
A Practical Approach to Measuring and Improving the
Functional Verification of Embedded Software

Stéphane Bouvier, Nicolas Sauzède
STMicroelectronics, Home Entertainment & Displays

12 rue Jules Horowitz, Grenoble, France
{stephane.bouvier, nicolas.sauzede}@st.com

Florian Letombe, Julien Torrès
SpringSoft, Logic Verification Group

6 place Robert Schuman, Grenoble, France
{florian letombe, julien torres}@springsoft.com

ABSTRACT
We propose in this paper to apply functional qualification -
based on the theory of mutation analysis - to firmware co-
verification environments, by integrating the GNU Project
Debugger (gdb) remote serial protocol (RSP) with the func-
tional qualification engine. More specifically, the Certitude
functional qualification tool is applied to the verification of
an STMicroelectronics video IP. In this system, the hard-
ware part is generated by High Level Synthesis flow tools
mainly implementing the data-flow part, while the firmware
part, written in C, is running on an STMicroelectronics em-
bedded processor model devoted to the control part. Both
hardware and firmware parts are simulated on a Transaction
Level Modeling (TLM) platform with RSP access, modeling
a virtual system-on-chip.

In this particular context, the embedded software is only ac-
cessible through the RSP. We describe how our functional
qualification tool is extended to work in this environment.
We present how the use of this technique allowed dead code
in the firmware to be identified and to point out critical
weaknesses in the verification environment. We show that
fixing these issues led to reducing the memory consumption
of the firmware and to finding critical bugs in the hard-
ware/firmware. The standard nature of the RSP means that
this could be a global technique to apply mutation analysis
to embedded software.

Categories and Subject Descriptors
B.1.4 [Control Structures and Microprogramming]:
Microprogram Design Aids—Firmware engineering, Veri-
fication; I.6.4 [Computing Methodologies]: Simulation
and Modeling—Model Validation and Analysis

General Terms
Verification, Design, Experimentation

Keywords
Functional Qualification; Co-verification; Mutation Analy-
sis; TLM/SystemC Virtual SoC; Embedded Software; gdb

remote serial protocol.

1. INTRODUCTION
With the increasing complexity and reduced time-to-market
of today’s embedded systems there is a trend towards devel-
oping more of the system in software [1]. Debugging embed-
ded software can be time-consuming and finding bugs late

in the development cycle can be very costly. Verification
of the software and especially the hardware-dependent soft-
ware (firmware) can help to find hardware bugs and avoid re-
spins [2]. As a result it is necessary to do hardware/software
co-verification for these systems to find and fix problems as
early as possible. Measuring how well these systems are veri-
fied is becoming more important since it can help to estimate
and limit the risk of finding costly bugs.

For the purpose of measuring verification, code coverage
tools exist, but can be shown to be insufficient in the qualifi-
cation of a testing environment [2]. Mutation analysis based
on fault injection [3] is broadly accepted as a stronger met-
ric for measuring the quality of verification, and has been
broadly adopted for Hardware Description Languages. Un-
fortunately, a code coverage tool or a mutation analysis en-
gine is not necessarily well-suited to the verification of the
firmware because of its embedded nature and the difficulty
to communicate with these tools.

This paper presents an innovative method to perform em-
bedded software functional qualification. It shows how a
mutation analysis engine has been extended to be able to
communicate with the firmware.

The paper is organized as follows. Section 2 presents general
concepts about developing and debugging embedded soft-
ware. Section 3 defines code and functional coverage and
summarizes the main mutation analysis and functional qual-
ification aspects. Section 4 presents functional qualification
applied to embedded software. Section 5 shows the effective-
ness of the proposed methodology in measuring the quality
of embedded software verification environments of an indus-
trial platform. Finally, the paper concludes and opens on
future applications in Section 6.

2. DEVELOPING AND DEBUGGING EM-
BEDDED SOFTWARE WITH GDB

In this section, a quick overview of embedded software de-
velopment and debugging is proposed, focusing on the GNU
Debugger tool.

