in functional state. The inconsistent reset 

delay between adjacent registers causes incorrect data at the 

downstream logic.  The reset structure assumes that RST is 

asserted for more than 3 cycles. If RST is only asserted 2 cycles, 

then when RST deasserts, DFF2 will be corrupted by DFF1 

before DFF1 gets the reset signal.

One common RDC synchronization method is to isolate the 

receiving domain register from the source domain register. This 

requires an enable signal to be generated in receiving register’s 

clock and reset domain which isolates the receiving register from 

the transmitting register when the reset is asserted.  Isolation by 

gating can happen through the data path or the clock path of the 

receiving register, as shown in Figure 3 and Figure 4. 

Specification of the isolation mechanisms for RDC includes the 

method of implementation, the source of the isolation enables, 

the structural details and the possible mapping to the source and 

destination reset and clock domains.

Real World Results

Summary

This methodology was applied on both an IP block and a digital 

networking SoC design (Figure 6). Both designs used clock gate 

isolation methods in the RDC structures. These designs also 

show how reset domain crossing paths may overlap with CDC 

paths, so traditional CDC synchronization structures may address 

both RDC and CDC issues. 

In the specification-driven RDC flow, the specification determines 

the RTL RDC synchronization implementation and also guides 

the RDC analysis. The XML testplan and UCDB coverage 

database are generated from the RDC analysis results. In this 

flow, the RDC structural checks are mapped to functional 

coverage covergroup bins in the UCDB and a functional coverage 

viewer is used to view the UCDB coverage database.

The RDC design requirements specification is a critical part of the 

reset architecture design. The design specification includes the 

definition of the asynchronous clock and reset domains, reset 

assertion ordering, and RDC synchronization methods. By clearly 

defining the reset architecture, design teams will facilitate proper 

RDC design, improve verification efficiency, and avoid RDC 

issues late in the design flow. The definition of the asynchronous 

reset domains will influence the RDC paths and RDC 

synchronization methods. The RDC specification will also include 

specifying reset ordering, RDC clock isolation enables, and RDC 

data isolation enables. 

• Step 1: RDC design requirements specification and 

verification plan

• Step 2: RDC design and verification

• Step 3: RDC results progress tracking and completion 

metrics

Benefits:

• Integrated requirements management capability to enable 

requirements traceability

• Systematic approach for designing and verifying the 

reset architecture

• Correlation between the design requirements and 

verification efforts to enable closure for the verification 

process

Step 1: RDC Design Requirements Specification and Plan

(Figure 2)

Reset Specification Example:

netlist reset hrst –async –active_low

netlist reset srst –async –active_high

Clock Specification Example: 

netlist clock clock clk1

Reset Ordering Specification Example:

resetcheck order assert –from srst –to hrst

(Figure 1)

Advanced RDC methodologies utilize a structured flow for 

verifying designs for RDC issues. In order to efficiently manage 

RDC verification efforts, RDC solutions must report verification 

results and generate coverage metrics. By quantifying the 

verification tasks, design teams have explicit criteria for 

completing each step in RDC verification methodology. RDC 

verification coverage metrics will quantify the verification 

methodology including the setup, analysis, review, and debug 

tasks and these coverage metrics will be correlated to the initial 

RDC verification plan (Figure 5). The correlation between the 

requirements and coverage will allow the project team to 

determine the complete and incomplete RDC verification tasks 

and will also enable the design team to demonstrate RDC 

verification completion and design tape-out readiness. This specification-driven methodology is a systematic and 

repeatable solution for the design and verification of RDC paths. 

The incorporation of RDC design requirements into this 

methodology improves the design and verification process and 

creates a systematic approach for designing and verifying the 

reset architecture. Finally, the incorporation of coverage metrics 

with an integrated requirements management capability allows 

the correlation between the design requirements and verification 

results and enables closure for the verification process. The 

tracking of design and verification requirements and verification 

closure metrics are important for safety-critical applications such 

as the DO-254 flight safety specification and the ISO 26262 

automotive safety standard.

Step 3: RDC Results Tracking & Completion Metrics

Design 1 Design 2

Number of Asynchronous RDC issues in same clock domain 185 15519

Number of Asynchronous RDC issues in multiple clock domains 318 584

Number of Reset domain crossings with Synchronizers 0 258

Number of Isolated Reset domain crossings through clock gating 503 7293

The last step in this methodology is to make sure that all 

requirements have been verified in order to achieve verification 

closure. A coverage utility was used to generate a XML testplan 

and an UCDB coverage database from the RDC results 

database. The coverage results were annotated to the testplan 

and the results were viewed in a coverage viewer as shown in 

Figure 7.  A 100% coverage on any testplan item indicates the 

requirement has been completed, but any requirement without 

100% coverage indicates that additional work is required by the 

project team.

(Figure 3)

(Figure 4)

(Figure 7)

(Figure 5)

(Figure 6)


