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Abstract— The work presented is the outcome of deploying the portable stimulus standard (PSS) to an automated 

test equipment (ATE). The target is to demonstrate that by combining design verification tools with the capabilities of 

an ATE it is possible to enable a new methodology for the development of functional test cases and their execution using 

high-speed IO interfaces on an ATE system. Alongside the coverage increase, time to market (TTM) and test time will 

be reduced by downloading and debugging a compiled test executable instead of classical vector patterns. Additionally, 

vector memory can be freed by adding new and dedicated memory for functional test. Adopting the new methodology 

involves investing in new hardware and software. The gain will be savings in TTM, test time, increased coverage and 

therefore an increased quality. 
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I.  INTRODUCTION 

Portable Stimulus Standard was introduced by Accellera System Initiatives in June 2018 as Portable Test and 

Stimulus 1.0 followed by PSS 2.0 in April 2021 [17]. PSS is addressing obstacles which have been restricting the 

functional verification community before. PSS, for example, supports the portability of test content between 

multiple platforms by providing a single standard way to specify validation intent and behavior [17]. PSS allows to 

increase productivity and quality of functional validation [18] and enables customers to choose between different 

PSS tools for their tasks. These advantages helped PSS to become an emerging trend in functional verification. 

Automated Test Equipment (ATE) is mainly used during IC production to detect fabrication defects. ATE usage 

guarantees a low defect level of delivered ICs, which is essential to provide working devices to customers. Millions 

of produced ICs require ATEs to be optimized, reducing test time by increasing its degree of automation and 

parallelization. Typically, the test time per device is dominated by scan test patterns created by automated test 

pattern generation tools (ATPG). The scan test methodology requires dedicated design for test (DFT) hardware 

implemented in the ICs inserted by Electronic Design Automation (EDA) tools during the design. 

By the combination of the presumably two independent worlds of PSS and ATE significant benefits can be 

realized. In this paper, it will be explored why it makes sense to combine the design verification tools supporting 

PSS with the capabilities of an ATE into one consistent validation flow. We further explain how we managed to 

create the flow and which benefits could be achieved by a novel approach to functional test development and 

execution using high-speed IO. 

II. MOTIVATION 

A. Increasing design complexity 

Recent publications about electronic market expectations [1] and long-term future trends [2] indicate that there 

is a continued need for new product developments especially in the area of mobile phone processors, high 

performance computing devices, machine learning and network & cloud computing. The demand for new and 

extended functionality of SoCs will have a continued impact on increasing design complexity. Since the 1970s, a 

constant increase of the number of transistors integrated on an IC can be observed which led to the formulation of 

Moore's law [4], [3] which is e.g. enabled by continuously optimized design processes solving the increasing design 

complexity. 
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In addition to the higher gate count, more factors lead to increased design complexity shown in [1]. Based on 

the example of mobile phone evolvement, it is shown that between 2004 and 2022, the technology nodes used for 

IC design have changed from 130nm to 5nm while advances in packing technology are allowing for an increasing 

number of integrated chiplets. Within the same period the mobile phone generation evolved from 3G, 3G+ over 4G 

and 4G+ to 5G each supporting increasing data rates. Furthermore, an increasing number of integrated embedded 

IP blocks and functions such as cameras, sensors, memories, GPUs and more led to more and more complex SoC 

design architectures, including multiple integrated CPUs and bus systems.  

B. Increasing importance of functional test for production test 

The increasing design complexity along the vectors of advanced packaging, technology nodes, higher gate count 

and more complex SoC architectures leads to consequences for the typical test content on an ATE. 

