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ABSTRACT 
In this paper we will show how we developed a 

formal verification “app” – i.e. a completely 

automated flow that even engineers without formal 

knowledge can run – to tackle the unique 

requirements of “3D IC” design.  Specifically, we 

will describe how to maintain the design hierarchy 

required by backend physical tools, yet 

automatically create “bundled” assertions to rapidly 

and exhaustively verify 10’s of thousands of 

connections between logic slices – something that 

proved impossible with our prior simulation-based 

flow.  With this app we were able to find 13 bugs in 

a matter of hours, in a design that was thought to be 

“correct by construction”. 
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1.  INTRODUCTION 
“3D IC” design – where multiple die are mounted 

on an interposer substrate, and then packaged as a 

single unit – enables our company to rapidly 

introduce high capacity and high performance 

devices with high yield and a minimum of 

overhead.  However, this design style introduces a 

whole new verification challenge vs. conventional 

ASICs; namely, the need to verify a massive 

number of connections between the different die 

and the corresponding signal paths that transit in 

and out of the interposer.  Initially we applied our 

existing, simulation-based flow that we have used 

for all our prior parts to these new 3D devices.  

However, it was quickly apparent that this flow 

would only be effective for a few representative 

cases and/or not be able to exhaustively cover all 

connections as required given the drastic increase in 

the scale of the requisite testbenches and the 

subsequent run time.  (It would a minimum of a 

man-month before simulations would begin to 

produce meaningful results.) 

 

Note that we do strive to make the design “correct 

by construction”, and automate the IP assembly 

process to avoid connectivity errors.  However, the 

cost of even one conceptually trivial connectivity 

bug from a swapped wire – in both re-spin cost and 

(much more significantly) impact on our market 

positioning -- is unacceptable, so thorough 

verification is a must.  To give an idea of the 

problem scope: even small parts comprised of 

identical die can have over 10,000 connections 

between the dice and interposer – for heterogeneous 

parts that intermix FPGA slices with various IPs 

(processors, transceivers, etc.) the number of 

connections can be significantly larger. 

 

An added, complicating factor is that the demand of 

3D physical design requires anywhere from 4 to 8 

layers of design hierarchy.  Of course, from a 

digital verification point-of-view all this extra 

hierarchy is redundant an unnecessary, yet we must 

preserve it to ensure the fidelity of our verification 

as well as preserve all the hooks needed for the 

downstream tool chain. 

 

Finally, we are constantly creating new 

configurations and/or parts to be responsive to 

market and customer needs.  Hence, to prevent 

having to reinvent a new flow for each new 

product, our connectivity verification flow has to be 
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very flexible, parameterizible, “future proof”, and 

as automated as possible. 

 

2.  OVERVIEW OF FORMAL 
The primary role of verification is to provide a 

means to check that a design under test (DUT) 

matches its specification.  Assertions are a way to 

capture design intent, and in affect they become an 

executable specification that forms the basis for 

evaluation of the DUT’s construction and 

behaviors. 

 

While assertions in a simulation flow act as watch 

dogs on the lookout for correct behavior, they can 

only execute their checks on the limited state space 

that is traversed by a given simulation.  Even the 

most well written, loosely constrained testbenches 

can only traverse a fraction of the total number of 

states that are mathematically possible. 

 

In contrast, formal analysis tools use assertions as 

the basis of a mathematical proof that shows that 

for all possible inputs the DUT will behave as 

specified by the assertion.  If the DUT can be 

shown to behave contrary to the assertion, the tool 

displays a counter example showing the user 

exactly how the circuit can misbehave.  Of course, 

the exhaustive nature of this approach combined 

with the ability to automatically pinpoint the given 

error is perfect for our connectivity verification 

application (where it bears repeating that even one 

misplaced connection would be painfully expensive 

to rework later).   

 

Finally, one additional note specific to connectivity 

checking is that the assertions required for this 

connectivity checking do not need to capture 

temporal behavior i.e., behavior spanning multiple 

clock cycles, a/k/a link with concurrent assertions.  

As we will discuss below, this enabled us to 

“bundle” assertions to improve the throughput of 

the app without losing fidelity to the DUT netlist. 

