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ABSTRACT 
Functional verification of today’s large and complex designs is a 

major challenge and bottleneck. As a result, various tools, 

techniques, and languages have been developed to automate as 

much as possible to maximize productivity. For example, 

automatic testbench generation of random stimulus offers a 

significant aid in finding obscure and hard-to-find bugs. With 

random testing, however, there is often no obvious relationship 

between a given simulation run and the desired test activity unless 

a functional coverage relationship is defined. 

Once this relationship is defined, the number of times each 

scenario occurs is recorded as functional coverage, providing a 

quantitative metric of what has been tested on a device. In 

SystemVerilog, functional coverage is defined in terms of cover 

properties and functional covergroups. A rich set of language 

constructs is provided for defining functional scenarios and the 

crossing or intersection of those scenarios. SystemVerilog also 

offers a coverage API for accessing coverage results at simulation 

runtime. 

Unfortunately, not all coverage-related language features are ideal 

or even straightforward. For instance, a rather useful feature 

omitted in the IEEE-1800 standard is the ability to query coverage 

results from specific coverage bins. Nonetheless, with a little 

ingenuity these shortcomings can be worked-around, which this 

paper describes. Tips and tricks are presented like how to direct 

stimulus generation using coverage results, or how to coordinate 

cover properties with covergroups to take advantage of the cover 

property’s temporal syntax when matching functional behavior. 

Likewise, several gotchas to avoid are considered. Armed with the 

appropriate toolset, SystemVerilog coverage can provide an 

effective tool for accomplishing coverage driven verification. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – hardware description 

languages, simulation, and verification. 

General Terms 
Languages, Verification. 

Keywords 
Coverage, SystemVerilog, SVA, SystemVerilog Assertions, 

covergroup, coverpoint, cover property, default, bins, wildcard, 

cross. 

1. INTRODUCTION 
Functional coverage comes in two flavors in SystemVerilog.  One 

type of coverage comes from a cover property, which uses the 

same temporal syntax used by SystemVerilog assertions (SVA).  

Since cover properties uses the same properties as asserts, the 

same work creating the properties can be reused in both checking 

and coverage gathering.  Cover properties are typically used for 

protocol coverage since the temporal syntax is ideal for describing 

sequences of events over time as needed for bus interfaces. 

Unfortunately, cover properties can only be placed in structural 

code (i.e., modules, programs, or interfaces) and cannot be used in 

class-based objects.  Likewise, their coverage information is not 

easily accessible in SystemVerilog for use in a testbench (for 

example, for steering stimulus generation). 

For example, Figure 1 shows a sample cover property.  The 

simulator keeps track of how many times the sequence occurs and 

it can be viewed it in the simulation waveform or coverage report. 

 

cover property ( @(posedge clk)

$rose(req) |=> ((req && ack)[*0:$] ##1 !req) );

clk

req

ack

0 1
Tool dependent display

 

Figure 1:  Property coverage using a cover property. 

 

The second type of functional coverage is sample-based coverage 

provided by a covergroup.  Covergroups record the number of 

occurrences of various values specified as coverpoints.  These 

coverpoints can be hierarchically referenced by your testcase or 

testbench so that you can query whether certain values or 

scenarios have occurred.  They also provide a means for creating 

cross coverage.  Unlike cover properties, covergroups may be 

used in both class-based objects or structural code. 



For example, Figure 2 illustrates a covergroup.  When defining 

covergroups, the covergroup is given a name (e.g., cg) and 

optionally provide a sampling event, which in this case is the 

positive edge of clk qualified by the decode signal.  In other 

words, when a valid instruction occurs (decode asserted), the 

values on the opcode and mode signals are sampled. 

 

module InstructionMonitor (

input bit clk, decode,

input logic [2:0] opcode,

input logic [1:0] mode );

covergroup cg 

@(posedge clk iff decode);

coverpoint opcode;

coverpoint mode;

endgroup

cg cg_Inst = new;

...

endmodule: InstructionMonitor
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Figure 2: Sample based coverage using a covergroup. 

 

Since opcode has 23 = 8 possible values, 8 bins are created to 

keep track of the number of times each value occurs.  For the 

mode input, there are 22 = 4 possible values so 4 bins will be 

created. 

Defining the covergroup alone does not start the coverage 

collection.  A covergroup needs to be instantiated using the new 

operator and given an instance name.  Inside a class, an instance 

name is not required and the new operator is called on the 

covergroup inside the class constructor. 

Where coverage becomes really interesting is when the individual 

coverpoints or bins are crossed together.  Crossing terms simply 

creates a matrix that shows when the different values cross or 

simultaneously occur together. 

For example, in Figure 3 all opcodes values are being crossed 

with all possible values of mode.  In other words, the matrix 

shows all the simultaneous occurrences of the different opcodes in 

all 4 modes.  The zeros in the matrix reveal coverage holes; i.e., 

values that have either not been testing, generated, or possibly 

values that are invalid or undefined.  In any verification effort, 

coverage holes must be identified and either filled by writing 

more stimulus, or justifiably ignored in cases such as when the 

scenarios are unreachable by design. 

covergroup cg ...

coverpoint opcode;

coverpoint mode;

cross opcode, mode;

endgroup
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Figure 3:  Cross-coverage example. 

2. COVERAGE TIPS 
SystemVerilog offers a wide range of options and syntax for 

defining coverage in any environment.  For a full and detailed 

description of what is supported, refer to the IEEE 1800 language 

reference manual ([2],[3]). 