Advanced packaging technologies enabled the usage of chiplets which emerged to one of the hottest trend in 

semiconductor engineering like many buzzing headlines are indicating [5], [6], [7], [8], [9]. One of the reasons for 

the increased usage of chiplets is increased yield and consequently reduced cost using smaller dies [10]. Assuming 

a constant defect density on a wafer leads to less defective dies if smaller dies will be produced. But this cost 

advantage has consequences for the final packaged System-on-Chip (SoC). Interconnects between the chiplets are 

not bonded to the package boundaries and are therefore not accessible for test. The integrated functionality is likely 

distributed over different chiplets and cannot be tested on a per die basis. Both reasons are bringing challenges for 

classical scan-dominated production tests. 

New technology nodes add new failure modes like bridges and necks to the classical failure modes such as 

stuck-at and shorts [11]. The new failure modes are leading to unpredictive coupling [11], [13] between signals and 

make test engineers look back to functional test and the original intent of the design [11]. 

The high number of gates shows the limit of ATPG requiring new methodologies for production test, as [12] 

indicates. The example suggests that a SoC developed in 22nm technology with 2.5 billion integrated transistors 

tested with a high ATPG coverage rate of 99.5% still has 12.5 million untested transistors. 

Additionally, the more and more complex SoC architectures with their multiple integrated CPUs, peripherals, 

and bus systems in leading-edge devices allow for "concurrent scenarios" to be executed which are extremely 

difficult to be detected by typical production test patterns [12].  

 

The typical production test content is currently dominated by structural tests e.g., scan test Figure 1, and will 

likely see a trend for an increasing amount of classical functional tests due to the points mentioned above. 

C. Resulting opportunity 

Functional test content and typical production test content (mainly structural tests) are showing fundamental 

differences. Both are usually developed by different teams with different tools. Functional tests are typically 

developed in the form of embedded software tests and executed in mission mode. In contrast, typical production 

test content are vector test patterns and are stimulated at the chip boundary with the IC operated in test mode. 

Functional test content is usually downloaded to the SoCs internal memory via high-speed interfaces using logical 

protocols. In contrast to this, production test patterns are often stimulating parallel interfaces using physical 

protocols. 

Figure 1. Example of final test time break down. 
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The deltas between functional and structural test content lead to several challenges when functional test content 

shall be executed on an ATE. Converting the functional test content into typical production test vector pattern 

requires extensive development time. In addition, on standard ATE equipment, the production test-patterns are 

stored in the vector memory, a sparse resource on an ATE. This leads to a conflict for using the limited resource of 

vector memory between scan test and functional test. An increasing number of integrated gates needing more scan 

pattern will worsen the situation. Finally, test time is one crucial aspect of the production test. Classical ATEs do 

not support native HSIO interfaces but operate with parallel interfaces in test mode. Taking the given problems into 

account there will be a novel approach to functional test development and execution using high-speed IO proposed 

solving for the following problems: 

• A seamless SW driven execution of unconverted functional test content on an ATE. 

• An ATE HW supporting functional HISO for native instead of physical DUT-ATE communication. 

• Bringing functional coverage and constraint random test content to an ATE. 

• Providing a native SW debugging environment instead of a vector pattern compare mechanism. 

• Enhancing the PSS scenario analysis with a functional viewer integration on ATE. 

III. APPROACH 

A. Detailed considerations of selected problems bringing functional test to an execution on an ATE 

One question a validation engineer needs to answer is the question about functional coverage which is often 

hard to be answered and may lead to following approach. First, the validation engineer checks the SoC architecture 

for potential test paths and potential parameterization needs to access the SoC components. Second, the validation 

engineer creates out of this analysis validation requirements, maps the test cases to the requirements and reports the 

number of passing test cases over time versus an expected test case pass curve. It will be shown in the next chapters 

of this paper how the novel approach will improve the situation for the validation engineer. 

Bringing functional test content to an ATE, the validation engineer needs to convert the functional test into a 

vector-based test pattern which an ATE can execute. A standard methodology to convert functional tests for the 

usage of an ATE requires quite extensive development time. A complete functional test is usually composed of 

different sub-tests which are independently simulated during the SoC design phase, such as:  

• Initialize the SoC, bring the IC into test mode and map the parallel IF to the chip boundary. 