 

 

3.  CREATING THE APP 
 

3.1 Requirements 

 

Below are our requirements we defined for this 

app: 

 

* The app must perform an exhaustive analysis 

 

* The app must accept a Verilog netlist which is 

itself derived from a schematic.  

 

* The app must retain and respect the hierarchical  

signal information to arbitrarily depths 

 

* Since few engineers on our team have any 

experience with formal or ABV, the operation of 

the formal tool had to be completely automated 

and/or essentially hidden from the app user 

 

* Creation of the connectivity assertions also had to 

be completely automated 

 

* Capturing the connectivity spec. had to be 

straightforward, and be human and machine 

readable in an open, non-proprietary format 

 

* Running the app should be like executing any 

common command line utility 

 

* The app’s output should be easy to interpret -- 

leading the user directly to the specific 

connection(s) that are in error. 

 

* The run time of the whole app and any supporting 

scripts shall be at least 100x less than the equivalent 

testbench simulations preparation and run time. 

 

 

3.2 Defining Connectivity 

We used the standard connectivity definition 

template MS Excel file as a starting point. 

 

 
 

Assertion Source path Signal Destination path Signal

check_1  slave_beg.slice  LVB_K2[7]  master.slice  LVB_K10[6]

check_2  slave_beg.slice  LVB_K2[8]  master.slice  LVB_K10[7]

check_3  slave_beg.slice  LVB_K2[9]  master.slice  LVB_K10[8]

check_4  slave_beg.slice  LVB_K2[10]  master.slice  LVB_K10[9]

check_5  slave_beg.slice  LVB_K2[11]  master.slice  LVB_K10[10]

check_6  slave_beg.slice  LVB_K2[12]  master.slice  LVB_K10[11]

check_7  slave_beg.slice  LVB_K2[13]  master.slice  LVB_K10[12]

check_8  slave_beg.slice  LVB_K2[14]  master.slice  LVB_K10[13]

check_9  slave_beg.slice  LVB_K2[15]  master.slice  LVB_K10[14]



The spec file includes the source and the 

destination of each connection. It also includes 

information regarding repeating patterns of each 

connection and how many times it repeats. 

 

3.3 Black Boxing Support 

The tool vendor also provides a utility called 

“bbgen” that takes as input a Verilog netlist and 

strips out any interior logic, only leaving the 

pinouts of the given block behind.  In our 

application, where we are dealing with a relative 

handful of logic blocks (compared to an SoC with 

100’s of IPs, which might require some human 

intervention to manually cleave some entities), we 

are able to completely embed the execution of this 

utility inside our app so it’s invocation is 

transparent to the end user. 

 

3.4 Assertion Creation 

As introduced above, formal engines (in this case, 

Cadence’s Incisive Formal Verifier) are employed 

under-the-hood of the app to analyze the design in a 

meaningful and sufficient way.  Therefore it’s 

essential to create a complete set of assertions 

derived from the connectivity spec for the formal 

engines to prove.   

 

Our solution was to completely automate the 

assertion generation process from the device spec 

with a Perl script.  In a nutshell, the script reads the 

spec file describing souce/destination path and 

signal names as well how many times each 

connections are repeated. The script generates both 

cvs files to be imported as Excel spreadsheet and 

assertions files. 

 

Here is an example assertions: 

 
CHECK_LVL_B2_10_to_LVL_B10_9_m0_to_s2: assert property 

(dut.m0.slice.LVL_B2[10] == dut.s2.slice.LVL_B10[9]); 

CHECK_LVL_B2_11_to_LVL_B10_10_m0_to_s2: assert property 

(dut.m0.slice.LVL_B2[11] == dut.s2.slice.LVL_B10[10]); 

 

Here is an example of bundled assertions: 
CHECK_LVL_B2_s1_to_m0: assert property  ((dut.s1.slice.LVL_B2[10] == 

dut.m0.slice.LVL_B10[9]) && 

(dut.s1.slice.LVL_B2[11]==dut.m0.slice.LVL_B10[10]) && 
(dut.s1.slice.LVL_B2[12]==dut.m0.slice.LVL_B10[11]) && 

(dut.s1.slice.LVL_B2[13]==dut.m0.slice.LVL_B10[12]) && 

(dut.s1.slice.LVL_B2[14]==dut.m0.slice.LVL_B10[13]) && 
(dut.s1.slice.LVL_B2[15]==dut.m0.slice.LVL_B10[14]) && 