Writing coverage in SystemVerilog is easy to do; however, there 

are a few tips that might help make your coverage even easier and 

more productive.  Here are few worth considering. 

2.1 Tip #1: Use of shorthand notation 
SystemVerilog defines many concise ways of defining coverage.  

Figure 4 shows an example of a state machine and several 

shorthand notations available.  Transitional coverage can be 

defined using the => operator, which keeps a record of the 

transitions from one state to the next. 

Idle Go1

Go2

Standby

Reset

 

enum { Idle, Standby, Go1, Go2 } states; 

covergroup cg_FSM @(posedge Clock); 

  coverpoint State { 

    bins valid_states[] =  

                  { Idle, Standby, Go1, Go2 }; 

    bins valid_trans =  

                ( Idle => Go1 => Go2 => Idle ),  

                ( Idle => Standby => Idle ); 

    bins reset_trans =  

                ( Go1, Go2, Standby => Idle ); 

    bins idle_range = ( Idle[*5:7] => Go1 ); 

    bins go1_repeat = ( Go1 [-> 5] ); 

    wildcard bins idle_trans =( 2’bx1 => Idle ); 

  } 

endgroup  

Figure 4:  FSM transition coverage. 

 



Notice the syntax for the reset_trans bin:  ( Go1, Go2, 

Standby => Idle).  This is really saying, record all of the 

transitions to the reset state or:  

Go1 => Idle, Go2 => Idle, Standby => Idle 

Explicitly writing all the transitions is not required.  Likewise, the 

idle_range bin uses the sequence repeat operator [* range ], 

which translates into one of the following sequences: 

( Idle => Idle => Idle => Idle => Idle ) 

( Idle => Idle => Idle => Idle => Idle => Idle ) 

( Idle => Idle => Idle => Idle => Idle => Idle 

=> Idle ) 

SystemVerilog also defines a non-consecutive operator, [->N:M], 

used in coverage bin go1_repeat.  Here, coverage will be 

collected everytime there are 5 non-consecutive occurrences of 

the Go1 state. 

Not only can ranges be defined in covergroups, including using 

the open range operator $, which specifies either the minimum or 

maximum value for a coverpoint, but the wildcard bins 

operator helps to easily define a range of values.  With 

wildcard, any X, Z, or ? will be treated as a wildcard.  In the 

idle_trans bin example above, the expression 

( 2’bx1 => Idle ) 

translates into 

Standby => Idle  // Standby = 2’b01 

Go2 => Idle   // Go2 = 2’b11 

Using these shorthand notations makes coverage much easier to 

write. 

2.2 Tip #2:  Covergroup arguments add 

flexibility 
Covergroups can be defined with arguments using the same 

syntax as functions and tasks.  Doing so makes a covergroup more 

flexible and reusable.  For example, 

covergroup cg (ref int v, input string comment); 

  coverpoint v; 

   

  option.per_instance = 1; 

  option.weight = 5; 

  option.goal = 90; 

  option.comment = comment; 

endgroup 

 

int a, b; 

 

cg cg_inst1 = new(a, "cg_inst1 - variable a"); 

cg cg_inst2 = new(b, "cg_inst2 - variable b"); 

Here, two arguments have been added to the covergroup cg.  An 

argument v is added so a signal or variable to cover can be passed 

into the covergroup and used with the coverpoint.  Notice, the 

argument is passed by reference using the ref keyword so the 

covergroup can see the variable’s value as it changes.  Likewise, 

other arguments like strings can be passed to be used in the 

covergroup’s options. 

Once a covergroup has arguments, multiple instances can be 

created where the variable to cover is pass into the covergroup 

during the call to new, creating specific covergroups for each 

variable.  This allows reuse of the same covergroup definition. 

Arguments on covergroups also facilitate reuse in another way.  

Many times, coverage needs collected on values outside the 

module where the covergroup is define such as probing down 

inside the design hierarchy from a testbench.  SystemVerilog 

allows for coverpoints to use hierarchical path names with 

coverpoints as follows: 

covergroup cg; 

  coverpoint testbench.covunit.a; 

  coverpoint $root.test.count; 

 

  // ILLEGAL - reference to coverpoint 

  // coverpoint testbench.covunit.cg_inst.cp_a; 

endgroup 

However, hard-coding pathnames inside of anything makes it less 

reusable.  Instead, covergroup arguments can be used to provide a 

way to pass references without hard-coding the references into the 

covergroup.  For example, the following shows how to make a 

generic covergroup and then pass the specific pathnames into it 

(provided the reference points to an equivalent type as the 

covergroup argument): 

covergroup cg (ref logic [7:0] a, ref int b); 

  coverpoint a; 

  coverpoint b; 

endgroup 

cg cg_inst = new(testbench.covunit.a, 

                 $root.test.count); 

2.3 Tip #3:  Utilize coverage options 
Covergroups have many options that can be customized.  For 

every covergroup, there are type options and per instance options, 

represented by a corresponding internal structure. 

Type options apply to the entire covergroup type and can only be 

set when the covergroup is declared or by using the scope 

resolution operator (::).   They are specified using the 

type_option covergroup member.  There are 4 type options 

available: 

Table 1:  Covergroup type options. 

Type Option Description 

weight Weight of coverage in the coverage 

calculation 

goal Percentage of coverage to reach 

strobe Samples the coverage values once everything 

is stable (i.e., postponed simulation region) 

comment String comment 

 

The weight and goal options are probably the most noteworthy.  

To remove a covergroup from the coverage calculation, simply set 

the covergroup’s weight to 0 and it will no longer effect the result.  

