
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

A New Approach for Generating View Generators

Johannes Schreiner, Felix Willgerodt, Wolfgang Ecker
Infineon Technologies AG, Munich, Germany / Technische Universität München, Munich, Germany

Abstract

Code generation is an important key to further productivity

increases in IC design. It also helps to bridge design gaps and to

guarantee consistency across heterogeneous systems. In this

area, different views such as VHDL and C have to be

automatically generated from input data formats (e.g. from IP-

XACT metadata).

We propose a novel approach to an essential task of code

generation tools: the assembly of the target view: instead of

directly generating target code with print-like statements, we

suggest assembling an abstract model of the target view.

Our framework is built around this intermediate model which his

similar to Abstract-Syntax-Trees. To assembly our defined

intermediate format, we automatically generate an API with the

help of metamodeling techniques. We also provide an

automatism to generate the final target view from the

intermediate format.

This reduces the view generation task to population of an

intermediate using an API. Our framework makes developing

generators significantly easier while increasing their

maintainability and the quality of the generated code. In addition

to reducing generator code size by over 50%, our approach

significantly reduces the number of debug cycles during

generator development and increases generator readability.

View Generation State of the Art

1
2
3
4
5
6
7
8
9
10
11
12
13
14

class Entity:

 def getName()

 def setName()

 def addPort(Mode, Name, Type)

 def delPort(pos)

 def getPorts()

class Port:

 def getMode()

 def setMode()

 def getName()

 def setName()

 def getType()
 def setType()

How are view generators built today?

Software that traverses some data structures, computes

information and prints to files (the generated views).

Problems:

• Convoluted, hard to maintain code: with increasing level of

configurability, the readability of view generators suffers.

• Syntax and formatting of the generated code is not

inherently correct. As a consequence, compile-and-debug

iterations are necessary to generate output in the desired

shape. It is further hard to write generic, re-usable code for

tasks such as indentation and formatting that are necessary

for a wide set of views.

• Mismatch between the order of code generation and the

order in which the generated artifacts appear in the target

views. For many of the targeted views, it is necessary to

change different positions of the file for every artifact that is

introduced into the view. For example, variables, types or

other names often need to be declared in one location of a file

before they can be defined and used in another location.

Metamodeling and Metamodeling Frameworks

Figure 2 Model adhering the Metamodel of Figure 1

Figure 1 Simple Metamodel

In Metamodeling, every model is formalized by a so called

Metamodel. These Metamodels define structure, constraints and

other properties of models. Figures 1 and 2 illustrate this using a

sample Metamodel and a model that adheres to this Metamodel.

Metamodeling is heavily utilized for all sorts of automation at

Infineon. Commonly used metadata exchange formats such as

IP-XACT area also based on the Metamodeling idea. Their

success is a good example for the necessity of such well-defined,

common sources of metadata.

Metamodeling Frameworks utilize a formalized description of a

Metamodel (e.g. a UML diagram) to provide a large set of

features for working with models:

• APIs to automatically populate and access models

• Consistency checking of model data (i.e. constraint checking)

• Utilities for reading and writing to XML formats

Listing 1 Simplified API for Metamodel from Figure 1

Listing 1 shows a simplified sample Python API for the

Metamodel from Figure 1. Using this API and other code

generated by the Metamodeling environment, it is easy to work

with models, read, write and modify them and to store them in a

persistent way.

Our approach to generating view generators relies on a

Metamodeling framework and the API that is automatically

generated by it.

We further utilize a description of the grammar, formatting and

coding style of the target view. We refer to this as “View

Language Description (VLD)”. This description is compact,

independent of the generated view (only dependent on its

language) and can thus be easily provided for all relevant view

languages in a one-time effort.

The View Language Description provides:

• Metamodel & View Generator API: Using the View

Language Description, a Metamodel for the so-called Model-

of-View is derived. This description is used to derive a

Metamodel and an API. This API (Front-end using

Metamodeling Environment’s API in Figure 3) is utilized by

developers instead of manually generating target views.

• Target code generator: The entire fully automated process is

pictured in Figure 3: Provided a view language description,

our generation framework can automatically generate

consistent, formatted and syntactically correct target, for

every model that is populated through the API.

Our Approach to Generating View Generators

*

Metamodel

of View

Model of View

Python API

Python API

View

(Target code)

View Code Generator

VLD

View

Language

Description

Automatically

Generated from

VLD File

Front-end using

Metamodeling

Environment’s API

API for View Generator

Developer
View Language

Description:

target view’s

grammar,

formatting,

coding style

Figure 3 Architecture of View Generation Framework

The View Language Description

Entity ::= 'ENTITY ' <Name> ' IS\n'
 [Ports]
 'END ' <Name> ';\n';

Ports ::= $indent('\t')$(
'PORT(\n'
 $indent('\t')$(+Port%[0:-2]: ';\n';
 [-1] : '\n' %+)
 ');\n');

Port ::= $align(‘!')$(<Name> ': '
 '!a' <Mode> '!b'
 <Type>;

Listing 2 Snippet from View Language Description

Listing 2 provides a simplified sample View Language Description

describing the grammar of a simplified VHDL Entity and the

formatting of generated VHDL views. When used to generate

our view generator, the snippet from Listing 2 would result in the

Metamodel in Figure 1 and an API similar to what is sketched in

Listing 1.

Our VLD format contains a set of predefined routines for:
• Indentation $indent('\t')$

• Alignment $align(‘!')$

• Line Length Limitation

Additional routines for postprocessing/transformations of output

can be easily included. The Implementation of these routines is

straightforward in the Metamodeling Environments’ host

language.

Two different VLDs can describe:

• Different languages, resulting in a different Metamodel and

different front-end API

• The same language, the same Metamodel and front-end API

 Adoption and re-use for different coding styles without

 changes to the generator code

Results

• Easier to write view generators: We achieve a code size

reduction by more then 50%, improved readability and faster

to write templates

• Syntax and formatting of the generated code is

automatically correct for every view generator as soon as the

View Language Description is correct.

• Models can be built in the intuitive order from generation

perspective: Developers can ignore the way view artifacts

have to be printed and focus solely on the task of building a

model that contains all necessary artifacts.

