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ABSTRACT 

In order to achieve satisfactory verification coverage in an 

asynchronous design, it is highly desirable to model a synchronizer 

with all the checks that can help catch the problem. Modeling 

uncertainty caused by metastable values at the output of the 

synchronizer is one of them. Due to the inherent determinism in 

RTL-level simulations, it is necessary to take explicit steps to model 

the inbuilt uncertainty associated with the act of synchronization. 

However, the task of effectively modeling this uncertainty in a 

manner that draws out design flaws can be a challenge.  

Many papers published so far have emphasized the usage of very 

aggressive ways to model various checks inside the synchronizer but 

what they failed to do is to consider the overhead, like performance 

issues, false negatives etc, caused by these aggressive techniques.  

This paper explains a more balanced approach which is smart 

enough to regulate the aggression of the synchronizer based on 

different synchronization activities.  
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1. INTRODUCTION 

Clock domain crossing (CDC) verification of the current generation 

of complex, deep sub-micron (DSM) designs has become a critical 

step in the design process. Today’s large silicon devices are 

comprised of a growing number of IPs which in turn contain an ever 

increasing number of asynchronous clock domains from which stem 

a large number of cross over signals and a variety of design styles for 

synchronization of CDC signals. In order to achieve adequate 

verification coverage in a design like this, it is highly desirable to 

model a synchronizer with all the checks that can help catch 

problems. In hardware, the effects of metastabilty [1-6] are 

unpredictable, but normal simulation provides predictable results. 

Hence, due to the inherent determinism in RTL-level simulations, it 

is necessary to take explicit steps to model the inbuilt uncertainty 

associated with the act of synchronization. 

 

2. PROBLEM STATEMENT 

Modeling a clock-domain-crossing (CDC) synchronizer is a more 

involved process than initially meets the eye. Generally speaking, 

modeling techniques must strive to meet multiple goals, some of 

which can be at odds with each other. In addition, since simulation is 

a crucial medium to validate and debug design flaws, it is essential 

that reproducibility be an innate characteristic of the solution chosen. 

Various design teams across different companies have handled this 

task in a variety of ways which has caused misunderstandings and 

bugs found late in the design process 

Many papers published so far have emphasized the usage of very 

aggressive ways to model various checks inside the synchronizer but 

what they failed to do is to consider the overhead caused by these 

aggressive techniques. For example, the most aggressive way to 

model a synchronization event is to randomly introduce an extra 

latency of one destination clock-cycle when propagating any 

transition. Unlike the real-life behavior of flip-flops, using this 

behavior will introduce synchronization uncertainty in cases well 

outside the “setup/hold” window that characterizes the physical 

design. This technique can be very effective for simple 

synchronization activities, but for more sophisticated ones like a 

“bussed” event with gray encoding this technique is at odds with the 

property that makes gray-coded counters so effective – only one bit 

changes per update. 

2.1 Aggressive technique 

Ultimately, the goal of a synchronizer model is to expose all clock 

domain crossing design flaws as quickly and efficiently as possible. 

In order to accomplish this goal, it is necessary to strive for an 

aggressive behavior in the model in case the design is left with 

undiscovered flaws. Out of all the modeling techniques discussed so 

far in the design world, one of the most commonly used techniques 

is to randomize the data with respect to the destination clock.  



    always @( posedge CK ) 

  

 prevD   <= currD; 

         currD   <= D; 

  

        // The net effect of this is to randomly decide whether to 

        // take the current value of the signal to be synchronized, 

        // or the value that was presented before the last transition. 

        // 

         Q <= ( random_evaluation ) ? prevD : currD; 

               

Using this simplistic technique can be very effective for simple 

synchronization activities, but simplistic synchronization techniques 

tend to lead to design inefficiencies that can result in performance 

limitations or bloat to the design in an effort to recoup performance. 

