

1

A Novel Processor Verification Methodology

based on UVM

Abhineet Bhojak, Freescale Semiconductor India Pvt. Ltd, Noida , India

(abhineetmnnit26@gmail.com)

Tejbal Prasad , Freescale Semiconductor India Pvt. Ltd, Noida , India

 (Tejbal@freescale.com)

Stephan Herrmann, Freescale Semiconductor , Munich , Germany

 (Stephan.Herrmann@freescale.com)

Abstract—Constantly growing complexity of processor designs increases verification complexity. The Functional

space of a processor is very large due to possible permutations and combinations of various instructions and their

operands as well as their sequence, so to build stimuli generators to cover all the testable features of processor has

been a challenging problem for verification engineers. These results in significant time spent in verification to achieve

the goals that are targeted by a verification plan, which is a bottleneck for overall time to market. Different

approaches are in use in the semiconductor industry to tackle this problem. Random test pattern generation (RTPG),

Test Plan Automation (TPA), Formal property checking, Pure directed testing and some other third party flows are

some of the examples.

In this paper we propose using the Universal Verification Methodology (UVM) along with advanced System

Verilog capabilities as an efficient solution for processor verification. This approach is purely based on Coverage

driven Constrained Random Verification and uses the standard methodologies and languages which are well know to

a verification engineer without having to depend on a third party flow or a different language. In the paper we have

also compared our approach with other existing solutions.

Keywords— Processor Verification; Universal Verification Methodology (UVM); System Verilog; Coverage Driven

Verification; Constrained Random Testing; Random Test Pattern Generator(RTPG); TestPrograms; Finite state

Machine (FSM) Instruction Set Architecture(ISA); System on Chip (SOC); Advanced High Performance Bus (AHB);

Read after write (RAW); Write after write(WAW); Write after read(WAR)

I. INTRODUCTION

Processor verification has always been a challenging problem to verification engineers. Each processor has its

specific Instruction set architecture, addressing schemes, pipeline depth, execution strategies etc. To grow the

customer confidence in the design there is a huge functional space that needs to be covered by the verification

plan which needs to be created in accordance with the specification. Once the verification plan is complete the

next step is to choose the technology to implement it. There are a number of approaches one can take. On abstract

level to verify a processor, as a stimulus one needs to generate a program which consist of different instructions to

be loaded in instruction memory, the data which these instructions process and some specific register

configuration of Processor. Combination of different instructions generate interesting scenarios which can only be

targeted with random program generation as it will take significant amount of development cycle time to target

these with directed test cases. On the other hand with pure random instruction testing there is a limitation that it

may take variable amount of time to converge to required coverage goals and also there are several specific

scenarios like infinite loop generation etc. which needs to be taken care of. Another key issue with pure random

approach is that in actual use cases a processor program will have a co-relation among the instructions so that

they implement a data-processing-flow and these cases lead to several hazards and data coherency issues which

may be hard to hit so some intelligence in program generation is required here.

 This paper proposes processor verification flow where we have applied Constrained-random verification

(CRV) to solve processor verification problem and exploited special utilities of UVM and system verilog

language without depending on any third party platform or language. We have implemented a unique “stimuli

generation” flow which is well designed to cover the processor specific scenarios such as to cover complex

2

instruction sets, multiple pipeline-stages, in-order or out-of-order execution strategies, data hazards, branches etc.

We generate meaningful programs which have a interlinking among the instructions combined with the specific

peripheral register programming sequence and correlated data which would be processed by the processor.

A layered testbench architecture is evolved to have a higher reuse of sequences which reduces initial bring up

time and hierarchical constraints are used to generate consequential programs in which instructions are interlinked

rather than being pure random. Most of the processor designs are verified against Reference models which are

zero time executables in nature so debug ability becomes a bottleneck in finding design defects and hence

governing the length of verification cycle. The proposed verification testbench is such that apart from the

exhaustive verification & easier debug, it incorporates easy to use hooks to directly port the High level Use case.

Margins, column widths, line spacing, and type styles are built-in; examples of the type styles are provided

throughout this document and are identified in italic type, within parentheses, following the example. Some

components, such as multi-leveled equations, graphics, and tables are not prescribed, although the various table

text styles are provided. The formatter will need to create these components, incorporating the applicable criteria

that follow.

