
A Reusable, Scalable Formal App for Verifying

Any Configuration of 3D IC Connectivity

Daniel Han
Xilinx

2100 Logic Drive

San Jose, CA 95124

daniel.han@xilinx.com

Walter Sze

Xilinx

2100 Logic Drive

San Jose, CA 95124

walter.sze@xilinx.com

Benjamin Ting
Xilinx

2100 Logic Drive

San Jose, CA 95124

Darrow Chu
Cadence

2655 Seely Ave.

San Jose, CA 95134

darrow@cadence.com

ABSTRACT
In this paper we will show how we developed a

formal verification “app” – i.e. a completely

automated flow that even engineers without formal

knowledge can run – to tackle the unique

requirements of “3D IC” design. Specifically, we

will describe how to maintain the design hierarchy

required by backend physical tools, yet

automatically create “bundled” assertions to rapidly

and exhaustively verify 10’s of thousands of

connections between logic slices – something that

proved impossible with our prior simulation-based

flow. With this app we were able to find 13 bugs in

a matter of hours, in a design that was thought to be

“correct by construction”.

Keywords:
Assertions, SVA, ABV, Formal Verification, Apps,

3D IC

1. INTRODUCTION
“3D IC” design – where multiple die are mounted

on an interposer substrate, and then packaged as a

single unit – enables our company to rapidly

introduce high capacity and high performance

devices with high yield and a minimum of

overhead. However, this design style introduces a

whole new verification challenge vs. conventional

ASICs; namely, the need to verify a massive

number of connections between the different die

and the corresponding signal paths that transit in

and out of the interposer. Initially we applied our

existing, simulation-based flow that we have used

for all our prior parts to these new 3D devices.

However, it was quickly apparent that this flow

would only be effective for a few representative

cases and/or not be able to exhaustively cover all

connections as required given the drastic increase in

the scale of the requisite testbenches and the

subsequent run time. (It would a minimum of a

man-month before simulations would begin to

produce meaningful results.)

Note that we do strive to make the design “correct

by construction”, and automate the IP assembly

process to avoid connectivity errors. However, the

cost of even one conceptually trivial connectivity

bug from a swapped wire – in both re-spin cost and

(much more significantly) impact on our market

positioning -- is unacceptable, so thorough

verification is a must. To give an idea of the

problem scope: even small parts comprised of

identical die can have over 10,000 connections

between the dice and interposer – for heterogeneous

parts that intermix FPGA slices with various IPs

(processors, transceivers, etc.) the number of

connections can be significantly larger.

An added, complicating factor is that the demand of

3D physical design requires anywhere from 4 to 8

layers of design hierarchy. Of course, from a

digital verification point-of-view all this extra

hierarchy is redundant an unnecessary, yet we must

preserve it to ensure the fidelity of our verification

as well as preserve all the hooks needed for the

downstream tool chain.

Finally, we are constantly creating new

configurations and/or parts to be responsive to

market and customer needs. Hence, to prevent

having to reinvent a new flow for each new

product, our connectivity verification flow has to be

mailto:walter.sze@xilinx.com

very flexible, parameterizible, “future proof”, and

as automated as possible.

2. OVERVIEW OF FORMAL
The primary role of verification is to provide a

means to check that a design under test (DUT)

matches its specification. Assertions are a way to

capture design intent, and in affect they become an

executable specification that forms the basis for

evaluation of the DUT’s construction and

behaviors.

While assertions in a simulation flow act as watch

dogs on the lookout for correct behavior, they can

only execute their checks on the limited state space

that is traversed by a given simulation. Even the

most well written, loosely constrained testbenches

can only traverse a fraction of the total number of

states that are mathematically possible.

In contrast, formal analysis tools use assertions as

the basis of a mathematical proof that shows that

for all possible inputs the DUT will behave as

specified by the assertion. If the DUT can be

shown to behave contrary to the assertion, the tool

displays a counter example showing the user

exactly how the circuit can misbehave. Of course,

the exhaustive nature of this approach combined

with the ability to automatically pinpoint the given

error is perfect for our connectivity verification

application (where it bears repeating that even one

misplaced connection would be painfully expensive

to rework later).