To combat this, designers will often leverage properties of “bussed” 

events to achieve their CDC synchronization goals. A common 

example of a “bussed” event that is leveraged is that of gray-coded 

counters. Unfortunately, the simple technique described above is at 

odds with exactly the property that makes gray-coded counters so 

effective – only one bit changes per update. 

3. SOLUTION 

When considering an approach to modelling a synchronizer, two 

important criteria must be taken into account. To begin with we must 

know when to model the uncertainty and then how to model the 

uncertainty.  

3.1 Modelling Uncertainty 

It is the belief of the authors that the proposal outlined below 

achieves the goals in a manner that is as aggressive as possible while 

still yielding to the properties that are leveraged for “bussed” events. 

The proposal is divided into two layers. Basic layer which essentially 

is a single-bit synchronizer that classifies candidate events for 

randomized uncertainty modelling, and a filter layer which is a 

multi-bit level that provides a filter to qualify the candidates elected 

by the basic level. Each of these levels will be described using 

pseudo code, but the intent of the code snippet is to impart an 

understanding of the technique and not to present final code.  

Basic layer  
    reg   currD;     

    reg   prevD; 

    reg   prevVld; 

 

    initial begin 

      currD   = D; 

      prevD   = D; 

      prevVld = 1'b0; 

    end 

 

    always @( D or posedge CK ) begin 

 

      if ( posedge CK ) 

 

        // We are taking a sample, so past transitions are moot 

        // for future samples as they would be stable by the time 

        // that the next sample edge arrives. 

 

        prevVld <= 1'b0;  // clear our candidacy for uncertainty 

      else begin 

 

        // When we see a transition in the data, we mark our 

        // candidacy for uncertainty modeling. This is our aggressive 

        // mode of modeling. 

        // 

        // Note, the use of non-blocking assignments. Since the 

        // clock edge takes precedence, we are not executing this 

        // code concurrently with a clock edge. Consequently, the 

        // choice of blocking vs. non-blocking should be a matter 

        // of which simulates faster. 

 

        prevVld <= 1'b1; 

        prevD   <= currD; 

        currD   <= D; 

      end 

    end 

 

    always @( posedge CK ) 

 

      // Note, the signal 'transitionVld' is an input to this 

      // level of the model and is the hook for the higher-level 

      // filter to "dial-back"; the aggressiveness of the modeling 

      // of "when"; to apply randomized uncertainty in the delay.  

 

      if ( prevVld && transitionVld ) begin 

 

        // Here, the technique for the random evaluation is not 

        // detailed. The technique for this is discussed later. 

        // 

        // Nevertheless, it is important, for performance reasons, 

        // to understand that the random stream should only be 

        // pulled when an actual randomization decision is required. 

        // 

        // The net effect of this is to randomly decide whether to 

        // take the current value of the signal to be synchronized, 

        // or the value that was presented before the last transition. 

        // 

        // Note, it would have been simpler to use ~CurrD without 

        // storing prevD, but that technique limits 

        // us to { 0, 1 } as signal values, whereas the technique 

        // outlined here is specifically capable of dealing with 

        // { 0, 1, X } as signal values without polluting the results. 

 

        Q <= ( random_evaluation ) ? prevD : CurrD; 

      

       end else 

        // Data not flagged for randomization was stable at ‘currD’ 

        Q <= CurrD; 

 

 



Multi-bit filter  

   input  [(VEC_SIZE-1):0]  D; 

    ... 

 

    reg    [(VEC_SIZE-1):0]  currD; 

    reg    [(VEC_SIZE-1):0]  prevD; 

    reg    [(VEC_SIZE-1):0]  transitionVld; 

    integer                  idx; 

 

    initial begin 

      currD = D; 

      prevD = D; 

    end 

 

    always @( D ) begin 

      prevD  = currD; 

      currD <= D; 

 

      for ( idx = 0; idx < VEC_SIZE; idx = idx+1 ) 

 

        // any bit that has changed since the last time the 

        // data vector changed will be marked as a valid bit 

        // for synchronization candidacy. Any bit that remains 

        // unchanged will have its "candidacy" overridden since 

        // it is known to be stable, thus preserving the 

        // leveraged property of the "bussed" event. 

