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Abstract—In today’s verification landscape, formal verification is primarily used as a bug-hunting engine in
addition to simulation. Setups in which simulation and formal verification are applied in a mutually-exclusive
manner, on the same design are rare. The difficulty is to validate the verification process, and to be sure
that the two parts (simulation and formal methods) provide the verification coverage required. A detailed
and uniform completeness metrics analysis, spanning both formal and simulation, is rarely applied on real
designs. We propose an approach to adopt formal and simulation in a mutually-exclusive manner. First,
we identified a set of formal-methods-friendly features and which will be formally verified. Next, we used
JasperGold’s ProofCore technology to extract structural coverage metrics from the formal proof and merged
them with the RTL simulation code-coverage to produce a combined coverage-database. This allowed us
to assess and confirm the scope of formal verification compared to simulation. The approach enabled us
to reduce simulation effort as well as increase of the overall verification quality due to the combination of
simulation techniques and formal methods.

I. INTRODUCTION

To cope up with the rising complexity of “system-on-chips” (SOCs), various measures are being adopted by the
semiconductor industry. These approaches include re-using existing components, adopting well defined and proven
development methodologies. In-spite of these adaptations, exponential rise in design complexity threatens to nullify
the effects of improved methodologies. Hence, chip designers and manufacturers are always looking for opportunities
to effectively improve the overall design process.

A. Challenges

The biggest challenge of rising design complexity is to ensure functional correctness of the designs. According
to a series of surveys conducted over the last decade in [1], functional verification requires on an average 50%
- 70% of the overall development time. Hence, design and verification engineers are always looking for ideas
to efficiently reduce the time required for verification, without compromising the quality of verification. UVM
(Universal Verification Methodology), a simulation based technique has been established as a de-facto verification
methodology. UVM allows verification engineers to build effective testbenches and addresses various verification
issues such as simulator-independence, re-usability, scalability, etc. [2]. Simulation based verification techniques scale
better with the growing design sizes but are not intended for exhaustive verification. Hence, design functionalities
that need exhaustive coverage are hard to verify with simulation (ex: 21-bit Hamming Decoder). Application of
simulation on such blocks might lead to possible bug escapes (corner-case/deep space bugs). On the other hand,
Formal Verification (FV) offers exhaustive coverage and delivers high verification quality [3]. Formal-methods have
emerged as a powerful technique, but still suffer from the limitations of mathematics. This is because, FV scales
exponentially with linear growth of design size and require GBs of storage space and minutes/hours for property
proof. Under these circumstances, simulation remains the primary choice for verification in the industry and FV is
used on top of simulation as a bug hunting engine to investigate corner-case scenarios.
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B. Opportunities

As mentioned earlier, both FV and simulation have their own set of strengths and weaknesses. Combining their
positives into a unified verification flow offers several opportunities to tackle functional verification. In cases where
FV is used on top of simulation, one can observe an overlap of verification efforts. Since FV offers exhaustive
coverage, simulation need not be applied on parts that are already verified using FV. A verification approach that
spans across both simulation and formal methods in a mutually-exclusive/complementing manner would offer various
advantages. The term ‘mutually-exclusive’ highlights our approach in which different blocks of the design are either
verified with FV or simulation such that their union provides complete verification of the DUT. A set of guidelines
to select formal-friendly1 blocks and coverage analysis spanning both the techniques are needed to realize the flow.
With this work, we propose an approach to find an optimal mixture of FV and simulation on the same design.

The rest of the paper is organized as follows: Section II briefly talks about related work with respect to formal
and simulation on the same design; Section III describes our proposed approach and various aspects of the flow;
Section IV, V and VI elaborate the application of proposed approach on a real project; Section VIII provides the
conclusion for our approach.

II. RELATED WORK

FV and simulation are major verification techniques that are currently in use. A selection of the related works, in
which the authors have worked in the direction of applying both techniques on the same DUT are examined below.

In [4], Yuan Lu et al. introduced a semi-formal verification methodology by tightly coupling both techniques.
First, they selected buggy blocks of the design and verified them with formal methods. Valid traces from FV were
used in simulation-based environment to verify system-level specifications. In addition, the traces generated by the
formal engine were used to generate new traces for coverage analysis. In this closed-loop verification approach,
both FV and simulation are applied on the same parts of the DUT. We suspect that the overall time required for the
verification has been increased with this approach.

Rolf Drechsler and Görschwin Fey in their work titled “Improving Simulation-Based Verification by means of
Formal Methods”[5] used FV to fill the gaps left (untested) by a simulative testbench. They first verified the DUT
with simulation and used FV as a secondary verification technique. An interesting feature of this work is that the
properties for FV were generated in an automated manner from the simulation traces. The generated properties were
verified against the DUT in a formal tool. They concluded that the failing properties represent the gaps/holes in
the simulation testbench. The approach is an ideal example for FV on top of simulation where FV is used to cover
corner-cases.

Aritra Hazra et al. in [6] experimented with coverage management for simulation and formal property validation.
They used a test plan language for unifying coverage goals for both techniques. According to them, low structural
coverage numbers indicate low functional coverage, since all parts of the DUT are expected to contribute to the
functionality. They evaluated the properties in both formal verification and simulation. The outcome of their work
is as follows: With only formal methods, coverage achieved was 79%; With only Simulation, coverage achieved
was 64.2%; and combined coverage was 93.8%.

In [7] and [8], Michael Rohlender et al. work in the direction of combining results from different verification
techniques (formal and simulation). Both works propose flows to combine results with respect to functional coverage
only. In [8], the address range is divided hierarchically and verified based on the applicability of formal methods to
them. In [7], the authors perform enhancements to metric driven verification by combining results from formal and
simulation. They elaborate the importance of such a combination by considering the functional safety requirements
of ISO26262. They point out the dangers of combining results from different verification environments.

