
A novel approach to create multiple domain based DV architecture

to address typical Verification challenges, for the DUT with mutual

exclusive functionalities, using UVM Domains

Author-1

Subham Banerjee

Xilinx Asia Pacific Pvt. Ltd.

5 Changi Business Park

Singapore – 486040

Author-2

Keshava Krishna Raja

Cisco Systems India Pvt. Ltd.

Cessna Business Park

Bangalore – 560103

1. Introduction

Designs with mutually exclusive functional islands are around for quite some time. For an example,

multiple reset-island, mutually exclusive Ethernet/Interlaken pipes within MAC Layer, etc. These mutually

exclusive design-islands can be reset, configured or re-configured independently.

To be more specific, our DUT which is a Line-Side-Gigabit-Transceiver, can support 8 Ethernet lane, and

each lane can be configured in different line-rate and can be used as isolated, or combined together to make

10G to 100G Ethernet pipe. So for a DUT like this, lanes can be configured and reconfigured at any given

time without disturbing other lanes.

To support this mutual exclusivity within a DUT, the challenges in Design Verification increases. With

ever increasing complexity of data processing and dynamic traffic handling, it becomes harder to address

all verification requirement, without a structured approach.

The proposed method addresses these challenges by devising a fully automated, scalable and reusable

environment based on UVM_DOMAIN and runtime UVM_PHASES. UVM_DOMAIN, creates and

controls the verification environment in such a way that basically mimics the mutual exclusivity in DUT.

UVM_DOMAIN is the inbuilt UVM base class, which works like a bridge between all the

UVM_COMPONENTs and UVM_PHASE class. By default all the UVM_COMPOENTs are part of a

default domain. As a result, all components are in sync as per as phasing in concerned; which means

‘next_phase’ of any component will only start when ‘current_phase’ of all the components are completed.

Till that time, the components which already completed the ‘currect_phase’; can’t proceed further in phase

execution.

The proposed methodology recommends to create multiple of such domains, based on the required mutual

exclusivity of the specific DUT. This will give an advantage to control phasing of different portion of the

testbench in asynchronous manner to each other. This means one portion of testbench which belongs to one

DUT

Pipe0

IVC

Pipe1

IVC

PipeN

IVC

Pipe0

IVC

Pipe1

IVC

PipeN

IVC

PipeN Scorebaord

Pipe0 Scorebaord

UVM_DOMAIN

Figure 1 Single Domain Testbench for multidomain DUT

particular domain (say domain0); can proceed, continue or jump across UVM_PHASES without disturbing

other components that belongs to another domain (say domain1). Hence the mutual exclusivity within the

same testbench is achieved.

2. Concept Description

A typical UVM based environment consists of multiple INTERFACE-UVCs (Interface Verification

Component), MODULE-UVCs (Module Verification Component). These INTERFACE-UVCs (IVC)

house single or multiple agents with sequencer, driver, monitor and the sequences. Typically for each DUT

interface we have one INTERFACE-UVC and they are responsible for creating and driving

packets/stimulus into DUT interface. And MODULE-UVCs (MVC) will contain the scoreboards, checkers

and DUT configuration class etc. Module-UVCs are responsible for DUT configuration, initialization, and

checking the correctness of the logic.

By default there is one domain called ‘UVM_DOMAIN’. All the DV components, such as INTERFACE-

UVCs and MODULE-UVCs are implicitly mapped to this domain [Figure 2], during build phase.

This single domain approach has some inherent shortcomings, when we need DUT-like mutual exclusivity

in a verification environment. With single domain, the environment will have a single phase-scheduler;

which will control the phasing of all the components together. But for mutual exclusivity, we need

independent phase scheduling, and selective controllability of each phase scheduler.

For an example DUT [in Figure 2], it has four different ENET pipes (each pipe consists of multiple ports).

Each pipe can be configured as 10GE, 100GE, or 40GE modes. These configurations can change

dynamically for single or multiple pipes. To achieve this, Testbench needs to be very flexible and responsive

towards the DUT activities during this transition. Testbench also needs to re-configure DUT/Pipe based on

the new modes. Below are the primary steps the Testbench needs to take care of:

1) Need to have the detailed information about old and new modes with the pipe information, which

is getting reconfigured.

2) Reset only the logic for the effected pipe.

3) Stop the traffic generation from the agents, which are associated with this pipe.

4) Make a phase jump of the selected domain, which is mapped with this pipe, to reset_phase. All the

DV components that are mapped with this domain will start afresh from the reset phase.

5) Agents will get re-initialized and re-configured based on the new mode.

6) Scoreboards, which belong to the effected pipe, will get re-initialized and all the stale data will get

flushed out.

7) TB configuration-class (uvm component) will start the reconfiguration of the DUT/pipe based on

new mode.

8) Once the configuration is done, the Agents will resume traffic and scoreboarding will start for the

reconfigured pipe.

The Testbench should be flexible enough to do all the above steps automatically for any pipe, at any time,

and for any kind of mode transition. To achieve that, following points should be kept in mind while

architecting a multi-domain DV environment [Figure 3].

I
n
g
r
e
s
s

E
g
r
e
s
s

Independent Resource
Pipe0

Pipe1

PipeN

Figure 2 Multiple Independent pipes

DUT

Pipe0

IVC0

Pipe1

IVC0

PipeN

IVC0

Pipe0

IVC1

Pipe1

IVC1

PipeN

IVC1

PipeN MVC

Pipe0 MVC

 PipeN_domain

Figure 3 Multi Domain Testbench for multidomain DUT

1) Identify the mutual exclusive domains in DUT.

2) Create those many uvm domains in DV environment.

3) Map DV component with a particular domain based on its associativity with DUT. For an example

Pipe0 has one agent, one scoreboard. Those components should be mapped to pipe0_domain. The same

should be repeated for other pipes.