Embedded software development is usually based on a host-
target approach: the embedded software is developed on a
host machine, then transferred to the target machine for
test and debug purposes. For the remainder of this paper,
the embedded software is called the target, the system it is
launched on (namely the platform) is the target machine,



and the machine from which the platform is launched is the
host machine. In the context of embedded software devel-
opment, debugging is a crucial aspect. S. Schneider and L.
Fraleigh [4] claim that 80% of development effort is spent on
debugging.

The GNU Debugger, or gdb for short [5], is the standard
debugger for the GNU software system. It is a portable de-
bugger that runs on many Unix systems and works for many
programming languages, including C. gdb provides extensive
features for tracing, monitoring, and modifying the execu-
tion of programs. For example, the internal variables of the
program can be checked and modified, the execution of the
program can be interrupted via breakpoints, etc.

For the purpose of embedded software debugging, the GNU
software system provides a tool called gdbserver that al-
lows gdb to support remote debugging. gdb runs on the
host machine while gdbserver is executed on the target ma-
chine. The execution of the program can be controled from
gdb commands exactly as if it had been run directly on the
host machine. gdb and gdbserver communicate via either
a serial link or a TCP connection, using the standard gdb

remote serial protocol (RSP). Note that only TCP connec-
tions are considered in this paper. The protocol is publicly
available [6]. This information is essential for the portability
of the techniques.

3. TEST METHODS
Several coverage techniques are considered in this section,
and a definition of functional qualification, along with its
differences with mutation analysis are proposed. Finally,
the Certitude tool is presented.

3.1 Code Coverage and Functional Coverage
Software verification primarily utilizes code coverage to check
if the verification is complete. Tools like GNU gcov and oth-
ers provide statement coverage, call coverage, and branch
coverage. Various companies have standards for code cover-
age that must be met before software is shipped. The main
advantage of code coverage is simplicity, and results can be
generated with little effort. However, code coverage tools
require support by the target environment where embedded
software is verified.

Functional coverage is a different technique from code cover-
age, and is more general [7]. Basically, functional coverage is
the determination of how much functionality of the design
has been exercised by the verification environment. This
technique is typically used with pseudo-randomized test case
generation [8]. If pseudo-randomization is being used, func-
tional coverage provides an effective feedback mechanism for
test scenarios as they are developed [9].

Again, the target environment needs to be adapted to sup-
port functional coverage tools such as FoCuS from IBM [10],
BullsEye [11], or Comet [12].

3.2 Functional Qualification
3.2.1 Mutation Analysis vs. Functional Qualifica-

tion

The main weakness of coverage metrics is that they do not
consider the checking of output behavior of the design under
verification (DUV). Indeed, it is possible for these metrics to
give high scores even if the output behavior of the DUV is
not completely checked. To address those problems, muta-
tion analysis and mutation testing [13] have gained popular-
ity in recent decades [14]. Such testing approaches rely on
the creation of several versions of the program to be tested,
“mutated” by introducing syntactically correct functional
changes. These mutated versions of the program are called
“mutants”. The purpose of such mutations is to change the
program to check if the test suite is able to detect the be-
havioral difference between the original program and the
mutated versions. More specifically, the output of the DUV
is compared with and without the mutation [15]. If there
is a difference observed in the output then the mutant is
considered to have been “killed” [3]. The effectiveness of the
test suite is then measured by computing the percentage
of detected mutations. Similar concepts are also applied in
hardware testing to provide more effective test suites for the
DUV: verification engineers use high-level fault simulation
to measure the quality of test benches [16], and test pattern
generation to improve fault coverage. In this case, muta-
tions introduced in the hardware descriptions are referred
to “faults” [16].

Functional qualification performed by the Certitude tool
(first introduced in 2009 [17]) and discussed in this paper is
different. A mutant is considered to have been killed when a
test case fails. As in traditional mutation analysis, outputs
of the design are still monitored. If all the test cases pass on
a mutated version of the DUV, and a difference is observed
in the output, this means that checkers are missing in the
verification environment. Functional qualification highlights
these missing checks. Such checks can include the compari-
son of expected output behavior and assertions monitoring
the program’s internal or external behavior. The ability of
the verification environment to detect potential bugs is being
measured whereas in traditional mutation analysis only the
ability of the input sequences to propagate potential bugs to
outputs is measured. The term functional qualification has
thus been introduced to capture this concept of measuring
the bug detection ability.