• Stimulate the parallel IF to load the functional test content into the SoC internal memory. 

• Switch the SoC into mission mode and execute the functional test. 

Historically, the correct bus timing for the parallel interface needs to be applied. During the RTL-simulation the 

pin level signals need to be strobed and saved e.g. as a VCD file. This VCD file needs to be transformed into an 

ATE compatible vector pattern format. It will be shown how this pattern conversion step can be avoided. 

Bringing functional test content to an ATE requires native software debugging environment on an ATE system 

to reduce extensive debug cycles. In a native software debugging environment software traces indicate what went 

wrong during the execution of the test. This helps to generate ideas for potential SW breakpoints. Once identified, 

an in-system software debugger is started and the embedded SW and register states can be analyzed. On an ATE-

based system only the expected and received pattern can be compared and deviations can be observed after the test 

execution. It is very hard to re-translate the pattern deviation into SW semantics of the original functional test case. 

Debugging of functional test case failures on an ATE therefore often becomes a joint debugging effort of expert 

groups including debug pattern creation, pattern re-simulation and pattern re-execution. This process often needs 

to be repeated multiple times, making functional debug a cumbersome process on an ATE but can be avoided. The 

following sections of this paper will explain how the process can be improved significantly. 

B. Functional test development and execution using high-speed IO 

Taking the fundamental problems described above into account the approach bringing functional test content to 

an ATE-based system needs to be re-thought completely. This includes the test content creation, the interface of 

the functional test content to the ATE, the ATE SW and HW, and the analysis and debug phase of test content 
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failures. Altogether the considerations led to the development of a novel approach for functional test development 

and execution using high-speed IO which is visualized in Figure 2 and which will be explained in detail in the next 

chapters of this paper. 

 

IV. FUNCTIONAL TEST CONTENT CREATION: USING PSS AS MODELLING LANGUAGE 

A. PSS Model Positioning for ATE 

Using the PSS (Portable Test and Stimulus Standard) intends to create for SoCs or sub-systems a rich set of test 

scenarios in a reusable way. This is achieved by a PSS model written in a DSL (Domain Specific Language) which 

is defined once with characteristics that it can be shared between multiple projects and teams. 

The fundamental reuse aspect of PSS is the base idea for this project. That means, reusing well-defined and 

portable PSS models in the ATE world that have been created and tested already in the pre-silicon world. Mature 

pre-silicon verification techniques like coverage and efficient messaging implementations can be adapted as well 

as technology specific cache coherency or power modeling solutions as part of existing libraries. The PSS modeling 

capabilities have the flexibility to provide a runtime control from the outside world that enables the integration with 

an ATE system. Moreover, a solver engine is used to create only valid tests out of the PSS model. Using a PSS 

model as the fundamental input, verification techniques from the pre-silicon domain is available in the ATE world. 

B. Preparation of a controllable PSS model for Post-Si 

To work with the re-usable PSS model without a long learning curve, a human interface is available. The given 

and reused PSS model, a UML diagram (compare with the figure [Figure 3] below) with related control knobs will 

be extracted and proven. The control knobs enable on-the-fly parameterization of the test case on the ATE with its 

order-of-magnitude faster execution than in pre-silicon simulation or emulation. Leveraging PSS and its tool 

support even novice PSS users can compose scenarios for ATE, constraint them, and set individual attributes for 

the PSS model to express the verification intent. For experienced users and in highly automated environments it is 

possible to define the verification intent in batch mode as well. 

Out of the instrumented PSS model, one or more valid scenario solutions will be created. Thus, the PSS model 

developer has the chance to sort and qualify the tests based on the available generation time coverage, without any 

required execution of the test itself. Additionally, it is recommended to insert already hooks for the planned ATE 

integration into the PSS model. These hooks are defined exchange parameters (control-knobs) and return values to 

influence the runtime behavior of the test and enable analysis. 