Finally, one additional note specific to connectivity

checking is that the assertions required for this

connectivity checking do not need to capture

temporal behavior i.e., behavior spanning multiple

clock cycles, a/k/a link with concurrent assertions.

As we will discuss below, this enabled us to

“bundle” assertions to improve the throughput of

the app without losing fidelity to the DUT netlist.

3. CREATING THE APP

3.1 Requirements

Below are our requirements we defined for this

app:

* The app must perform an exhaustive analysis

* The app must accept a Verilog netlist which is

itself derived from a schematic.

* The app must retain and respect the hierarchical

signal information to arbitrarily depths

* Since few engineers on our team have any

experience with formal or ABV, the operation of

the formal tool had to be completely automated

and/or essentially hidden from the app user

* Creation of the connectivity assertions also had to

be completely automated

* Capturing the connectivity spec. had to be

straightforward, and be human and machine

readable in an open, non-proprietary format

* Running the app should be like executing any

common command line utility

* The app’s output should be easy to interpret --

leading the user directly to the specific

connection(s) that are in error.

* The run time of the whole app and any supporting

scripts shall be at least 100x less than the equivalent

testbench simulations preparation and run time.

3.2 Defining Connectivity

We used the standard connectivity definition

template MS Excel file as a starting point.

Assertion Source path Signal Destination path Signal

check_1 slave_beg.slice LVB_K2[7] master.slice LVB_K10[6]

check_2 slave_beg.slice LVB_K2[8] master.slice LVB_K10[7]

check_3 slave_beg.slice LVB_K2[9] master.slice LVB_K10[8]

check_4 slave_beg.slice LVB_K2[10] master.slice LVB_K10[9]

check_5 slave_beg.slice LVB_K2[11] master.slice LVB_K10[10]

check_6 slave_beg.slice LVB_K2[12] master.slice LVB_K10[11]

check_7 slave_beg.slice LVB_K2[13] master.slice LVB_K10[12]

check_8 slave_beg.slice LVB_K2[14] master.slice LVB_K10[13]

check_9 slave_beg.slice LVB_K2[15] master.slice LVB_K10[14]

The spec file includes the source and the

destination of each connection. It also includes

information regarding repeating patterns of each

connection and how many times it repeats.

3.3 Black Boxing Support

The tool vendor also provides a utility called

“bbgen” that takes as input a Verilog netlist and

strips out any interior logic, only leaving the

pinouts of the given block behind. In our

application, where we are dealing with a relative

handful of logic blocks (compared to an SoC with

100’s of IPs, which might require some human

intervention to manually cleave some entities), we

are able to completely embed the execution of this

utility inside our app so it’s invocation is

transparent to the end user.

3.4 Assertion Creation

As introduced above, formal engines (in this case,

Cadence’s Incisive Formal Verifier) are employed

under-the-hood of the app to analyze the design in a

meaningful and sufficient way. Therefore it’s

essential to create a complete set of assertions

derived from the connectivity spec for the formal

engines to prove.

Our solution was to completely automate the

assertion generation process from the device spec

with a Perl script. In a nutshell, the script reads the

spec file describing souce/destination path and

signal names as well how many times each

connections are repeated. The script generates both

cvs files to be imported as Excel spreadsheet and

assertions files.

Here is an example assertions:

CHECK_LVL_B2_10_to_LVL_B10_9_m0_to_s2: assert property

(dut.m0.slice.LVL_B2[10] == dut.s2.slice.LVL_B10[9]);

CHECK_LVL_B2_11_to_LVL_B10_10_m0_to_s2: assert property

(dut.m0.slice.LVL_B2[11] == dut.s2.slice.LVL_B10[10]);

Here is an example of bundled assertions:
CHECK_LVL_B2_s1_to_m0: assert property ((dut.s1.slice.LVL_B2[10] ==

dut.m0.slice.LVL_B10[9]) &&

(dut.s1.slice.LVL_B2[11]==dut.m0.slice.LVL_B10[10]) &&
(dut.s1.slice.LVL_B2[12]==dut.m0.slice.LVL_B10[11]) &&

(dut.s1.slice.LVL_B2[13]==dut.m0.slice.LVL_B10[12]) &&

(dut.s1.slice.LVL_B2[14]==dut.m0.slice.LVL_B10[13]) &&
(dut.s1.slice.LVL_B2[15]==dut.m0.slice.LVL_B10[14]) &&