(dut.s1.slice.LVL_B2[16]==dut.m0.slice.LVL_B10[15]) && 

(dut.s1.slice.LVL_B2[17]==dut.m0.slice.LVL_B10[16]) && 

(dut.s1.slice.LVL_B2[18]==dut.m0.slice.LVL_B10[17]) && 

(dut.s1.slice.LVL_B2[19]==dut.m0.slice.LVL_B10[18]) && 
(dut.s1.slice.LVL_B2[20]==dut.m0.slice.LVL_B10[19]) && 

(dut.s1.slice.LVL_B2[21]==dut.m0.slice.LVL_B10[20]) && 

(dut.s1.slice.LVL_B2[22]==dut.m0.slice.LVL_B10[21]) && 
(dut.s1.slice.LVL_B2[23]==dut.m0.slice.LVL_B10[22]) && 

(dut.s1.slice.LVL_B2[24]==dut.m0.slice.LVL_B10[23]) && 

(dut.s1.slice.LVL_B2[25]==dut.m0.slice.LVL_B10[24]) && 
(dut.s1.slice.LVL_B2[26]==dut.m0.slice.LVL_B10[25]) && 

(dut.s1.slice.LVL_B2[27]==dut.m0.slice.LVL_B10[26]) && 

(dut.s1.slice.LVL_B2[28]==dut.m0.slice.LVL_B10[27]) && 
(dut.s1.slice.LVL_B2[29]==dut.m0.slice.LVL_B10[28]) && 

(dut.s1.slice.LVL_B2[30]==dut.m0.slice.LVL_B10[29]) && 
(dut.s1.slice.LVL_B2[7]==dut.m0.slice.LVL_B10[6]) && 

(dut.s1.slice.LVL_B2[8]==dut.m0.slice.LVL_B10[7]) && 

(dut.s1.slice.LVL_B2[9]==dut.m0.slice.LVL_B10[8])); 

 

In addition to automating the “front end” of the 

process, the script also invokes the formal tool and 

does some post processing of the formal analysis 

such that the whole flow is completely automated.  

This automation allows us to use the “app” 

nickname to refer to this flow, and thus our 

colleagues – almost all of who have no experience 

with formal tools and SVA – aren’t afraid to run it 

even though it uses technologies under-the-hood 

they don’t normally use. 

 

3.5 App Execution 

Once the connectivity description spec is available, 

the user can run the app from the Linux command 

line.  Invoking the app is 

 
% bali_sll_conn.pl \ 

–top <top> -slice <slice> 

–input <connection spec> \ 

–output <results file> \ 

-logfile <logfile name> 

 

Upon execution the app reports intermediate results 

and any warning or error messages to the console.  

When the app is finished running, if any 

misconnections were found the user is directed to 

the counter example file where the errors are 

flagged. 

 

 

3.6 Results Reporting 

Here is an example output: 
FormalVerifier> prove 
Verification mode: 

  CHECK_m0_T_NC_NONMIB_2_ : Pass 

  CHECK_m0_T_B2M_0_TXDATA_90 : Pass 
  CHECK_m0_LVR_BK2_8 : Pass 

  CHECK_m0_LVL_X4_17 : Pass 

  CHECK_m0_T_B2M_0_TXDATA_91 : Pass 
  CHECK_m0_LVR_BK2_7 : Pass 



  CHECK_m0_LVL_X4_18 : Pass 

  CHECK_m0_T_B2M_0_TXDATA_92 : Pass 
  CHECK_m0_LVR_BO4_29 : Pass 

  CHECK_m0_LVL_X4_19 : Pass 

  CHECK_m0_LVL_FM2_30 : Pass 
  CHECK_m0_T_B2M_0_TXDATA_93 : Pass 

  CHECK_m0_LVR_BO4_28 : Pass 

  CHECK_m0_T_B2M_0_TXDATA_94 : Pass 
  CHECK_m0_LVR_BO4_27 : Pass 

  CHECK_m0_T_B2M_4_TXDATA_120 : Pass 

  CHECK_m0_T_B2M_1_GTZTXRESET_ : Pass 
  CHECK_m0_LVL_HF2_9 : Pass 

FormalVerifier> assert -summary -time 
Assertion Summary: 

  Total                  : 10464 

  Pass                   : 10464 

  Not_Run                :   0 

Verification Mode  : CPU time = 4370.71s Real time = 5038.06s 

 

 

Figure 1: Example App Output 

 

In this case, the app ran through 10464 connections 

between 2 die through an interposer using the 

generated assertions.  