After all valid test scenarios are identified, C-code will be generated. This code is required to be processed by 

the appropriate toolchain. This means to execute project-specific compilation, linking and binding steps. The 

resulting output should be a ready-to-go executable or memory image, depending on the ATE setup. During the 

execution of that code functional, runtime coverage will be collected. This collected functional PSS coverage is 

based on constraint random data and represents a major add-on to the ATE world and increases the quality of the 

Device Under Test (DUT) significantly e.g. by covering defect types described in [II.B]. It is not only based on the 

Figure 2. A Novel Approach to Functional Test Development and Execution using High-Speed IO. 
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classical random data coverage. Moreover, it can and should contain top level scenario coverage, that should be 

provided by PSS models out of the box. All this together makes the DUT and the related system behavior to become 

more and more a grey box. 

V. INTERFACE TO ATE: FDAT INTERFACE 

An important topic in the ATE world how to manage hundreds or thousands of test executables most efficiently. 

The question is: How can we easily hand over many tests from one team to another or share it between multiple 

company locations? The proposal is a kind of bundle or container – it is called FDAT - that contains all the 

information required to run a single test or a complex tests-suite. The FDAT container (shown as interface in Figure 

4] below) is a well-defined infrastructure including the required test binaries and test parameter sets, optional source 

code, documentation, statistical analysis tools, debug kits, and other items that are required. The container itself is 

not a fixed format, its open for customized extensions. 

VI. ATE SW: FDAT BASED TEST EXECUTION CONTROL AND AUTOMATION  

A. FDAT based test execution on ATE 

With single or multiple FDAT containers as an input it is quite easy to step through a complete ATE flow. The 

ATE engine will be instrumented appropriately, based on the content of the FDAT container. The high-speed IO 

interfaces to download the test and upload the results are activated appropriately. Potential monitors and debug 

interfaces are also prepared. The ATE will be started and will communicate via the HSIO interfaces with the DUT. 

Depending on individual needs, it is possible to work in basically two major modes. One is the interactive mode 

for debug and or for analysis in a development environment. The second one is the fully automated mode in high-

volume production. Regardless of which mode, the explained flow is always the same. To achieve this, new and 

extended mechanisms are introduced on the ATE side and in PSS modeling. For the ATE HW new elements are 

developed to enable fast HSIO communication between the ATE HW and the DUT. On the software layer new 

mechanisms are implemented to control and steer the test case on the DUT via the well-defined PSS interfaces. To 

read back the internal status of the DUT improved mechanisms for data logging and memory dumps transfers have 

been developed. And finally, improved analysis-interfaces are available based on the new data streams, which are 

introduced in the following chapters. 

B. Efficient parameter handling 

One of the newly developed project features is a smart solution to change parameters of the test executed on the 

DUT, without the need to recompile the complete test. The delivered SW as part of the FDAT container is prepared 

accordingly, to make this possible. That means there is a major static part of the SW that will be loaded only once 

for execution. Many small SW pieces represents the parameter sets, that will be exchanged on-demand by the ATE 

control software - automatically. That enables a high degree of automation for systematic DUT behavior testing, 

which was not available out of the box before. Additionally, it is guaranteed that those tests are executed with the 

best possible performance, because the re-load time is reduced to a minimum. 

C. Coverage increase and statistical analysis 

It was explained, how the DUT will be controlled and how the input/output data are processed. Following a 

brief introduction of the analysis part with the help of an example. Let us assume (as shown in figure Figure 3] 

below) a multi-core cache coherence use-case was defined with the help of a PSS model. The model contains 

multiple loops for different parameter sets. The parameter sets itself represents multiple variants for the cache setup. 