The goal is important because it determines whether the coverage 

report shows a complete coverage (green) or still missing values 



(amber or red).  The following example shows how to use type 

options. 

covergroup cg @(posedge clk); 

  type_option.weight = 5; // % of calculation 

  type_option.goal = 90;  // % of goal 

  type_option.strobe = 1; // Postponed region 

  cp_a: coverpoint a { 

 type_option.comment = comment; 

  }; 

  coverpoint b; 

endgroup 

// Requires constant expressions 

cg::type_option.goal = 100; 

cg::cp_a::type_option.weight = 80; 

 

One of the nice things about coverage in general is that it is 

cumulative.  For example, if a covergroup is created in a class 

object, every instance of that covergroup adds to the overall 

cumulative coverage even if the class objects later becomes 

garage collected along with the covergroup.   

However, often per instance coverage is required as well.  Take 

for example, a system-on-chip.  Many sub-systems will connect to 

the system interconnect along with the memory and the processor.  

Each device connects to the system interconnect using the same 

module that implements the bus protocol, and this module can 

contain a covergroup for the bus protocol.  While cumulative 

coverage is collected across all the occurrences of the covergroup, 

the coverage result will not reflect which interconnects are 

performing the communication nor the type of communication 

(e.g., burst reads, simple writes, etc.).  For coverage results per 

instance, the per instance option can be used. Per instance 

coverage keeps track of coverage for each interface instance so it 

can be seen if all the bus interfaces have been adequately 

exercised and tested. 

To enable per instance coverage, the per_instance option is 

used with the option structure inside a covergroup.  The 

following illustrates several of the per instance options available: 

covergroup cg @(posedge clk); 

  option.per_instance = 1; // Turns on options 

  option.weight = 5;  // % of calculation 

  option.goal = 90;  // % of at_least  

  option.at_least = 10; // Number to see 

  option.comment = comment; 

 

  coverpoint a { option.auto_bin_max = 128; }; 

  coverpoint b { option.weight = 50; }; 

endgroup 

There are 9 different options, but of particular importance is the 

at_least option.  The at_least option specifies the number 

of times a value must occur in order to reach the coverage goal.  

For example, say an engineer would like to see at least 10 

occurrences of a coverpoint value.  If only 8 occurrences are seen, 

then the coverage for that coverpoint will only be 80%.  Of 

course, the goal of any verification effort is to reach 100% 

coverage so setting the goal, weight, and at_least options 

are important in achieving any verification goal. 

3. COVERAGE TRICKS 
Defining coverage is typically straightforward in SystemVerilog, 

but there are some limitations and shortcomings in the language.  

However, that does not mean that these shortcomings cannot be 

worked around.  In this section, several tricks will be presented to 

hopefully help you get the most out of SystemVerilog coverage 

and workaround some of its irksome limitations. 

3.1 Trick #1:  Combine cover properties with 

covergroups 
Cover properties and covergroups essentially have different uses.  

A cover property looks for a match of a temporal sequence or 

event while a covergroup creates bins of the different values as 

they occur.  However, sometimes it is very useful to use the 

powerful SVA temporal property syntax to observe behavior and 

cross that coverage with other values or events that occur.  For 

example, a cover property can easily describe a read or write 

transaction across a bus interface, and it would be useful to cross 

all read and write transactions to different address spaces. 

Likewise, in a class-based testbench environment where 

transactions are randomly generated, it might be useful to 

feedback the cover property coverage to help steer the stimulus 

generation, or at least use the cover property temporal syntax in a 

monitor to match when read and write transactions occur across 

an interface so they can be sent off to a scoreboard instead of 

implementing a bus protocol state machine in the monitor. 

Unfortunately, cover properties cannot be used in an object 

because they create a thread of execution and an object is nothing 

more than a chunk memory.  Even so, cover properties can be 

combined with covergroups to enable them to record protocol 

coverage, eliminate the need for state machines in monitors, and 

cross the protocol coverage with other interesting coverpoints. 

For example, consider a class-based testbench environment with a 

coverage collector as shown in Figure 5: 

 

class testbench

class monitor

class collector

Coverage registers

module 
cpu

module 
sram

module 
rom

interface bus_if

Covergroups

Cover Properties

 

Figure 5:  Class-based testbench with coverage collector. 

A cover property that monitors for APB read and write 

transactions across the system interface might look like this: 

interface apb_if; 

   ... 

   sequence apb_trans; 

     t_apb_a addr; 



     t_apb_d data; 

 

     @(posedge PCLK) 

      ( 

       (( PSEL && PWRITE ), addr = PADDR,  

                            data = PWDATA ) 

         ##1 

       ( PENABLE, cover_write( addr, data ))  

      ) or 

      ( 

       (( PSEL && !PWRITE ), addr = PADDR ) 

         ##1 

       ( PENABLE, data = PRDATA,  

                  cover_read ( addr, data ))        

      ); 

   endsequence: apb_trans 

   cover property ( apb_trans ); 

endinterface 

This sequence implements the APB protocol, captures the address 

and data, and passes the information into the corresponding 

cover_write() or cover_read() tasks.  These tasks also 

live within the interface, and could be implemented as follows: 

typedef struct packed  { 

  t_dir  dir; 

  t_apb_a addr; 

  t_apb_d data; 

} apb_s; 

 

apb_s  t; 

bit  cov_trig = 0; 

... 