        // 

        // this signal is then passed down to the individual 

        // lower-level synchronization models. 

 

        transitionVld[idx] = ( prevD[idx] !== currD[idx] ); 

    end 

 

As can be seen from the code samples above, transitions on the input 

data are the primary means for determining when the capture should 

or should not be randomized. By sensitizing the code to transitions 

of the input data, we are inferring the source clock domain since 

each data transition should follow a clock edge in the source clock 

domain. Using this property, the aggression is “dialed-back” for 

bussed synchronization events by permitting randomization for only 

those bits that have changed in the most recent update. Any bits that 

have remained stable during the most recent update are blocked from 

having their capture randomized, even if the lower-level 

synchronizer has detected a transition since the last capture edge. 

This “filter” leverages the fact the property that a signal that has 

been stable for at least one source clock cycle will have been stable 

at the sample flop for a sufficiently long time that its capture will be 

certain.  

 

4. CASE STUDY 

 

Consider a FIFO, as shown above, used to transfer multi-bit data 

across a clock domain. Now, imagine a scenario where the 

destination clock is known to always be at least half as fast as the 

source clock. The designer might assume that the gray code counter 

could never change by more than two counts. But if the source clock 

is writing every cycle and destination clock is exactly half the source 

clock rate, then in real silicon, we might see a case where the counter 

jumps three counts in one cycle. 

 

 

 

 

 
 

 

 

If the designer is using the aggressive technique described in this 

paper, his randomizer will try to process the data at every edge of the 

destination clock and will randomize any changed bit at the capture 

time.  

 

 
 

 

Now as can be seen above, the simulation data at the first destination 

clock is 000 and in the consecutive edge, due to the frequency 

relationship between the clock and the fact that we are gray encoded 

the pointers, the simulation data will be 011. This implies that in 

between two destination clock transition two bits have changed 

which means after standard aggressive randomization, simulation 

can see any of the four shown choices 000, 001, 010 and 011. If the 

simulation were to process 010 then it might eventually lead to false 



functional failures as that entry has not even been written yet. This 

false negative might cause simulation errors and might consume both 

time and resource to fix.  

 

To avoid this overhead, a designer sometimes takes a “drastic step” 

including shutting down the randomization model completely, hence 

using just back to back flops and gray encoded pointers. Following is 

the waveform of the “Resolved” value with randomization disabled. 

 

   
 

 

Shown below is the case which might slip through the cracks if we 

were to follow the “drastic step” and how our synchronizer model 

will expose that. 

 

 

 
 

 

In zero time delay simulation, the first Rd Clk rising edge sees 000 

from the source domain, but the last bit to change was 1 (from 100), 

so in silicon, this bit might go metastable and hence our smart 

synchronizer will capture the transition and will introduce a random 

delay and will produce either 000 or 100. Similarly when the Rd clk 

captures 011, the actual value could be 001 or 011 and then the next 

destination clock cycle might produce 001 or 011, and the next 

might produce 010 or 110.  So there is a random way to produce the 

sequence 000, 001, 110.  This could actually happen in real silicon 

based on metastability resolution and so our smart synchronizer will 

correctly expose a design problem if the design could not handle a 3-

step increment in the counter 

 

5. SUMMARY 

 

With a growing number of clocks in today’s SOC designs, increased 

design complexity, and pressure for first silicon success, all clock 

and timing issues have become a verification challenge. 

 

Existing techniques used to model uncertainty in synchronizers are 

too aggressive to be used effectively with all different 

synchronization schemes forcing the user to make a choice when it is 

safe to turn off and on this feature. The technique presented in this 

paper eliminates that decision making process and makes clock 

domain verification more stable and sustainable. 
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