4) DUT configuration class which includes all constraint to ensure legal/supported modes for each pipe,

will have a separate domain. This needs to be synced with all domains and whenever there’s a

pipe_domain junp, configuration class also should jump to reconfigure the new modes.

3. Implementation

In multiple domain approach, each DV component is mapped to a corresponding domain based on its

association with DUT. Since each ‘Domain’ can be associated with one or more DV components, and they

can be at any hierarchy in the environment, TEST-class is chosen to create and map the domains.

Since all the domain based mapping can be done from the top level, so this feature can be

appended/added to any existing Testbench framework as well, without much hassle. This is a huge

advantage, which avoids lot of re-work and code change.

 Pipe0_domain

 Pipe1_domain

PipeN_domain

P
ip

e
C

o
n

fi
gu

ra
ti

o
n

(C
o

m
m

o
n

 D
o

m
ai

n
)

i) As mentioned, the first steps is to create the domains, as shown below.

ii) Next is to map the DV components to its corresponding domains as shown below:

class user_test extends uvm_test;

…..

uvm_domain m_pipe_domain[N];

uvm_domain m_common_domain;

function new(string name, uvm_parent parent);

 ……

 foreach (m_pipe_domain[i])

 m_pipe_domain[i] = new ($sformatf(“m_pipe_domain[%0d]”,i);

 m_common_domain = new (“m_common_domain”);

endfunction

….

endclass

class user_test extends uvm_test;

….

function void connect_phase (uvm_phase phase)

 ……

 //Recursive:
 foreach (m_pipe_ivc[i])

 m_pipe_ivc[i].set_domain(m_pipe_domain[i],1);

 foreach (m_pipe_mvc[i])

 m_pipe_mvc[i]. set_domain(m_pipe_domain[i],1);

 //Non-Recursive (When all the components under ivc is not

 //intended to be mapped):
 foreach (m_usr_ivc[i])

 m_pipe_ivc[i].set_domain(m_pipe_domain[i],0);

 foreach (m_pipe_mvc[i])

 m_pipe_mvc[i]. set_domain(m_pipe_domain[i],0);

 m_config.set_domain(m_common_domain)

endfunction

…

endclass

iii) The recursive and non-recursive mapping is solely based on the DV requirement.

iv) There are some scenarios, where two different domains need to be in sync all the time. This

means if there’s a configuration component which needs a phase-jump whenever any other

domain goes through the same. Thus any two or more domain can be in sync.

v) Once the mapping is done, next step is to selectively control the jumping of the phase scheduler

of each domain, during a simulation when needed.

class user_test extends uvm_test;

….

function void main_phase (uvm_phase phase)

 ……

 foreach (m_pipe_domain[i]) begin

 //If pipe ‘i’ is getting reconfigured
 if (reconfired_pipe[i])

 m_pipe_domain[i].jump (target_phase::get());

 end

 m_common_domain.jump (target_phase::get());

endfunction

………

endclass

class user_test extends uvm_test;

….

function void connect_phase (uvm_phase phase)

 ……

 ……

 foreach (m_pipe_domain[i]) begin

 m_common_domain.sync (m_pipe_domain[i]);

 end

 //NOTE: There’s unsync API as well.

endfunction

…

endclass

vi) Simulation execution flow before and after ‘jump’ [Figure 4]. In the following diagram

target_phase has been set to reset_phase. Pipe 1 and 3 are jumping to reset phase while other

pipes are continuing un-disturbed.

4. Results & Analysis

i) Once the environment is ready and loaded with all these flexibilities, it’s very straight forward

to achieve all possible mode transitions for one or more randomly selected pipes, in a fully

automated way.

ii) Four tests covered almost 400 odd unique mode transitions in a multiple Pipe Ethernet DUT,

leveraging this environment.

iii) Almost 120 odd DV components were handled in fully automated fashion during these

transitions.

iv) More common usages of multi-domain DV architecture are, the designs with multiple Reset-

Domains. For example, Ethernet framer (MAC+PCS) and the core logic (TCAM look-up, Buff

Manager, Queue Manager etc.) will be in two different reset domains.

v) Reset and recovery of each domain is mutually exclusive and multi-domain DV environment

can ease our effort in verifying these

Simulation Phase

P
ip

es

Pipe0

Pipe1

Pipe2

Pipe3

Reset Configure Main

target_phase = reset_phase

Figure 4 Phase jumping effect on simulation

Other pipes

(0,2) are going
as usual

Phase jump

occurring for

Pipe1,3 to reset

5. Summary

This ‘UVM_DOMAIN’ based methodology to achieve DUT-like mutual exclusivity definitely has a

lot of advantages as discussed above.

i) It’s very structured way to get the job done

ii) Scenario randomization can happen automatically

iii) Higher functional and transition coverage can be achieved with relatively smaller number of

testcases

iv) Easy to integrate with existing testbench.

Having said that, it also carries some disadvantages as well.

i) It will increase to overall complexity of the test execution.

ii) Testbench designers need to be very careful while integrating the flow, otherwise user

might end up debugging a lot of hang issues, causing from testbench domains.

iii) Testbenches which doesn’t use UVM runtime phases and only relies on ‘run_phase’, will

not get much benefit out of this methodology.

iv) If the execution of the test needs multiple randomization, after every phase jump, then

simulation might go out of memory, as the available dynamic memory might not be

sufficient for resolver to work seamlessly. So based on my experience, it’s better to submit

these jobs in bigger machines or 64bit machines.

6. References

[1] IEEE Standard for SystemVerilog Unified Hardware Design, Specification, and Verification Language

[2] Universal Verification Methodology (UVM) 1.2 Class Reference