Verification is required to ensure the quality of the design
code and this activity often consumes around 70% of the
total design resources [18]. A large amount of code must
also be created to implement the verification environment
and errors may occur in the implementation. Errors in the
verification environment can result in one of three situations:

• The test case fails: in this simplest case, the error in
the verification can be found, assuming that the design
is correct;

• The test case passes: in this case the test case may
hide a real design bug;

• The test case is missing: typically due to a mistake in
the test plan.

Functional qualification is a unique technology that identi-
fies passing test cases as potentially hiding real design bugs.



It can also identify a wide range of missing test cases that
other techniques cannot. For example, complex temporal
sequences may be missing, preventing the effects of hidden
bugs from propagating to outputs where they can be de-
tected.

To be effective, functional verification must ensure that the
DUV are shipped without critical bugs. To find a design
bug, three things must occur during the execution of the
verification environment:

1. The bug must be activated; i.e. the code containing
the bug is exercised.

2. The bug must be propagated to an observable point;
e.g. the outputs of the design.

3. The bug must be detected; i.e. behavior is checked
and a failure indicated.

Traditional EDA technologies have focused on item 1, ac-
tivating the bug. Techniques such as code coverage and
functional coverage can help ensure that design code is well-
activated. But they can neither guarantee that design bugs
will be propagated, nor that the bugs will be detected by
the checkers, such as assertions or comparison against a ref-
erence model.

3.2.2 Certitude: a functional qualification tool
Certitude is a functional qualification tool commercialized
by SpringSoft [19]. It provides various front-ends at differ-
ent levels of abstraction, including the VHDL, Verilog, and
C languages. Its overall operation is summarized in this
section.

Certitude automatically inserts bugs (also called faults) into
the hardware or software models. The fault model contains
various types of faults such as operator changes, dead assign-
ments, forced conditions, etc. As an example, the following
original code

a = b | c;

generates two different kinds of mutations:

a = b & c;

a;

Then Certitude determines whether the verification environ-
ment can activate the faulty code, propagate the effects to
an observable point, and detect the presence of the fault. A
known fault that can not be detected points to a verification
weakness. If a fault can not be detected, there is evidence
that actual design bugs would also not be detected by the
co-verification environment.

Certitude operation falls into three phases:

1. The model analysis phase analyzes the design and gen-
erates a modified source code with faults injected (in-
strumented code);

2. The activation phase runs a complete regression and
analyzes the behavior of the verification environment
with respect to the faults;

3. The detection phase runs selected tests from the veri-
fication environment to measure the ability of the ver-
ification environment to detect the faults.

At the end of the qualification, faults are classified with the
following statuses:

non-activated: the fault has not been exercised by the test
suite;

non-propagated: the fault has been activated, but did not
impact the outputs of the design;

non-detected: the fault has been propagated, but checkers
did not notice the behavior change;

detected: the fault has been propagated, and at least one
checker noticed a behavior change;

disabled by user: the verifier decided that part of the func-
tionality did not need to be verified.

Subsequently, Certitude provides users with a complete re-
port of the results in HTML format that highlights the prob-
lem areas. This is used to expose shortcomings and guide
improvements in the environment to ensure that bugs do not
slip through the process.

When integrating Certitude into a project environment, it
is important to understand that it works on top of the sim-
ulation framework, and can make use of a batch system.
Certitude is a point tool that does not require changes to
the project environment itself. Only minor modifications to
some scripts may be necessary. To adapt Certitude to the
verification environment, it needs to have the following in-
formation and control: a list of all software models files that
make up the system, the ability to recompile the (instru-
mented) source code, a list of testcase names, a script that
can execute a testcase and return a pass or fail result.