(dut.s1.slice.LVL_B2[16]==dut.m0.slice.LVL_B10[15]) &&

(dut.s1.slice.LVL_B2[17]==dut.m0.slice.LVL_B10[16]) &&

(dut.s1.slice.LVL_B2[18]==dut.m0.slice.LVL_B10[17]) &&

(dut.s1.slice.LVL_B2[19]==dut.m0.slice.LVL_B10[18]) &&
(dut.s1.slice.LVL_B2[20]==dut.m0.slice.LVL_B10[19]) &&

(dut.s1.slice.LVL_B2[21]==dut.m0.slice.LVL_B10[20]) &&

(dut.s1.slice.LVL_B2[22]==dut.m0.slice.LVL_B10[21]) &&
(dut.s1.slice.LVL_B2[23]==dut.m0.slice.LVL_B10[22]) &&

(dut.s1.slice.LVL_B2[24]==dut.m0.slice.LVL_B10[23]) &&

(dut.s1.slice.LVL_B2[25]==dut.m0.slice.LVL_B10[24]) &&
(dut.s1.slice.LVL_B2[26]==dut.m0.slice.LVL_B10[25]) &&

(dut.s1.slice.LVL_B2[27]==dut.m0.slice.LVL_B10[26]) &&

(dut.s1.slice.LVL_B2[28]==dut.m0.slice.LVL_B10[27]) &&
(dut.s1.slice.LVL_B2[29]==dut.m0.slice.LVL_B10[28]) &&

(dut.s1.slice.LVL_B2[30]==dut.m0.slice.LVL_B10[29]) &&
(dut.s1.slice.LVL_B2[7]==dut.m0.slice.LVL_B10[6]) &&

(dut.s1.slice.LVL_B2[8]==dut.m0.slice.LVL_B10[7]) &&

(dut.s1.slice.LVL_B2[9]==dut.m0.slice.LVL_B10[8]));

In addition to automating the “front end” of the

process, the script also invokes the formal tool and

does some post processing of the formal analysis

such that the whole flow is completely automated.

This automation allows us to use the “app”

nickname to refer to this flow, and thus our

colleagues – almost all of who have no experience

with formal tools and SVA – aren’t afraid to run it

even though it uses technologies under-the-hood

they don’t normally use.

3.5 App Execution

Once the connectivity description spec is available,

the user can run the app from the Linux command

line. Invoking the app is

% bali_sll_conn.pl \

–top <top> -slice <slice>

–input <connection spec> \

–output <results file> \

-logfile <logfile name>

Upon execution the app reports intermediate results

and any warning or error messages to the console.

When the app is finished running, if any

misconnections were found the user is directed to

the counter example file where the errors are

flagged.

3.6 Results Reporting

Here is an example output:
FormalVerifier> prove
Verification mode:

 CHECK_m0_T_NC_NONMIB_2_ : Pass

 CHECK_m0_T_B2M_0_TXDATA_90 : Pass
 CHECK_m0_LVR_BK2_8 : Pass

 CHECK_m0_LVL_X4_17 : Pass

 CHECK_m0_T_B2M_0_TXDATA_91 : Pass
 CHECK_m0_LVR_BK2_7 : Pass

 CHECK_m0_LVL_X4_18 : Pass

 CHECK_m0_T_B2M_0_TXDATA_92 : Pass
 CHECK_m0_LVR_BO4_29 : Pass

 CHECK_m0_LVL_X4_19 : Pass

 CHECK_m0_LVL_FM2_30 : Pass
 CHECK_m0_T_B2M_0_TXDATA_93 : Pass

 CHECK_m0_LVR_BO4_28 : Pass

 CHECK_m0_T_B2M_0_TXDATA_94 : Pass
 CHECK_m0_LVR_BO4_27 : Pass

 CHECK_m0_T_B2M_4_TXDATA_120 : Pass

 CHECK_m0_T_B2M_1_GTZTXRESET_ : Pass
 CHECK_m0_LVL_HF2_9 : Pass

FormalVerifier> assert -summary -time
Assertion Summary:

 Total : 10464

 Pass : 10464

 Not_Run : 0

Verification Mode : CPU time = 4370.71s Real time = 5038.06s

Figure 1: Example App Output

In this case, the app ran through 10464 connections

between 2 die through an interposer using the

generated assertions.

