
February 28 – March 1, 2012
A Practical Approach to Measuring and
Improving the Functional Verification of

Embedded Software

Stéphane Bouvier
STMicroelectronics

Florian Letombe
SpringSoft

Julien Torrès
SpringSoft

Nicolas Sauzède
STMicroelectronics

2 of 20

Introduction
• Embedded systems development:

– Systems tend to become more and more complex
– Trend to have mixed hardware/software systems

(RTL + firmware)
• Verification is difficult:

– Are all scenarios covered?
– Are all the specified functionalities checked?
– This is even more difficult with mixed hardware/software

systems
• But verification is important:

– Bugs may be very costly

3 of 20

Embedded software
development
• Host-target approach:

– Develop on a host machine
– Test on a target machine

4 of 20

Embedded software debugging
• GNU Project debugger (gdb)

– gdb running on the host machine
– gdbserver running on the target machine
– Communication through the gdb Remote Server Protocol

(RSP)

gdb RSP
gdbserver

target

gdb

5 of 20

Effective verification
It’s all about activation, propagation, and detection

Design under
Verification

Verification Environment

Compare

Bug

Stimulus

Reference Model

Activation DetectionPropagation

To detect a bug…
• The stimulus must activate the buggy logic
• An effect of the bug must propagate to an observation point
• The environment must detect the behavior difference due to

the bug

6 of 20

Existing tools are insufficient
Code coverage measures activation, but says

nothing about propagation or detection

Design under
Verification

Verification Environment

Compare

Bug

Stimulus

Reference Model

Activation DetectionPropagation

Functional coverage checks “important” functional
points, but is subjective and incomplete

7 of 20

Functional qualification

Design under
Verification

Verification Environment

Compare

Fault

Functional Qualification

Stimulus

Reference Model

Activation DetectionPropagation

• Based on mutation analysis
• Inserts “artificial bugs” (mutations) called faults into the design
• Measures the ability of the verification environment to activate, propagate, and detect

the faults
• “Qualification” of the verification environment against many inserted faults provides

objective measure of overall quality and identifies holes and weaknesses

8 of 20

• Modifies code to insert faults

a = b | c  a = b & c // change operator

if (a)  if (TRUE) // force execution of “if” branch
f1(); f1();

else else

f2(); f2();

• Simulates the broken code with the test suite
– Does at least one test fail? Great!

• The environment is robust enough to detect that the code is broken
– Do all tests pass? Help!

• You now have two versions of the code, both of which are compliant with the
verification environment

• This means that the environment could miss a real bug

How functional qualification
works

9 of 20

Certitude: a functional
qualification tool
• Certitude is a functional qualification tool developed by

SpringSoft
• Process and flow:

Analyze the design
(static) to determine the
possible faults

Fault Model Analysis

Analyze the verification
environment by simulating
tests once

Fault Activation Analysis

Measure the ability to detect
bugs by injecting faults and
simulating

Fault Detection Analysis

• Write instrumented code

• ID non-detected faults
• Report details to direct fix

Fix and iterate as problems are found

10 of 20

High Level Synthesis
design & verification
flow

C

C

C

Dataflow
Control

Dataflow

Dataflow

Control

Control

RTL

Embedded firmware

Certitude C

Certitude RTL or
C++ (TLM model)

Nothing !!

11 of 20

Certitude on embedded software
issues
• Certitude is not usable on embedded software in its original

version
• Communication issues:

– Certitude uses control files to:
• Inject faults
• Monitor the simulation
• Get the results

– But: no file system is available on the embedded
platform

• Certitude needs to be extended to support embedded
software

12 of 20

RSP enabled TLM platform (1/2)
• Transaction Level Modeling virtual platform:

– Allows pre-silicon embedded software development
– Accurate enough to allow software execution
– Register-accurate, bit-accurate, loosely-timed
– Industry standards : SystemC, TLM-2 (IEEE 1666)

SystemC/TLM platform

Processor
model

Hardware
IP

Memory
model

Interconnect
model

13 of 20

RSP enabled TLM platform (2/2)
• Some TLM Processor models provide Remote Server

Protocol (RSP) debug access
• Embedded software (ESW) can be debugged from outside

Processor
model w/RSP

Hardware
IP

Memory
model

Interconnect
model

RSP
debugger

ESW
SystemC/TLM platform

14 of 20

Using Certitude on embedded
software (1/2)
• Certitude has been extended to solve the communication

issues
• The platform supports the gdb RSP
 The Certitude control files have been replaced by the
RSP
 Certitude behaves as a standard gdb client

15 of 20

Using Certitude on embedded
software (2/2)

16 of 20

Use case: embedded firmware
qualification
• DUV is a High Quality Video Display IP
• Embedded firmware mainly implements the control part of

the DUV that was formerly done in RTL
• The data flow remains in RTL
• The firmware consists of:

– 27 files
– 14,000 lines of C
– 46.7 kbytes in program memory
– 6781 faults injected by Certitude

17 of 20

Methodology

All testcases
(10000) Activation Activation

results

Detection
Detection

results and
compare to

metric

Subset of testcases
activating all the
faults (about 40)

Statistical
metric

Add new testcases
(automatic or after

a first analysis)Report analysis

18 of 20

Results

1% 2% 10%

78%

9%

Faults status

non activated
(59)

non
propagated
(116)
non detected
(694)

detected
(5320)

disabled (592)

To be analyzed

Related to timed
functionality

19 of 20

Results analysis
• Dead code found: code that cannot be activated or is out of

the specification
-> Save 2% of room in program memory (size limited)

• Missing tests: code that can be activated and that should
be activated
-> Add new tests to cover these functions

- 4 new tests after activation

- 6 new tests after detection
-> find a corner case bug

20 of 20

Conclusion
• Certitude already validated on RTL and C standalone
• Certitude adapted for embedded software testing

environments
• Experiments on High Quality Video Display IP:

– Removed dead code
– Added missing tests
– Found a design bug and avoided respin

	A Practical Approach to Measuring and Improving the Functional Verification of Embedded Software
	Introduction
	Embedded software development
	Embedded software debugging
	Effective verification
	Existing tools are insufficient
	Functional qualification
	How functional qualification works
	Certitude: a functional qualification tool
	High Level Synthesis�design & verification�flow
	Certitude on embedded software issues
	RSP enabled TLM platform (1/2)
	RSP enabled TLM platform (2/2)
	Using Certitude on embedded software (1/2)
	Using Certitude on embedded software (2/2)
	Use case: embedded firmware qualification
	Methodology
	Results
	Results analysis
	Conclusion