4. APPLYING FUNCTIONAL QUALIFICA-
TION TO EMBEDDED SOFTWARE: A
PRACTICAL CASE

This Section describes the RSP-enabled Transaction Level
Modeling (TLM) development platform, the Certitude tool
and the proposed approach to functional qualification of em-
bedded software.

4.1 The RSP-enabled TLM development plat-
form

The main purpose of a TLM platform is to raise the ab-
straction level of a typical SystemC platform – which works
at the signal-level – to the transaction-level. The goal is
to abstract the implementation details of the interconnect
by manipulating abstract data structures that represent the
payload.

The power of TLM is that it allows the abstraction level to
be adjusted by providing the flexibility to choose the data
granularity: for example, between a simple data word of the
size of the bus, to a video macro-block or even a full image.



The TLM development platform used for this experiment is
a set of interconnected SystemC components such as mem-
ories, bus controllers, CPUs, etc. It can be used to model a
Virtual System-on-a-Chip that simulates at the same time
the hardware Intellectual Property (IP) and the embedded
software running on it.

A TLM platform can embed as many CPU ”cores”as needed
by instantiating the corresponding number of TLM proces-
sor models. The TLM processor models are SystemC com-
ponents that provide a particular CPU kind (e.g.: STxP70,
ST40, ARM CA9, PowerPC, etc.).

The platform we used integrates an STxP70 (STMicroelec-
tronics proprietary micro-controller) processor model that
uses a technology that serves as a helper to accelerate the
embedded software execution. It consists of compiling the
real embedded software source code and executing it within
the context of the running TLM simulation, i.e. with a di-
rect access to the simulated hardware resources, such as IP
registers, memories, interrupts, etc.

A very important feature of the processor model technology
used in the TLM platform, is that it presents to the ”outside”
a standard RSP connection feature, to let a standard debug
client manage the embedded software execution. This is the
key point that enables the novel approach described in this
paper to actually perform the functional verification of the
embedded software.

4.2 Using Certitude on embedded software
STMicroelectronics has been using Certitude since its mar-
ket introduction [20], and today runs functional qualification
on more than 80 percent of its internal IP designs. In this
context of historical collaboration, the Certitude team de-
velops customer-specific features on demand when perspec-
tives of such features for future deployment are promising.
Since the Certitude tool is widely used within the company
for RTL and C designs, STMicroelectronics naturally asked
the Certitude development team to adapt the tool for their
embedded software requirements.

In the current configuration, Certitude injects faults in the
design and communicates with the simulation via control
files. All faults are injected together in the design to avoid
re-compilations, and control files are used to set the simula-
tion parameters: fault to exercise, result of the simulation,
etc., as described in [21]. This method can’t be directly ap-
plied to embedded software testing environments since the
target machine does not necessarily have a file system, and
the code injected into the software controls its behavior, and
requires several Linux system calls also not likely to be sup-
ported by the target system. As a result, using Certitude
with its default behavior would result in compilation errors
and an inability to communicate between the tool and the
target.

A traditional use of a TLM platform that embeds a processor
model which offers a standard RSP interface is to connect a
gdb client to the target firmware that runs inside the plat-
form. Here, for the purpose of functional qualification, we
reused this standard RSP interface to connect the Certitude
tool directly to the firmware execution. The framework has

Figure 1: Framework Setup

been setup as shown in Figure 1. The new usage path is
drawn with dotted lines.

The Certitude tool behaves as a standard gdb client, benefit-
ing from the same debugging functionality, such as: control-
ling execution (stop and resume), inspecting/altering mem-
ory contents, setting breakpoints, etc. As described in sec-
tion 2, the RSP is generally used for debugging purposes,
and to the best of our knowledge, it has never been used
before in the context of mutation analysis.

As stated above, qualification of embedded software gives
rise to two main issues; namely (1) communication, and (2)
compilation.

The first issue is solved by the mechanism described in Fig-
ure 1. The fault to be exercised for a simulation can be set
by sending the information via the RSP interface, and the
simulation result can be checked the same way.