II. RELATED WORK

 Different approach for processor verification can be formal property checking, but it requires significant

mathematics skill to relate to the scenarios and analyze them. Simulation-based verification thus plays an

important role in the functional verification of microprocessor designs. Approaches for instruction level

functional verification are mainly concerned with the generation of directed and/or (pseudo-)random test

programs. The methods for automatic test program generation include simple random instruction selection, finite

state machines (FSM), linear programming, SAT, constraint satisfaction problems (CSP), or graph-based test

program generation. Bin [7]and Adir [6] model the test program generation problem as CSP. Their framework,

Genesys-Pro, combines architecture specific knowledge and testing knowledge and uses a CSP solver to generate

efficient test programs. The test template language of Genesys-Pro is quite complex. It allows for example, biased

result constraints. Mishra [8] use graph-based algorithms to generate test programs. While Corno uses a

predefined library of instructions, Mishra’s work extracts the structure of the pipelined processor directly from the

architecture description language and then fed to a symbolic model verifier.

One major drawback of standard RTPG’s is that there is a significant learning curve involved to leverage

these RTPG’s in an industrial environment. Even the minor feature additions require extensive modifications to

the RTPG framework, from parsing the template over modifying the RTPG core itself to implement the new

features up to maintaining backward compatibility to previous versions. Pure directed checking is not reasonable

as it takes a lot of time and a pure random approach may not be able to meet the required coverage goals within

the required timelines.

III. PROPOSED METHODOLOGY

A. Overview of Stimuli Generation

As shown in Fig. 1 stimuli generation consists of generating the program of a random length that consists of

atomic instructions which may or may not be interlinked, co-related data for that program and at last some

specific peripheral programming sequence related to the program. A combination of these three is called scenario

layer and it is created by using object-oriented stimulus generation solution based on the UVM class based library

where each one of these can be generated with a sequence under a top virtual sequence. For program generation

stimuli generator outputs a series of assembly language instructions, such as :

 Load address1, R3

 Load address2, R4

 Add R3, R4, R5

 Store R5, address3

3

This is achieved by creating individual instruction with an atomic transaction UVM class. Common aspects to

randomize include the opcode, source and destination addresses, jump address, immediate values and values in

memory, registers and addressing modes. This is done at bottom atomic layer which also has some intelligence to

solve specific problems such as to hit hazard scenarios, avoid infinite loop etc. The Atomic layer transaction class

can be extended to create instruction group classes which generate instruction from a given instruction group

when randomized and hence have some specific constraints.

In top level scenario layer we decide the size of the program and we can choose a structure of the program

with fixed and random instruction to verify a set of instructions. There is a program generator layer which is a

UVM sequence class, exist below top level scenario. Based on the information passed from above layer and test

case, it calls the atomic layer to generate instructions. All the layers of the approach are explained in more detail

below.

Scenario: In this top level UVM virtual sequence a random program length is chosen and the skeleton of the

program is generated by constraining some locations of the program to be fixed instructions and others to be

random instruction chosen from the valid set or a particular instruction group (branching operations, ALU

operations). This sequence also incorporates the corresponding peripheral register programming sequence and

control the type of input data being randomized for example (negative, positive, all one, max, negative etc.),

which may be needed for a particular instruction. The implementation of top level program sequence as shown in

Figure 1 is shown with the code of processor program generation sequence in Figure 2.

Program Generator: This layer receives the program skeleton information from the above layer and does the

decision making on how to randomize each atomic instruction in the program. This layer is an uvm_sequence

class it randomizes a processor transaction class which in turn randomizes individual atomic transaction.

Processor transaction class is shown in Figure 3.

 There are two ways in which it can randomize the instruction. If the instruction is fixed it generates the

instruction of the given type. If the instruction is random then it generates instruction from the particular

instruction group which is dictated by the uvm_test class corresponding to the particular test case. The test case

class uses type_override utility provided by UVM to replace the base transaction atomic class with the specific

extended class which may generate instructions of a particular instruction groups or have some specific

constraints. This has the advantage that we can test two different instruction group by just changing the base

transaction class with override and keeping rest of the things same. It reduced the time by avoiding redundant

sequence coding.

Atomic Transaction: This layer is the atomic transaction item class, when invoked by the sequence layer it

randomizes different instruction fields and packs them as one atomic instruction based on various constraints.

This layer also has the intelligence to make the program interlinked in terms of operands used as shown in Figure

4. The aim is mimic the temporal locality in the actual software due to which operands of one instruction are

likely to be the operands for the subsequent instructions and hence generating classic data hazards (RAW, WAW,

WAR) situations in pipeline. It is implemented in way that operands of one instruction both inputs and outputs

can be related to operands of a subsequent instructions.

 This has a significant advantage over some random test program generation schemes in which these scenarios

may be hard to hit. In this layer certain constraints are also coded such as in jump scenarios it avoids the infinite

loop creation. Figure 5 gives the details on how to model the individual instruction as a transaction extended from

an uvm_sequence_item class.