3.7 Complete Work Flow

The complete work flow is diagrammed in Figure 2

below:

Figure 2: Flow chart of app usage

4. THE BASELINE PROJECT:

VERIFYING CONNECTIVITY OF

A HOMOGENOUS ASSEMBLY

4.1 DUT Description

The first project we engaged with this new app was

a homogenous assembly of FPGA die on an

interposer. Figure 3 below:

Figure 3: Side View of a Homogenous Part

The relative simplicity of the overall configuration

allowed us to develop the broad outlines of the flow

described above.

4.2 Applying the App – and Some

Initial Surprises

The initial challenge was IEV to work with switch

level Verilog netlist extracted from schematic. The

Verilog netlist contained numerous inout ports and

IEV did not handle inout ports properly.

With the IEV patched, first few assertions went

through and found both spec and design bugs.

However, it became clear that run time to prove

each assertion was a problem. For example, one of

the smaller dut with 24,863 assertions, we saw 37s

to prove an assertion. Although this is order of

magnitude better than simulation, we needed to find

a better way.

4.3 Lesson Learned: “Bundling” Assertions

Given this “surprise”, it became clear that the

biggest challenge was to reduce the number of

assertions. Since the each connection is point to

point connection even though it travels through

many layers of hierarchy, each assertions are

independent. By combining assertions in reasonable

chunk, we can reduce the total number of assertion

statements in the app.

By combining multiple assertions, we lose ability to

immediately identify the failing net. However, we

can expand the failing bundled assertion in order to

debug further.

The benefits of this bundling were immediate: as

per the example cited above, we reduced the

number of assertions to 91 from 24,864. The prove

time per assertion increased for this bundled

assertion by 14% to 42s per assertion. However, the

overall run time significantly from 24 hours to 1

hour.

4.4 Tool Improvements

We saw significant runtime improvement by

moving to the latest version of IEV from 9.20 to

10.20. On the smaller part, prove time per assertion

improved from 42s per assertion to 0.77s per

assertion, over 50x improvement. On the larger

part, prove time per assertion improved from 854s

per assertion to 0.59s per assertion, resulting

significant reduction in verification time.

5. USING THE APP TO VERIFY

HETERGENOUS PARTS

5.1 DUT Description

In contrast to the homogenous assembly, a

heterogeneous part hosts a mix of FPGA slices and

IP blocks on the interposer. Consider this example:

Figure 4: Side View of a Hetergenous Part

Clearly, the mix of upper level entities immediately

makes for a more complex connectivity picture in

general. As you may imagine, the composition of

elements can be arbitrary, and be deliberately

different to support different product lines and

derivatives.

5.2 Applying the App These More Complex

Parts

To our delight, the app and related work flow

described above proved to be robust enough to

handle these more complex parts. Since there are

many unique connections made, the spec file listed

these unique connections and it had to be reviewed

carefully.

6. CONCLUSION
Compared to earlier simulation based techniques,

utilizing formal techniques within the familiar

“app” framework has enabled us to exhaustively

verify the internal connectivity checking of

extraordinarily complex 3D IC designs – something

that proved impossible with our prior simulation-

based flow. Specifically, in one of our pilot

projects this app we was able to find 13 bugs in a

matter of hours, in a design that was thought to be

correct.

Since then we have taped-out multiple products

successfully with this flow, and the silicon

validation results have been perfect. This app has

been a valuable contribution to the overall team’s

throughput, and a major cost and risk reduction for

all of our products.

7. ACKNOWLEDGMENTS
Thanks to thanks to Joseph Hupcey III of Cadence

Design Systems, Inc. for his feedback in reviewing

the paper.

8. REFERENCES
[1] Cadence Incisive Enterprise Verifier User

Guide.

[2] Archived Webinar, “Formal Apps to Automate

Mainstream Verification Challenges”,

http://www.cadence.com/cadence/events/Pages/eve

nt.aspx?eventid=680

http://www.cadence.com/cadence/events/Pages/event.aspx?eventid=680
http://www.cadence.com/cadence/events/Pages/event.aspx?eventid=680