 

task cover_write( t_apb_a  addr, t_apb_d  data); 

   t = { WRITE, addr, data }; 

   cov_trig = ~cov_trig; 

 endfunction 

 

task cover_read( t_apb_a  addr, t_apb_d  data); 

   t = { READ, addr, data }; 

   cov_trig = ~cov_trig; 

 endfunction 

Here, the cov_trig variable will be used to signal the class-

based monitor when there is a new transaction to grab through its 

virtual interface.  A named event could also be used, but not all 

simulators provide good support for an event through a virtual 

interface. 

In the monitor, there is no need for an APB state machine since 

the protocol is being monitored by the cover property.  Instead, 

the monitor simply waits for the coverage trigger to toggle like 

this: 

class monitor ...; 

  task run (); 

    forever begin      

      apb_trans  tr; 

      @( bus_if.cov_trig ) 

      tr = new( bus_if.t.dir,  

                bus_if.t.addr,  

                bus_if.t.data ); 

      cov_collector.write( tr ); 

    end 

  endtask: run 

  ... 

endclass 

Using this approach allows you to have the best of both worlds.  

The temporal syntax can be used to create the FSM to watch the 

bus protocol and simplify the monitor development, and then 

covergroups can be used in the class-based environment to record 

the information.  Once the information is in the covergroup, cross 

coverage can be created, or the coverage information used for test 

stimulus feedback. 

3.2 Trick #2:  Create coverpoints to query 

bin coverage 
Built-in to all covergroups, coverpoints, and crosses is a function 

called get_coverage(), which returns a real number of the 

current percentage of coverage.  For example,  

initial 

   repeat (100) @(posedge clk) begin 

      cg_inst.sample(); // Sample coverage 

 

      if ( cg_inst.get_coverage() > 90.0 )  

         cg_inst.stop(); 

   end 

In this example, the sample() method is being used to manually 

sample the coverage values.  The coverage percentage is then 

used to determine if the goal of 90.0% has been met and if so then 

turn off the coverage collecting. 

Not only is get_coverage() useful for controlling coverage 

collection, but it can also be used to steer random stimulus.  

However, it is important to understand how the coverage is 

computed.  A coverage bin is considered covered if it has reached 

its goal of 100%, and a coverpoint is considered covered if all its 

bins have reached 100%; otherwise, it is considered uncovered or 

0%.  In other words, say for example that a bin has been hit 4 out 

of 5 times, and the coverage goal is set to 5 occurrences.  A 

simulator report will show that the bin is covered 4/5=80%.  

Unfortunately, querying the coverage on the coverpoint would 

result in 0% covered, not 80%, because the bin has not reached its 

coverage goal.  If a coverpoint has 2 bins and one of them has 

reached its goal, then the coverpoint will be considered 50% 

covered, 3 bins with one bin covered—33%, and so on.  So there 

is no way to query the true bin coverage, but at least whether a bin 

has reached its coverage goal or not can be determined.   

The get_coverage() function works on covergroups, 

coverpoints, and crosses, but not on individual coverage bins.  For 

example, given the following covergroup, 

covergroup cg; 

  coverpoint i { 

    bins zero     = { 0 }; 

    bins tiny     = { [1:100] }; 

    bins hunds[3] =  

            { 200,300,400,500,600,700,800,900 }; 

  } 

endgroup 

the querying of coverage on the zero bin would be illegal: 

// ILLEGAL – not allowed! 

// cov = cg_inst.i.zero.get_coverage(); 

In other words, SystemVerilog does not provide fine-grain details 

to the actual values covered in a coverpoint.  Fortunately, there is 

a partial workaround.  Each value of interest can be turned into a 

unique coverpoint so that the get_coverage() function can be 



called on each value.  This syntax is somewhat cumbersome and 

tedious, but it accomplishes the goal. For example, defining 

coverage on individual opcodes for a processor design might look 

something like this: 

covergroup instr_cg; 

  op_nop : coverpoint instr_word[15:12] {  

   bins op = { nop_op };  

           } 

 

  op_load : coverpoint instr_word[15:12] { 

   bins op = { load_op }; 

           } 

  op_store : coverpoint instr_word[15:12] { 

   bins op = { store_op }; 

           } 

  op_move : coverpoint instr_word[15:12] { 

   bins op = { move_op }; 

           } 

  ... 

endgroup 

Now with the individual coverpoints defined for each value, the 

coverage can be queried without any problems: 

cov = cg_inst.op_nop.get_coverage(); 

Again, remember that the only coverage returned from these 

coverpoints is either 0% or 100%—i.e., either the goal has been 

reached or not. Per instance coverage could also be specified with 

the at_least option set for each opcode value. 

3.3 Trick #3:  Direct stimulus with coverage 
Often times, engineers want to feedback coverage information 

directly into their constrained random stimulus generation.  For 

example, this coverage could be used in a randcase to steer the 

direction of the random stimulus like this: 

// Bias randomness to hit uncovered coverpoints 

randcase 

  (101 - cg_inst.a.get_coverage): ...; 

  (101 - cg_inst.b.get_coverage): ...; 

  (101 - cg_inst.c.get_coverage): ...; 

  ... 

endcase 

Here, the current percentage of coverage is being used to 

determine the weighting in the randcase statement.  If the 

coverpoint has reached its goal, then 100% will be returned so the 

percentage is subtracted from 101 to bias the randcase to 

choose the cases that have not been seen (without excluding it 

altogether, which would happen if subtracted from 100). 

Another way to steer stimulus is using the SystemVerilog 

distribution weighting called dist.  With the dist constraint, 

you can specify the probability that a particular value will occur.  

The dist weighting can be defined as an expression; however, 

not all simulators support expressions in a distribution.  