All are encapsulated with the FDAT containers and have been executed already. The provided output data are 

supplied to the ATE result analysis process. The analysis process will create diagrams, tables and instrumented log 

files for human inspection and evaluation. Important here is, e.g. the very expressive shmoo diagrams combining 

two dimensions: The data delivered from the functional PSS model - like the status of cache, mem-size, loops, 

timestamps etc.  - and the data based on physical parameters - like clock and voltage and more. PSS-based run-time 

coverage is delivered with the functional PSS model. This combination adds a new quality for those types of 

diagrams and offers a deeper understanding of the internal status of the SoC and dependencies of the executed test. 
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VII. TEST EXECUTION VIA ATE HW 

A. Smart Compute Instrument 

In this project, a new Smart Compute Instrument (SCI) was developed that was seamlessly integrated into the 

existing ATE HW & SW. Its key features are the support of native HSIO interfaces, a parallel JTAG interface 

support and it is equipped with memory. This SCI allows to natively interact with the Device Under Test (DUT) 

via a low pin count HSIO without the need to physically stimulate a parallel high pin count interface in DUT test 

mode. The functional test content delivered as FDAT container can be downloaded by the ATE SW directly to the 

DUT without pattern conversion using the HSIO of the SCI. Because of its memory, the new Smart Compute 

Instrument can store the functional test content and offload the vector memory of typical digital ATE instruments 

used for scan patterns. Thus, the conflict of storing functional and structural test content in the limited vector 

memory could be resolved. Furthermore, the native JTAG interface support offers the opportunity to connect a 

native in-system software debugger easing the debug process of failing test cases. 

B. Test Scheduler 

To complete the communication chain between ATE SW, the Smart Compute Instrument and the DUT a Test 

Scheduler was developed which is executed on the DUT. It is the communication interface between the ATE and 

the functional test case. For instance, the Test Scheduler starts and stops the functional test and downloads the test 

via the HSIO interface to the DUT memory. Furthermore, it collects software traces and test results generated by 

the functional test case used during the analysis of test results once the test cases are terminated. 

VIII. ANALYSIS AND DEBUG 

The collected software traces will be analyzed to debug failing test cases after the set of test execution results 

(pass/fail overview) has been evaluated. In the newly created software trace view as part of the ATE SW which is 

called Activity Trace Viewer the validation engineer can evaluate what has happened during the execution of the 

functional test case on the DUT in a human-readable form. This allows an so far unprecedented view into SoC 

operations on an ATE for failing functional test cases and was described as one main problem in [III.A]. 

Furthermore, the so-called Activity Trace can be exported into an external Scenario Viewer and be correlated with 

the original PSS model. The insights gained by evaluating the Activity Trace SW Viewer and the external PSS 

Scenario Viewer are likely helping to derive breakpoints for in-system debugging. In this project, a typical in-

system debugger for embedded SW applications (Lauterbach Trace 32) was integrated to support embedded SW 

debugging. 

IX. APPLICATION 

In this chapter, the results generated by implementing the described flow on an FPGA-based DUT and an 

outlook for real-life application will be shared. The supporting products of Cadence and Advantest will be briefly 

explained, and an outlook into further applications will be given. 

 

Figure 3. Complex devices and use cases are supported. Parameter variation and automation enable design optimization. 
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A. Functional Test Cases created by PSS successfully used for design validation on an ATE 

As shown in figure [Figure 3] the project was brought to a state where a complex multicore test case including 

test parameters was modelled in PSS and successfully executed on a ZCU 102 FPGA configured as depicted in 

figure [Figure 3]. With the help of the parameter exploration capabilities of the functional test on the ATE a shmoo 

plot could be created. The parametric results returned as part of the SW traces could be extracted and visualized in 

a two-dimensional graph. (average cycle per byte access diagrammed over memory access size). This allows for 

instance to evaluate the SoC specific gain which could be achieved by enabling the cache. This enables so far not 

possible design exploration capabilities based on functional tests executed on an ATE and was made possible by 

our novel approach to functional test development and execution using high-speed IO. 

