A SMART GENERATION OF DESIGN ATTRIBUTES
FOR VERIFICATION CLOSURE USING SPECMAN

Meirav Nitzan Yael Kinderman Efrat Gavish
Xilinx Inc. Cadence Design Systems Inc Cadence Design Systems Inc
meiravn@xilinx.com yaelk@cadence.com efratg@cadence.com
The problem:

Design attributes (parameters) affect the way the design
behaves |

* Itis necessary to test the design with all relevant parameter values

* Need to make sure various combinations of parameters are
checked, sometimes exhaustively

© Copyright 2013 Xilinx

WHY NOT TEST ALL COMBINATIONS?

Not scalable.

* E.Q:
* a design with 20-30 parameters
« each parameter may have 2 to 10 values

* the exhaustive permutation set could reach hundreds of thousands
In size, or even more.

* A huge amount of simulation time

» Covering all permutations for a bit more complex designs may not
be feasible

Efficiency - turnaround time for running a regression is too long

* If a bug fix takes a week to fully verify ->a lot of idle time for
designers.

Functionally, there is no functional justification to cross all values
of all parameters with each other.

© Copyright 2013 Xilinx

SOLUTION REQUIREMENT

1. Automated random generation of parameters sets,
considering the following:
« All parameters legal values and constraints
« Dependencies between parameters
2. Avoiding repetitions of parameters sets

« Each parameter set => re-run of the regression test suite

3. Flexibility to define either full parameters sets generation, as
well as smaller parameters sets

» Can be useful for defining nightly regressions, specific feature
testing etc.

4. Proper coverage of the parameters space needs to be
verified

Requirement 4 is solved by creating a config class in an OVM/UVM
environment, with proper coverage model, accessible to all
components

© Copyright 2013 Xilinx

PARAMETERS GENERATION - OUTLINE

Parameiers
definition &
constraints

Pre Simulation
Step

Specific
parameters

constraints for a
full/sub Parameters Sets

|
|
|
|
|
|
|
|
|
|
I
! regression sui Generator
|
|
|
|
|
|
|
|
|
|
|
[5

Simulation
and coverage
collection

Verification Simulator
Testbench

Simulation

results

© Copyright 2013 Xilinx

CASE STUDY- A PARAMETERIZED DUAL PORT RAM
DESIGN

PortB
PortA . rd width?
rd W'.dth' Dual-Port wr width?
wr width?

Address Lines Address Lines

Control Signals Common
Memory

Sub-Regression definitions:
BRAM_MODE is TDP

READ_WIDTH_A is 18 or 36

READ WIDTH_B is 18 or 36
True Dual Port,

WRITE_WIDTH_A is 18 or 36 _
Simple Dual Port?

WRITE_WIDTH_B is 18 or 36

Exercise ALL combinations of:
READ WIDTH_A x READ _WIDTH_B
WRITE_WIDTH_A x WRITE_WIDTH_B

Randomize all other parameters
© Copyright 2013 Xilinx

COMPARING SIMPLE SYSTEM-VERILOG
RANDOMIZATION TO SPECMAN BASED SOLUTION

 Running SystemVerilog randomization until 100%
coverage of the sub-regression requirements were
reached, yielded a significantly varied number of
parameter sets — from 7 to 26

« Running the Specman Based solution with the same
coverage requirements yielded 4 to 6 parameter sets

« Why the difference?

 The Specman based solution first exhaustively generates
the first cross, while randomizing other parameters. The in
only needs to generate values for the second cross not
generated already

« SV randomization cannot specially consider the
combinations we care about, hence reaching them may
take a varying number of cycles

© Copyright 2013 Xilinx

	A smart generation of Design Attributes for Verification Closure Using Specman
	Why not test all combinations?
	Solution requirement
	Parameters Generation - Outline
	Case study– a parameterized Dual Port Ram design
	Comparing simple system-verilog randomization to specman based solution