The second issue is tackled by simplifying the instrumenta-
tion of the design. Only standard variable types are used,
and no system call is invoked, nor is there any file access
from the instrumented code. This ensures full compatibility
with any target system.

Finally, a finite state machine has been setup to wrap the
platform execution and control the simulation status. Its op-
eration consists of: launching the platform and establishing
communication, parsing the target Executable and Linkable
Format (ELF) code, setting the fault to be exercised (for the
detection phase), authorize the target to be launched, check
its behavior, get results and close communication. This com-
plex mechanism guarantees correct execution and termina-
tion of simulations.

5. EXPERIMENTS
This section describes the machines and the use case con-
sidered for experiments. We give details of experimental
results, along with improvements carried out on the consid-
ered IP.

5.1 Methodology
The experiment to functionally qualify the embedded soft-
ware testing environment has been done on a High Qual-
ity Video Display IP used in the set-top-boxes. This IP



gets some video streams from previous design stages (such
as H264 video decoder) and sends them to the next stages
(picture composition). The input streams are processed us-
ing de-interlacing, rescale, and Image Quality Improvements
algorithms.

The High Quality Video Display IP used is made of two
parts. First, a hardware part is generated by an HLS (High
Level Synthesis) flow tool mainly implementing the data-
flow part; second a software part running on an STxP70
core is devoted to the control part. This code is known
as the embedded software that we want to instrument and
cover in this paper.

This embedded code is mainly a control part of the hardware
design. It deals with the start conditions, reads a command
in memory and processes it. It then configures the IP in-
ternal registers and cadences the hardware block inputs and
outputs. This leads to high number of interactions with the
hardware.

Usually, the hardest parts to verify in a design are the state
machines. According to this new architecture, these state
machines are mainly located in the embedded software. Hav-
ing good coverage on the embedded software that imple-
ments a significant part of the control is key to finding verifi-
cation holes that may hide some hardware bugs. Before this
qualification by error injection in the embedded software,
there was almost no coverage analysis performed on these
software control state machines. Indeed, the only possibility
we had was to trace the program counter of the STxP70 core
and analyze the never reached values.

The platform environment used to perform the functional
verification is a SystemC TLM virtual platform where both
CPU’s (host and embedded micro-controller) are replaced by
a processor model allowing execution of the software under
test on a Linux PC.

The test suite used for the High Quality Video Display IP is
made up of 10,434 test cases. This test suite runs in TLM
in about 4 hours using 200 Linux CPUs, and has been used
with the Certitude tool. The empirical results presented in
this section were obtained on the 200 Linux CPUs.

The hardware has been modeled in SystemC TLM too. The
error injection using Certitude has already been made on
this SystemC TLM model. The current experiment is ex-
panding the concept to the embedded software.

5.2 Results
This embedded software is made up of 27 files. The Certi-
tude model phase injected 6781 faults.

We disabled 592 of the injected faults. The TLM platform
which uses a processor model to emulate the STxP70 micro-
controller is a pure SystemC platform with untimed models.
As the IP is designed to cope with real-time constraints, the
embedded software contains some dedicated code to deal
with real-time constraints. As the SystemC platform is an
untimed execution one, this platform can’t exercise real-time
related mechanisms. To reach them, we need a timed view of
the hardware. This is done later in the verification process.

For this experiment, we disable it to avoid uninteresting non-
detected faults.

The Certitude activation phase has been run using this com-
plete test suite. This leads to the first results in about one
night: 59 faults non-activated and 116 non-propagated. This
59 non-activated faults result is equivalent to line coverage:
such faults represent lines of code never reached by any of
the tests. The non-propagated faults result gives us addi-
tional information. For example, details are provided on the
”if” statements partially reached (“if” conditions always true
or always false) and on the writes to variables that don’t
change their values.

Running a full detection phase of the Certitude tool with
this full test suite would be too long. For each exercised
fault, the tool will launch every test that activates this fault
until it detects it or all tests have been run. In the worst
case, this may lead to about 6000 times the regression which
is beyond the time available for the project.