Alternatively, variables can be used for each value’s weight.  For 

example, 

int  weight_nop  = 1, 

  weight_load  = 1, 

  weight_store  = 1, 

  weight_add  = 1, 

  ...; 

 

constraint bias_opcodes { 

 opcode dist {  

  nop_op  := weight_nop, 

  load_op  := weight_load, 

  store_op := weight_store, 

  add_op  := weight_add, 

  ...  

 }; 

} 

In this example, all the values have an equal weighting of 1 at 

simulation startup.  As simulation progresses, these weights must 

be updated to affect the randomization of the opcode stimulus.  

Before randomize() is called, a method called 

pre_randomized() is invoked, which is an ideal place to 

update these weights that will be used in the dist constraint 

when randomize() is called.  For example, 

function real calc_weight( opcode_t op ); 

   real cov; 

   case ( op ) // Grab coverage 

      nop_op:  

         cov = covunit.cg.op_nop.get_coverage; 

      load_op:  

         cov = covunit.cg.op_load.get_coverage; 

      store_op:  

         cov = covunit.cg.op_store.get_coverage; 

      ... 

   endcase 

       

   calc_weight = (100 – cov) * 0.5; 

 

endfunction : calc_weight 

 

function void pre_randomize(); 

      // Set dist weighting 

      weight_nop  += calc_weight(nop_op); 

      weight_load += calc_weight(load_op); 

      weight_store += calc_weight(store_op); 

      weight_add += calc_weight(add_op); 

      ... 

endfunction 

The calc_weight() function is called for each opcode and the 

coverage updated by grabbing the current coverage and 

subtracting it from 100.  Recall from section 3.2, the value that 

get_coverage() will return will only be 100% or 0%—i.e., 

covered or not covered.  Therefore, if the opcode is not covered, 

then 100*0.5 = 5 will be added; otherwise, nothing will be added 

to the weighting (i.e., 0 * 0.5).  Using this formula, opcodes that 

have been seen a lot will not increase their weighting; whereas, 

unseen opcodes will have a very high probability of being selected 

next. 

One word of caution—the point of randomization is to find hard-

to-find corner cases due to all the randomization.  When 

constraining randomization like this, the stimulus is no longer 

truly random, which means that while it will quickly fill coverage 

matrixes, it may not do a very good job uncovering those hard-to-

find bugs. 

3.4 Trick #4: Covering cover properties 
When a cover property matches a behavior, the simulator keeps 

track of the number of times that that behavior is attempted or 

matched.  Unlike covergroups, which can be queried for coverage, 

there is no direct way to access this coverage information from 



within SystemVerilog; instead, it is included in a simulator’s 

coverage report.  Likewise, there are no language constructs that 

allow weighting of the cover property in a coverage report.  While 

there are no direct ways in SystemVerilog to access this coverage 

information, there are still a few indirect ways to acquire it. 

3.4.1 Solution 1:  SystemVerilog only approach 
The easiest way to figure out the number of matches from a cover 

property is to simply keep track using a counter.  Cover properties 

allow for a statement to execute when the property is matched 

where a coverage counter can be incremented.  For example, 

coverage could be store in an associative array as follows: 

int coverage[string]; // Coverage array 

 

c1: cover property ( a |=> b ) coverage["c1"]++; 

c2: cover property ( c |=> d ) coverage["c2"]++; 

This coverage records the number of successful attempts of the 

property; however, coverage can also be kept for the number of 

matches of either the precondition or the condition by using a 

function: 

function void cov( string s ); 

  coverage[s]++; 

endfunction 

c1: cover property (a |=> ( b, cov("c1") ); 

c2: cover property (( c, cov("c2") ) |=> d ); 

When c1 successfully matches the condition of b true, or c2 

matches the precondition of c true, then the coverage array is 

incremented by the function call to cov().  This coverage is then 

readily available within the testbench environment through the 

coverage associative array. 

Of course, creating a counter does not add the cover property to 

the overall coverage calculation.  For that, the associative array 

can be changed into a true-false array using a bit data type, and a 

covergroup.  Since the elements will be set by different properties 

at different deltas, the covergroup has its 

type_option.strobe set so that coverage is only collected 

at the end of the time slot.  After coverage is sampled, then the 

coverage array needs to be cleared in preparation for the next 

clock cycle, which can be accomplished on the opposite edge of 

the clock using a default assignment pattern: 

bit coverage[string]; 

c1: cover property ( a |=> b ) coverage["c1"]=1; 

c2: cover property ( c |=> d ) coverage["c2"]=1; 

 

covergroup cg @(posedge clk); 

  type_option.strobe = 1; // Sample end of cycle 

 

  coverpoint coverage["c1"] { 

     bins match = { 1 }; 

  } 

  coverpoint coverage["c2"] { 

     bins match = { 1 }; 

  } 

endgroup 

cg cg1 = new; 

// Clear the coverage after it is sampled 

always @(negedge clk) 

  coverage = ‘{default:0}; 

In addition, this coverage can be weighted and crossed: 

covergroup cg @(posedge clk); 

  type_option.strobe = 1; 

  option.per_instance = 1; 

 

  cp_c1: coverpoint coverage["c1"] { 

  bins match = { 1 }; 

  option.weight = 1; 

  } 

  cp_c2: coverpoint coverage["c2"] { 

  bins match = { 1 }; 

  option.weight = 0.5; 

  } 

 

  cross cp_c1, cp_c2; 

endgroup 

This covergroup creates a cross matrix for every time that 

property c1 occurs at the same time as c2, and it only records the 

matches.  Removing the bins in the coverpoints would also record 

all the non-matches, creating a 2x2 coverage matrix. 