 

 

3.7 Complete Work Flow 

 

The complete work flow is diagrammed in Figure 2 

below: 

 

 
 

Figure 2: Flow chart of app usage 

 

 

 

4.  THE BASELINE PROJECT: 

VERIFYING CONNECTIVITY OF 

A HOMOGENOUS ASSEMBLY 
 

4.1 DUT Description 

The first project we engaged with this new app was 

a homogenous assembly of FPGA die on an 

interposer.  Figure 3 below: 

 

 
 

Figure 3: Side View of a Homogenous Part 

 

The relative simplicity of the overall configuration 

allowed us to develop the broad outlines of the flow 

described above. 

 

 

4.2 Applying the App – and Some  

Initial Surprises 

The initial challenge was IEV to work with switch 

level Verilog netlist extracted from schematic. The 

Verilog netlist contained numerous inout ports and 

IEV did not handle inout ports properly. 

 

With the IEV patched, first few assertions went 

through and found both spec and design bugs. 

However, it became clear that run time to prove 

each assertion was a problem. For example, one of 

the smaller dut with 24,863 assertions, we saw 37s 

to prove an assertion. Although this is order of 

magnitude better than simulation, we needed to find 

a better way. 

  



 

 

4.3 Lesson Learned: “Bundling” Assertions 

Given this “surprise”, it became clear that the 

biggest challenge was to reduce the number of 

assertions. Since the each connection is point to 

point connection even though it travels through 

many layers of hierarchy, each assertions are 

independent. By combining assertions in reasonable 

chunk, we can reduce the total number of assertion 

statements in the app. 

 

By combining multiple assertions, we lose ability to 

immediately identify the failing net. However, we 

can expand the failing bundled assertion in order to 

debug further. 

 

The benefits of this bundling were immediate: as 

per the example cited above, we reduced the 

number of assertions to 91 from 24,864. The prove 

time per assertion increased for this bundled 

assertion by 14% to 42s per assertion. However, the 

overall run time significantly from 24 hours to 1 

hour. 

 

4.4 Tool Improvements 

We saw significant runtime improvement by 

moving to the latest version of IEV from 9.20 to 

10.20. On the smaller part, prove time per assertion 

improved from 42s per assertion to 0.77s per 

assertion, over 50x improvement. On the larger 

part, prove time per assertion improved from 854s 

per assertion to 0.59s per assertion, resulting 

significant reduction in verification time. 

 

 

5.  USING THE APP TO VERIFY 

HETERGENOUS PARTS 
 

5.1 DUT Description 

In contrast to the homogenous assembly, a 

heterogeneous part hosts a mix of FPGA slices and 

IP blocks on the interposer.  Consider this example: 

 

 
 

Figure 4: Side View of a Hetergenous Part 

 

Clearly, the mix of upper level entities immediately 

makes for a more complex connectivity picture in 

general.  As you may imagine, the composition of 

elements can be arbitrary, and be deliberately 

different to support different product lines and 

derivatives.   

 

5.2 Applying the App These More Complex 

Parts 

To our delight, the app and related work flow 

described above proved to be robust enough to 

handle these more complex parts.  Since there are 

many unique connections made, the spec file listed 

these unique connections and it had to be reviewed 

carefully.  

 

 

6.  CONCLUSION 
Compared to earlier simulation based techniques, 

utilizing formal techniques within the familiar 

“app” framework has enabled us to exhaustively 

verify the internal connectivity checking of 

extraordinarily complex 3D IC designs – something 

that proved impossible with our prior simulation-

based flow.  Specifically, in one of our pilot 

projects this app we was able to find 13 bugs in a 

matter of hours, in a design that was thought to be 

correct. 

 

Since then we have taped-out multiple products 

successfully with this flow, and the silicon 

validation results have been perfect.  This app has 

been a valuable contribution to the overall team’s 

throughput, and a major cost and risk reduction for 

all of our products. 
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