To get an overall idea of the detection results, we first ran
a statistical metric provided by the Certitude tool. It ran-
domly selects a sample of faults and runs randomly chosen
tests on each fault of the sample. This results in an estima-
tion (with a margin of error) of the number of detected and
non-detected faults in a much shorter time than a full de-
tection. After running for one night, this statistical metric
gave an estimated number of detected faults of about 5200
or, put another way, about 700 non-detected faults.

The statistical metric only gives an estimate of the number of
non-detected faults, but it can not find which faults are not
detected. To optimize the run time of the detection phase,
with Springsoft support, we identified a small sub-set of tests
based on the activation results. In our case, this sub-set of
tests only contains 40 test cases. We thus ran the detection
phase with this short test suite and then got a first result
of 713 non-detected faults in about one night. This result
can be considered ”pessimistic”because a non-detected fault
may have been detected by another test case that is not in
the short test suite. Consequently, we needed about two
additional weeks to extend the sub-set of test cases and thus
detect some of these remaining faults. Adding these tests
reduced the number of non-detected faults to 694.

To summarize, after all these steps, we obtained the follow-
ing result status:

• 59 faults non-activated (0.9%),

• 116 faults non-propagated (1.7%),

• 694 faults non-detected (10.2%),

• 5320 faults detected (78.5%), and

• 592 faults disabled by the verifier (8.7%).

At this stage, we started to analyze why these faults were not
detected, keeping in mind that we have not run all the tests
on the non-detected faults. So we analyzed the Certitude
report from the activation and detection phases. Activation



first showed that there was some dead code that cannot be
activated. This code has been removed and it saved about
2% of room in the program memory. This is a very good
result since the embedded control code needs to be optimized
to fit on small memories. Activation showed us that some
tests were missing. We then wrote 4 additional tests to cover
some lines. These tests are mainly checking functionality
that was missed by the previous test suite. One of these
tests showed a hardware bug in a corner case and avoided a
re-spin of the silicon.

This hardware bug concerned one mode of our High Quality
Video Display IP called panoramic mode and, more pre-
cisely, one specific option of this mode. The first specifica-
tions of the IP did not mention this possibility which ap-
peared later. Unfortunately, it had never been added to the
test plan. The testcase generator was able to generate this
case but none of the tests were using this possibility. The
verification hole was found analyzing a fault in an “else”
branch of an “if”. When the new tests implementing this
feature were written, we found that the development ver-
sion of the RTL part of the design behaved incorrectly.

Detection also highlighted missing tests. We then wrote 6
new tests to detect the non-detected faults. These tests
did not show new bugs. The tests written after the detec-
tion phase are mainly checking initialization of the embed-
ded software between two commands in some corner cases.
Thanks to these new tests the functionality of the IP is bet-
ter verified and so far no bugs have been found in the pro-
duction version of the IP.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented a framework for the func-
tional qualification of embedded software testing environ-
ments, and showed its application on an industrial design.
Nowadays, (i) the close integration between hardware and
software parts in modern embedded systems, (ii) the de-
velopment of high-level languages suited for modeling hard-
ware and software, (iii) the need for developing verification
strategies to be applied early in the design flow, require the
definition of mutation analysis-based strategies that work at
system level, where hardware and software functionality are
not completely independent and separate.

We already knew that Certitude was a very efficient tool
to qualify verification environments (this tool is already de-
ployed on hardware verification projects) when running on
RTL or on the C standalone models used in the HLS design
flow. Extending the usage of this tool to hardware control
implemented by software is a must to avoid critical hardware
bugs.

We have run Certitude on the embedded software of our
High Quality Video Display IP. It has allowed us to remove
some dead code and to add some missing tests. Some of
them have uncovered a hardware bug and prevented a re-
spin of the silicon. It hence allowed STMicroelectronics to
keep delivering quality-products to the market.