3.4.2 Solution 2:  DPI and VPI coverage extensions 
The previous solution required keeping track of matches manually 

in a variable.  However, the simulator already does this and the 

information is accessible through the VPI assertion extensions.  

The VPI function, vpi_get(), has been extended so that the 

number of times a property is attempted, succeeds, or fails can be 

obtained. 

Unfortunately, most simulators do not support these assertion 

extensions; however, if you are fortunate enough to use such a 

simulator,1 then the coverage can easily be obtained by calling the 

vpi_get() function from a DPI function call (DPI is easier 

because it does not require registering the user-defined functions).  

For example, a simple C function called coverage() can be 

defined that queries and returns a cover property’s 

coverage: 

#include <vpi_user.h> 

#include <sv_vpi_user.h> 

#include <svdpi.h> 

// DPI function 

int coverage ( const char *pathname ) { 

  vpiHandle  a_handle; 

  s_vpi_error_info  error; 

  PLI_INT32  obj; 

  PLI_INT32  count; 

 

  // Get a handle to the property 

  if ( a_handle = vpi_handle_by_name(  

                      (PLI_BYTE8 *) pathname,  

                       NULL )) { 

 

    // Check that the handle is a property 

    if ((obj = vpi_get( vpiType, a_handle )) && 

       ((obj == vpiCover)||(obj == vpiAssert))){  

 

       // Retrieve the coverage 

  count = vpi_get( vpiAssertSuccessCovered, 

                        a_handle ); 

 

       if ( vpi_chk_error(&error) > 0 ) 

            vpi_printf( "%s\n", error.message); 

       else 

                                                                 
1 The following solution works with Cadence Incisive simulator 

9.2-p27. 



            return count;  // Return coverage 

    } else 

  vpi_printf( "%s is not a property!\n",  

                    pathname); 

  } else 

 vpi_printf( "ERROR! Cannot find %s\n",  

                   pathname ); 

  return -1; 

} 

On the SystemVerilog side, the function can be imported through 

the DPI as: 

import "DPI-C" context function int coverage( 

input string pathname ); 

and then called inside the testbench code as: 

c1: cover property ( @(posedge clk) a |=> b ); 

final 

   $display( "c1 matched = %d times",  

              coverage( "tb.c1" )); 

where tb.c1 is the hierarchical pathname to the c1 cover 

property.  (Notice, the context keyword is required here since 

the DPI function is accessing VPI).  

3.4.3 Solution 3:  DPI and VPI assertion callbacks 
While many simulators have not implemented the VPI assertion 

extensions, most have at least implemented the assertion 

callbacks.  A callback can be created for several reasons such as 

an assertion starting, succeeding, or failing, and these callbacks 

can be used for asserts or cover properties. 

In the first solution above (3.4.1), a function had to be added to 

every property in order to record the match in a coverage array.  

Using callbacks and DPI, all the properties in a design can 

automatically be detected and monitored, and every match 

recorded and stored in the DPI code.  For example, the following 

structure could be used in C to store the information (a C++ hash 

would also work nicely): 

typedef struct { 

  PLI_BYTE8 *pathname; 

  int  count; 

} cover_t; 

and then used to create an array of structures for all the properties: 

static cover_t *cover_info[MAX_PROPERTIES]; 

In order to enable the cover property callbacks, the 

following function could be used traverse through the design and 

enable the callbacks on all cover properties found: 

void enable_property_coverage () { 

   vpiHandle  iter; 

   vpiHandle  c_handle; 

   s_vpi_error_info err; 

   PLI_BYTE8  *fullname; 

 

   if ((iter = vpi_iterate(vpiAssertion, 0)) !=  

                                          NULL){ 

 

      while ((c_handle=vpi_scan(iter)) != NULL){ 

 

#ifndef VCS 

        // Enable callbacks only on cover props 

        if (vpi_get(vpiType, c_handle) ==  

                                     vpiCover) { 

#endif 

 

         // Allocate the memory for the coverage 

         cover_info[coverid] = (cover_t *)  

                        malloc(sizeof(cover_t)); 

 

         // Store information in coverage array 

         // First, grab the name. Do a string 

         // copy to make it portable across 

         // simulators. 

         fullname = vpi_get_str( vpiFullName,  

                                 c_handle ); 

         cover_info[coverid]->pathname =  

                     malloc(strlen(fullname)+1); 

         strcpy(cover_info[coverid]->pathname, 

                fullname); 

 

         // Initialize the coverage count 

         cover_info[coverid]->count = 0; 

 

         // Register the callback 

         if ( vpi_register_assertion_cb (  

                c_handle, cbAssertionSuccess, 

                foundmatch, (PLI_BYTE8 *)  

                cover_info[coverid++]) == NULL){ 

 

            if ( vpi_chk_error( &err ) > 0 ) 

               vpi_printf( "%s\n",err.message ); 

            else 

         vpi_printf( "ERROR! Cannot register 

callback for cover property %s\n", vpi_get_str( 

vpiFullName, c_handle) ); 

 

       } else 

            vpi_printf("VPI: Adding coverage 

callback for cover property %s\n", vpi_get_str( 

vpiFullName, c_handle )); 

 