4

Figure 1 Proposed stimuli generator Figure 2 Sample code for program generation sequence

Figure 3 Sample code for processor transaction class

5

B. Jump and Loop instruction verification

While generating sequences of assembly instruction with the random approach loops and jump commands

need special attention. These commands have certain associated flags, iteration counts, direction of the jump,

amount or location of the jump as their attributes. The set-up, iteration and termination must be well defined

otherwise there can be scenarios in which program ends up in an infinite loop. A backward jump without any

terminating condition in between is a simple example of infinite loop. With nested loops and different jump

instruction there can be several such scenarios.

The key to avoid infinite loop generation problem lies with the direction and amount of jump which can be

controlled differently with different kind of addressing modes for example absolute, relative etc. We take an

example of relative addressing scheme for jump. As described in Figure 6 we can set the skeleton of the program

in top level scenario layer such that it has a loop setup (move a value to loop counter) command at the start

followed by a combination of some random ALU instructions, which set different flags and jump commands.

Figure 4 Random interlinking of instruction

operands

Figure 5 Sample code for processor transaction atomic

class

6

These jump commands are only allowed to have a maximum forward jump up to a watermark level such that

program always crosses this watermark which is nothing but a decrement of loop counter and acts as a

terminating condition, no backward jump allowed in this range. Similarly the jump commands after the

watermark level are only allowed to forward jump till the end or if they jump backward then they must jump

before the watermark. These jump length constraint can be coded in atomic transaction layer for jump specific

command group class which will be selected by the test case for jump scenario verification.

C. Testbench architecture to reduce debug time

Most of the processor designs being pipelined in nature are verified against reference modes which are

functional equivalent of processor but does not take care of the pipelining as they are built in a high level

language with abstraction. Processor can also have asymmetric pipeline and different execution strategies such as

a mix of in-order and out-of-order execution of instruction. If we only compare the model output with the design

output at interface level which may be an AHB bus then to debug the exact point of failure takes significant

amount of time. We have implemented a scoreboard infrastructure against the reference models which reduces

debug time for the complex scenarios and help easier debug with different levels of checkers as shown in Figure

7.

 Conventional checker: This is a conventional checker which takes data from memory interface

monitor and compares it with golden output data from model. This checker has to do fewer

computations as it checks only the final output and it will help in verification of individual

instructions but as the program becomes complex it becomes difficult to debug the actual cause of

failure.

 Data Trace checker: To quickly reach to the point of failure we have used Data trace checker which
compares the change sequence of each processor register with reference mode with a queue based
checker.

Figure 6 Proposed flow application in jump

command verification

7

Data trace checker is very useful in verifying out-of-order scenarios because in these scenarios the model

register trace changes immediately but the design updates them at later point so having a change based method is

useful as compared to per cycle or per instruction checking. For storing all the data traces, golden output as well

as inputs, a file based approach is used where data is stored to and read from the files and then filled in queues as

having only the dynamic queues might affect the simulation speed due to huge data size and also using files eases

the process of debugging.

D. Seamless use case poritng from block level to SOC level

To enable seamless use case porting which are received from software teams as well as for faster scenario

replication testbench architecture implements a two way communication between stimuli generator and the input

files. So the testbench can either generate the stimuli or consume the inputs provided.

 Stimuli to input: This is a conventional way in which the stimuli generator generates random stimuli and

writes it to input files in terms of program file, data file and programming sequence file which is used by

reference model and design.

 Input to stimuli: In this mode the stimuli generation is turned off with a parameter. The use-case which is

present in input files is read by stimuli generator and used by testbench .

IV. PERFORMANCE ANALYSIS INFRASTRUCTURE

Performance is one of the most critical aspects of any processor design and hence it is imperative to have a

well defined infrastructure in the verification environment upfront with which we can find the performance

limiting factors earlier in the design cycle. The design for which we implemented our verification environment

Figure 7 Testbench Architecture

8

was an image processing core which was to process real time vision data and therefore had stringent performance

requirements. Performance was to be analyzed in two ways. First was the bandwidth requirement of the core for

accessing memory and other was the pipeline latencies in different image processing operations due to the

accelerators present alongside the main pipeline.

Our infrastructure was based on but not limited to analyzing the performance data which was dumped with the

design in form of different counter values which indicated performance factors in different forms. A performance

monitor was implemented which collected performance data in each testcase throughout the regression and then

with the help of some scripting it converted the data to a more analyzable from and written it into an xls file. The

data mined out in this way was represented in from of different bar graphs, pie charts and scatter plots with which

it was simple to look at the performance bottlenecks. This entire infrastructure was used in a plug-and-play

fashion in the sub-system level verification environment where actual use cases were to be run.