Experiments focused on the GNU gdb remote serial proto-
col, for its simplicity and the fact that it is a proven, de-
facto industry standard. However, the principle described

in this paper could in fact be deployed with any embedded
system including an external debug interface (for example
ARM Cycle Accurate Debug Interface (CADI) [22], Lauter-
bach TRACE32 [23], Power Standard for Common Debug
Interface (CDI) [24], etc.), provided that the debug proto-
col is standard/open. The only requirements are to be able
somehow to manage the embedded software execution, and
access the target memory, registers, and breakpoints. This
is future work to extend the Certitude tool in this direction.

7. REFERENCES
[1] E. A. Lee, “Embedded software,” Advances in

Computers, vol. 56, pp. 56–97, 2002.

[2] G. D. Guglielmo, F. Fummi, G. Pravadelli,
M. Hampton, and F. Letombe, “On the functional
qualification of a platform model,” in Proc. of the 24th
IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, 2009, pp. 182–190.

[3] A. J. Offutt, “A practical system for mutation testing:
Help for the common programmer,” in Proc of IEEE
International Test Conference, 1994, pp. 824–830.

[4] S. Schneider and L. Fraleigh, “The ten secrets of
embedded debugging,” EETimes Design, 2004,
http://www.embedded.com/showArticle.jhtml?article
ID=47208538.

[5] “GDB: The GNU Project Debugger,”
http://www.gnu.org/software/gdb.

[6] GNU Remote Serial Protocol, http://sourceware.org/
gdb/current/onlinedocs/gdb/Remote-Protocol.html.

[7] G. J. Myers, The Art of Software Testing. Wiley -
Interscience, 1999.

[8] P. Mishra and N. Dutt, “Functional coverage driven
test generation for validation of pipelined processors,”
in Proc. of the conference on Design, Automation and
Test in Europe, 2005, pp. 678–683.

[9] M. Hampton, Functional qualification: a technical
brief, 2009, http://www.edadesignline.com/215600203.

[10] Focus, http://www.alphaworks.ibm.com.

[11] BullsEye, http://www.bullseye.com.

[12] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv,
“User defined coverage - a tool supported methodology
for design verification,” in Proc. of the 35th Conference
on Design Automation (DAC’98), 1998, pp. 158–163.

[13] R. A. DeMillo, R. J. Lipton, and F. G. Sayward,
“Hints on test data selection: Help for the practicing
programmer,” IEEE computer, vol. 11, no. 4, pp.
34–41, 1978.

[14] D. Hyunsook and G. Rothermel, “On the Use of
Mutation Faults in Empirical Assessments of Test
Case Prioritization Techniques,” IEEE Transaction on
Software Engineering, vol. 32, no. 9, pp. 733–752,
2006.

[15] R. Guderlei, R. Just, C. Schneckenburger, and
F. Schweiggert, “Benchmarking Testing Strategies with
Tools from Mutation Analysis,” in IEEE International
Conference on Software Testing Verification and
Validation Workshop, 2008, pp. 360–364.

[16] M. Abramovici, M. Breuer, and A. Friedman, Digital
Systems Testing and Testable Design. New York:
Computer Science Press, 1990.

[17] N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton,



and F. Letombe, “Functional Qualification of TLM
Verification,” in Proc. of the conference on Design,
Automation and Test in Europe, 2009, pp. 190–195.

[18] J. Bergeron, Writing Testbenchs: Functional
Verification of HDL Models. Kluwer Academic, 2000.

[19] Certitude from SpringSoft,
http://www.springsoft.com/products/functional-
qualification/certitude.

[20] O. Haller, “Deploying Functional Qualification at
STMicroelectronics, Methodologies & Case Studies,”
IP&Design, Functional Verification Group of the
Conference on Design Automation, 2008.

[21] M. Hampton, “Procédé et Système d’Évaluation de
Tests d’un Programme d’Ordinateur par Analyse de
Mutations,” French Patent FR2873832 for Certess
SARL, 2006.

[22] CADI, http://infocenter.arm.com/help/topic/com.
arm.doc.dui0444d/index.html.

[23] TRACE32, http://www.lauterbach.com/tutorial.pdf.

[24] CDI, https://www.power.org/resources/downloads.