#ifndef VCS 

     } 

#endif 

        } 

    } 

} 

The vpi_register_assertion_cb() function is called to 

register a cbAssertionSuccess callback; i.e., every time the 

cover property succeeds, the specified function, 

foundmatch(), is invoked.  The foundmatch() function 

can simply increment the coverage count: 

static PLI_INT32 foundmatch(  

    PLI_INT32 reason, p_vpi_time ct,  

    vpiHandle assert, p_vpi_attempt_info info,     

    PLI_BYTE8* user_data ) { 

 

    cover_t *cover = (cover_t *) user_data; 

 

    // Increment the coverage counter 

    cover->count++; 

 

    return 0; 

} 

Lastly, a function is needed to provide access to this coverage 

information so a function named coverage() is used: 

int coverage ( const char *pathname ) { 

   vpiHandle  cover_handle; 

   s_vpi_error_info  err; 

   cover_t  *cover; 



   int  i; 

 

   // Get a handle to the cover property 

   if ( cover_handle = vpi_handle_by_name(  

                (PLI_BYTE8 *) pathname, NULL )){ 

 

      if ( vpi_chk_error( &err ) > 0 ) { 

          vpi_printf( "%s\n", err.message ); 

          return -1; 

      } 

   } 

 

   // Find the coverage in the array 

   for ( i = 0; i < MAX_PROPERTIES; i++ ) { 

      if ( strcmp( cover_info[i]->pathname, 

                   pathname) == 0 ) 

 

         // Return the coverage 

         return cover_info[i]->count; 

   } 

 

   vpi_printf( "ERROR! Could not find coverage 

for %s\n", pathname ); 

   return -1; 

} 

In SystemVerilog, the DPI functions is imported, remembering to 

specify the context keyword since VPI is being used: 

import "DPI-C" context function void 

enable_property_coverage(); 

import "DPI-C" context function int coverage( 

input string pathname ); 

To turn on the cover property coverage, call the 

enable_property_coverage() function at time zero in an 

initial block: 

initial 

   enable_property_coverage(); 

and then the coverage is collected and stored, and queried in a 

testbench by calling the coverage() function: 

final 

   $display("c1 matched = %d times",  

             coverage( "tb.c1" )); 

where tb.c1 is the pathname to the cover property labeled 

c1.  Also note, this method can be used to keep track of assertion 

coverage as well to see how well test cases are stimulating the 

assertion checks. 

Callbacks provide the ability to keep track of the coverage 

information in any way desired.  To add this coverage into the 

overall coverage calculation, an exported SystemVerilog function 

could be called from the callback routine that samples the values 

into a covergroup similar to the solution provided in section 3.4.1. 

4. COVERAGE GOTCHAS 
While SystemVerilog coverage has a few things to be desired 

(hence, the coverage tricks in the previous section), there are a 

few features to avoid or at least use with caution. 

4.1 Gotcha #1:  Avoid illegal_bins 
The illegal_bins keyword can be used to remove unused or 

illegal values from the overall coverage calculation.  For example, 

logic [2:0] opcode; 

 

covergroup cg @(posedge clk iff decode); 

  coverpoint opcode { 

    bins move_op[] = { 3'b000, 3'b001 }; 

    bins alu_op = {[3'b010:3'b011],  

                   [3'b101:3'b110]}; 

    bins jump_op = {3'b111}; 

    illegal_bins unused_op = {3'b100}; 

  } 

The illegal_bins directive also throws errors, which begs the 

question, “Should a passive covergroup actively throw error 

messages?” and “If the covergroup is relied on for checking, what 

happens when coverage is turned off?” 

A better option is to use the ignore_bins keyword.  

ignore_bins will remove the values from the coverage 

calculation without throwing the error. If a check is really needed 

for an illegal value, then write an assertion! 

4.2 Gotcha #2: Avoid using default 
The keyword default is used as a catch-all for all other 

possible values that have not already been thrown into a bin.  In 

the following example, the others[] = default will create 

a bin for every value not yet specified: 

bit [15:0] i; 

covergroup cg_Short @(posedge Clock); 

  coverpoint i { 

    bins zero     = { 0 }; 

    bins tiny     = { [1:100] }; 

    bins hunds[3] = { 200, 300, 400, 500, 600,  

                      700, 800, 900 }; 

    bins huge     = { [1000:$] }; 

    ignore_bins ignore = { [501:599] }; 

 

    bins others[] = default; 

  } 

endgroup  

At first glance, default would appear quite useful.  However, 

there are two possible issues.  First, what if the coverpoint has a 

very large number of values?  Some simulators croak on the 

above example: 

# ** Fatal: The number of singleton values 

exceeded the system limit of 2147483647 for 

unconstrained array bin 'other' in Coverpoint 

'a' of Covergroup instance '\/covunit/cg_i'. 

The solution to this is to not use the open range with default.  

Instead, use the following: 

bins others = default; 

which buckets all other values into one bin called “others”. 

Secondly, default pulls values out of the coverage calculation.  

For example, suppose you wanted a shorthand way of taking all 

possible values and dividing them into several bins.  Then you 

wanted to cross those values with another coverpoint.  The 

obvious way to do this would be to use the default statement:  

covergroup cg @(posedge clk); 

  cp_a : coverpoint a { 

    bins a[4] = default; 

  } 



  cx_ab : cross cp_a, b; 

endgroup  

However, the problem with this example is that the coverpoint 

cp_a will have no coverage collected for it because it is using the 

default keyword.  If the coverpoint has no coverage, then 

neither will the cross (see Figure 6). 

 

covergroup cg @(posedge clk);

cp_a : coverpoint a {

bins a[4] = default;

}

cx_ab : cross cp_a, b;

endgroup

No coverage!

Therefore, no cross coverage!
 