B. Full execution cycle can be achieved within minutes 

The graph shown in [Figure 4] shows the realization of the novel approach to functional test development and 

execution using high-speed IO interfaces. The tight integration of all components allows executing an entire 

validation cycle within minutes. A complete validation cycle starts at the test content modification, including 

recompilation, parameter adaptation, execution of the test on an ATE including result and software trace evaluation, 

setting up the in-system debugger, stepping through the executed code and comparing with the original PSS model. 

This is a signification improvement in terms of time and effort compared to the original debugging approach on an 

ATE as described in [III.A]. The original approach could easily take days to bring the correct expertise together for 

a joint debug effort and think of the limited availability of ATE resources to re-execute a debug pattern. 

 

C. Enabling new ways of work 

Utilizing the developed flow in a real-life application enables entirely new ways of work on an ATE-based 

system for test content creation, during engineering, and for High-Volume-Manufacturing (HVM). A tool-based 

functional coverage statement could already be generated at the point of post-silicon test case creation. The 

coverage of the design can be analyzed by a defined set of parameters which also can be used to change environment 

conditions such as voltage or temperature to increase the quality of the device further. 

The introduced approach allows the usage of a typical SW environment to create, run and analyze test failures 

while remote access to the ATE is possible as well. During device and test bring-up the usage of known in-system 

SW debuggers is supported and test failures can be pre-analyzed by the integrated Activity Trace SW trace viewer. 

Once the test runs smoothly, the unified SW environment on an ATE allows transferring the test cases easily to 

characterization or production. In addition, the high automation capabilities of the ATE-based system are enabling 

a constant monitoring of the device quality based on a complete set of functional tests. 

D. Potential future applications 

The novel approach for functional test development and execution using HSIO interfaces has proven to be 

working. The validation engineer, therefore, can focus on the test content rather than on the validation environment. 

Exploring the possibilities of the validation capabilities that the introduced approach could achieve seem to be the 

Figure 4. Realization of A Novel Approach to Functional Test Development and Execution using High-Speed IO. 
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next valid step. It is easily possible to extend this approach to address validation tasks like cache coherency testing, 

bus congestions scenarios, and power measurements during execution or adaptive voltage and frequency scaling. 

In addition to this it may be evaluated how to simplify environment control options such as temperature even more. 

E. Products of Cadence and Advantest supporting the introduced validation flow 

• Cadence Perspec System Verifier supports Accellera Portable Stimulus Standard (PSS) 2.0, enables 

correct-by-construction generation of tests, supports easy portability of test content to derivative projects 

and reports generation and runtime coverage metrics. 

• Advantest SmarTest & V93000 supports collaborative test program development (Java), supports the 

user with a content assisted UI based on Eclipse (extendable), is a scalable SoC test platform, incorporates 

innovative per-pin testing capabilities and tests a wide range of devices. 

• Advantest Smart Compute Instrument is designed for applications like SW-driven functional (self) 

test and SCAN over standard HSIO IF. It supports JTAG and other control and debug interfaces. 

• Cadence Indago support synchronous analysis of Activity Trace and source code as well as waveform 

like analysis of Activity Trace. 

X. CONCLUSION 

In this paper, we demonstrated the benefits of a novel approach to functional test development and execution 

using high-speed IO. This was achieved by combining the benefits of design verification tools with the capabilities 

of an ATE system. The design coverage can be increased for production test by bringing functional coverage and 

constraint random testing to the ATE world. The combination of test and environment parameter variation allows 

for more in-depth design exploration. The functional tests do not occupy vector memory any longer, which further 

increases structural and functional coverage. The proposed approach is reducing the efforts for functional test 

development and execution on an ATE significantly by native execution of functional test downloaded via HSIO. 

Similarly, the native SW bring-up and debug environment introduced significantly reduces the effort for analyzing 

test failures. Summing up the novel approach to functional test development and execution using high-speed IO 

improves throughput and Time to Quality (TTQ) while reducing the Time to Market (TTM). 
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