V. EXPERIMENTAL RESULTS

 The Proposed verification flow was tested on a custom image processing core which had a scalar and a vector

variant. Scalar unit had scalar & matrix operands, 9 ALUs, 1 Multiplier and ~ 256 GPRs. Vector units had scalar,

vector & matrix operands, 4 ALUs, 4 Multipliers and ~100 GPRs. Both units had three-stage pipeline-micro

architecture, branch prediction and Out-of-order execution. Apart from this there were dedicated accelerators for

implementing image processing kernels which are working in parallel with the pipeline. Accelerators were

processing the image data present in Matrix Register and were triggered by writing on some special purpose

register. These accelerators added new intricacies to the design by adding several hazard scenarios with the main

pipeline.

Total verification time for the image processing CPU and hardware accelerator was 30 man weeks. The

verification environment described herein was developed completely from scratch. Approximately 10K

functional coverage bins were created. Typically between 12K to 15K random test runs were required to achieve

desired functional coverage. 200 odd bugs were found in both design and reference model during verification

cycle. The design was signed off with 100% functional & code coverage to get to the confidence. No additional

bugs in the CPU or hardware accelerator were found by anyone after IP level verification. Silicon has been

evaluated and is considered to be a first pass success.

In addition to verifying the core pipeline and hardware accelerators, with the UVM block level testbench

different image processing algorithms were verified. Black level measurement, Dead pixel detection, Debayering,

Denoise, High dynamic range, Edge detection using Sobel and Laplacian operators are some of the examples of

image enhancement operations that were simulated in the block level testbench.

VI. FUNCTIONAL COVERAGE

The Coverage model included the functional cover-points to cover different instruction opcodes, operands and

special fields. Cross coverage was extensively used to insure that all permutations and combinations of different

instruction and operands are covered. Hazard scenarios needed special attention in functional coverage model as

well. Transition coverage was instrumented for instructions and operands to model and cover all possible hazard

conditions. For example multiplication was a 4 cycle instruction and rests of the instructions were 3 cycle

instructions. If same operand is used in the consecutive commands after multiplication that implies there should

be a stall in the design. Similar was the case with accelerators as if accelerator was working on some set of

registers and those registers are also accessed by main pipeline it lead to hazards.

9

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a verification methodology based on UVM and System Verilog as an efficient

solution for various processors specific verification challenges. This methodology can be easily adapted for

different processor architectures without significant changes, one needs to embed the instruction set architecture

and this solution can be reused. The solution is purely based on open source methodology UVM and standard

language System Verilog. We also briefly discussed other existing solutions for processor verification and

compared them for their advantages and disadvantages. In our future work, we plan to test the methodology in the

verification of high-end processor designs and its extensions for multi-core processor verification at subsystem

level needs to be explored.

REFERENCES

[1] C. Spear, “System Verilog for Verification, A Guide to Learning the Testbench Language Features,” Springer, 2008G.

[2] S. Rosenberg, M. A. Kathleen, “A Practical Guide to Adopting the Universal Verification Methodology (UVM)”, Cadence Design
Systems, 2010.

[3] E. Hennenhoefer, and M. Typaldos. “The evolution of processor test generation technology,” Obsidian Software Inc., 2008.

[4] J. C. Chen, “Applying CRV to microprocessors,” EE Times-India, December 2007.

[5] Seonghun Jeong , Youngchul Cho, Daeyong Shin, Changyeon Jo, Yenjo Han, Soojung Ryu, Jeongwook Kim, and Bernhard Egger.
"Random Test Program Generation for Reconfigurable Architectures". In 13th International Workshop on Microprocessor Test and
Verification (MTV). Austin, USA, December 2012.

[6] Allon Adir, Eli Almog, Laurent Fournier, Eitan Marcus, Michal Rimon,Michael Vinov, and Avi Ziv. Genesys-pro: Innovations in
testprogram generation for functional processor verification. IEEE Des.Test, 21(2):84–93, March 2004.

[7] E. Bin, R. Emek, G. Shurek, and A. Ziv. Using a constraint satisfactionformulation and solution techniques for random test program
generation.IBM Syst. J., 41(3):386–402, July 2002.

[8] Prabhat Mishra and Nikil Dutt. Graph-based functional test program generation for pipelined processors. In Proceedings of the
conference on Design, automation and test in Europe - Volume 1, DATE’04, pages10182–, Washington, DC, USA, 2004. IEEE
Computer Society