Figure 6:  default removes bins from coverage calculation. 

 

Again, instead of using default, use $ or wildcard bins.  

The $ specifies the minimum or maximum possible values and the 

wildcard allows the use of wildcard patterns: 

bins huge          = { [1000:$] }; // Max values 

wildcard bins a[4] = { 'b?0 };    // Even values 

4.3 Gotcha #3: Sequence coverage versus 

property coverage 
With the rich temporal syntax of SVA, having the ability to use it 

to describe and cover behavior is a very useful feature.  However, 

coverage of a property is treated slighty differently than coverage 

on a sequence.  Coverage of properties is defined to include ([1], 

17.13.3): 

• Number of times attempted 

• Number of times succeeded 

• Number of times failed 

• Number of times succeeded due to vacuity  

 

where a vacuous success refers to a property that uses an 

implication and the implication precondition is not satisfied.  

Coverage of a sequence is defined as only covering: 

• Number of times attempted 

• Number of times matched 

 

Often, when a property is written for an assertion, it will also be 

covered.  For example, suppose a property is written to describe 

the correct read or write behavior, and then the same property is 

covered using cover property to record how many times the 

reads or writes occur.  The intention in doing so is usually to 

record how many times the behavior is matched, but assertions 

typically use properties2, which record the number of successes, 

including all the times when the precondition is not matched (i.e., 

vacuous successes).  The result is that the coverage does not 

accurately reflect what is really happening because it records 

vacuous coverage.  The same thing happens when a cover 

property is used inside of a procedure: 

always @( posedge clk ) 

   if ( a & b ) 

      cp1: cover property ( c ); 

Here, not only does the sampling event get inferred from the 

always block’s sensitivity list, but there is an implicit implication 

because of the context.  The equivalent cover property is: 

cover property ( @(posedge clk) a & b |-> c ); 

Because the implication operator is inferred, this cover property is 

treated as coverage of a property instead of coverage on a 

sequence (i.e., recording vacuous successes and not only 

successful matches). 

Likewise, another time when a cover property records 

vacuous coverage is when a disable iff is used inside a 

cover property.  The disable iff construct is only 

allowed inside a property and not a sequence.  So for example, 

adding a disable iff (reset) inside a cover 

property automatically treats the coverage as property 

coverage, which includes vacuous successes.  A disabled property 

is successful on every cycle that reset is asserted since the 

property is considered vacuously true.  The solution would be to 

avoid using disable iff in a cover property and instead 

use the throughout sequence operator: 

!reset throughout ( my_seq ) 

On the other hand, covering a sequence may not always produce 

the desired results.  While sequence coverage records the number 

of times matched, it may match many times on the same 

attempt—all of which are included in the coverage count.  For 

example, if a range is used in a sequence and multiple matches are 

possible, then all matches will be recorded.  Of course, the 

first_match() sequence operator could be used to avoid 

recording multiple matches on the same attempt. 

Another issue arises from vagueness in the SV-2005 standard.  

The expression a ##1 b is a sequence, but properties can be 

made of both properties and sequences.  So the question arises, is 

cover property ( a ##1 b ); 

covering a sequence or a property?  Either type of coverage could 

be recorded for such a statement—it depends on the 

implementation. 

The bottom line is, if vacuous coverage is unwanted, then avoid 

property operators in a cover property (e.g., implication, 

disable iff, etc.); if coverage of multiple matches on a 

sequence is unwanted, then make sure to use the 

first_match() operator. 

                                                                 
2 Any assertion that uses the implication operator (|-> or |=>) is 

automatically a property and not just a sequence. 



5. SV 1800-2009 ENHANCEMENTS 
The SystemVerilog standard was updated in 2009 [3], and several 

additions and modifications were made that affect coverage.  

First, coverage can now be explicitly specified on a sequence and 

not just a property: 

cover sequence ( @(event) disable iff ( expr )  

       sequence_expr ); 

As with a cover property on a sequence, the number of 

matches are recorded instead of the vacuous successes.  Notice, 

the syntax also allows for the use of disable iff while still 

collecting sequence coverage instead of property coverage. 

Another change made to coverage is with covergroups.  The 

sample() method for a covergroup can now be overridden, 

allowing different arguments to be passed into the covergroup 

based on different contexts.  For example, a covergroup could 

be created as follows: 

covergroup cg with function sample( T_state a,  

                                    int     b ); 

   covergroup a; 

   covergroup b; 

   cross a, b; 

endgroup 

 

cg cg1 = new; 

Now, the sample() method could be called using local 

variables as in a cover property: 

property state_cov; 

   int i; 

 

   @(posedge clk) ( sel, i=mode ) ##1  

          ( enable, cg1.sample( state, i )); 

endproperty 

cover property ( state_cov ); 

A few other subtle changes were also added to covergroup options 

like calculating cumulative coverage by merging instance 

coverage instead of using weighted averages 

(type_option.merge_instances=1) and enabling the 

tracking of instance coverage with the 

get_instance_coverage() method 

(option.get_instance_coverage=1). 

6. CONCLUSION 
Despite of the shortcomings mentioned in this paper, still 

SystemVerilog provides adequate support for gathering the 

coverage needed to verify a design.  Covergroups have a rich set 

of options and syntax, which should meet the need of the most 

serious verification effort.  In fact, with a few tricks most 

shortcomings can be worked around while still accomplishing the 

task at hand.  There are a few gotchas to watch out for—one of 

which that has been solved with the latest SV-2009 standard, but 

these are not so much as shortcomings as simply behaviors to be 

aware of when defining coverage. 
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