The related works on the topic identify the need for a verification flow that spans both formal and simulation in an
effective manner. In this work we use FV as a complementary technique to simulation. Additionally, our approach
finds an optimum mixture of FV and simulation in a mutually-exclusive manner.

III. PROPOSED VERIFICATION FLOW

The flowchart in Fig.1a depicts our proposed verification flow. The first step is to analyze the RTL implementation
and identify blocks, sub-blocks or clusters of logic that are suitable for formal methods.

1Blocks/Sub-blocks/Clusters of the design that are more suitable to verify with formal verification are referred to as formal-friendly blocks.
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Figure 1: Proposed approach for verification flow.
Our approach aims at finding an optimal mixture of formal and simulation in mutually-exclusive manner.

The RTL implementation (DUT) can be abstracted as an interaction between blocks (B1 - B8), with each block
delivering a specified functionality as shown in Fig.1b. These blocks/sub-blocks are selected for the application of
FV or simulation based on their suitability for formal-methods. A bird’s eye view for selecting formal-friendly blocks
are briefly tabulated in Table.I. More literature for selecting the formal-friendly parts of the circuit can be found
in [9], [3]. The table must be considered only for reference. Several approaches have been proposed to formally
verify FPU and sequentially deep designs by various authors [10], [11], [12]. In our work, we are trying to address
the combination of both verification techniques on the same design. Application of FV on the identified blocks
must return higher Return On Investment (ROI) when compared with simulation. The capabilities of modern formal
tools must be considered while making the decision2. After categorising the blocks, an imaginary line separating
the blocks based on their applicability for formal or simulation must be visible as shown in Fig.1b (dotted red line).
The real-life RTL implementations may have functionalities that traverse several blocks. In such cases, logic clusters
that are part of the functionality can still be considered and evaluated formally.

The next step is to create a unified Verification Plan (vPlan), considering both formal-friendly and simulation-
friendly parts of the design. Creating a verification plan for FV has slight differences compared to simulation. In
simulation, checkers and stimulus are tightly coupled since the checkers are validated only when required traces
are stimulated by the input stimuli. Whereas in FV, checkers/asserts are defined to check generic behaviours that
are independent of stimuli. However, assumptions (assume properties) are required on block-level input signals to
provide legal input space for the property proof. Therefore, assumptions3 drawn on incoming interface signals (from
other blocks) must be asserted in simulation. The vPlan must be extended to include such assumptions. The vPlan is
crucial for validating the functional completeness and hence, care must be taken to capture all required behaviours
of the design. Also, proper metric must be set by the vPlanner for every checker/assertion as formal or simulation.
This enables the visualization of overall and individual efforts required with respect to both FV and simulation.

After finalising the vPlan with checkers/assertions and cover-points, both UVM-based simulation and FV are
applied on the respective blocks, independent of each other. At the system-level, test cases in simulation must be
built to cover the required high-level behaviour of the design. A review and assessment of assertions is crucial for

2Abstraction techniques such as Counter Abstraction, Cut-points, Symmetric data, Tagging, etc. enable formal tools to handle much larger
design blocks and also result in shorter run-times.

3Assume-guarantee: Assumptions made on interface signals, which are output signals of blocks verified with simulation.
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confirming the functional completeness.

Design blocks/sub-blocks ideal for FV Design blocks/sub-blocks not ideal for FV

Concurrent blocks, Control blocks, Data transport
blocks

Data transform blocks with less intense arithmetic
operations (ex: Hamming encoder)

Data transform blocks with intense arithmetic opera-
tions

Sequential blocks with low sequential depth Sequential blocks with very high sequential depth

General Examples: Bus interface units, Arbiters, Bus-
bridges, DMA controllers, Interrupt controllers, Mem-
ory controllers, Token generators, Power management
units, Proprietary interfaces.

General Examples: Floating point arithmetic units,
Graphics shading units, DSP units, MPEG decoder.

Table I: Selection of formal-friendly blocks [9], [3].
Formal verification can handle complex to very large designs with several optimization techniques. The table is

included to provide a general idea of formal-friendly blocks. [3].

Once the results from regression runs are available, coverage reports from both the formal tool and simulator
are collected and mapped back to the vPlan. Structural coverage has been widely accepted as one of the metric
for verification closure. Simulation based techniques have well defined coverage models that are uniformly adopted
by various EDA vendors into their respective simulators. FV tool vendors are yet to reach such an agreement on
coverage models. Hence, the coverage metrics used for formal methods depend on the tool being deployed. However,
JasperGold provides coverage metrics that are in sync with that of simulation and there-by offer an opportunity to
merge results into a single coverage database (db). The analysis of coverage results obtained from regression tests
is crucial in order to confirm the split that is defined while creating the vPlan. Cover-db from the formal tool is
merged with the cover-db from simulation to produce a unified coverage report. Modifications to the vPlan are
performed depending on various factors to achieve the required coverage goals. When the coverage expectations are
met, further steps in the design flow are performed.

IV. APPLICATION ON A REAL PROJECT

The test vehicle (DUT) that was used for the application of proposed flow is a “Multi-voltage safety system
supply” for Advanced Driver Assistance System (ADAS). The block diagram of the DUT, which is a mixed-signal
design, is as shown in Fig.2. It is a SOC that receives input power supply from the car battery and provides a highly
efficient multi-rail power supply, which is optimized for the use in ADAS. The system is expected to provide three
different regulated4 voltage outputs with programmable capability for voltage and current limitations. A Switched
Mode Power Supply (SMPS) is used to maintain high efficiency for output rails. Internal supplies for the modules
are provided by a central unit. The system consists of 3 regulators each operating at different voltage level as shown
in Fig. 2. A monitoring block is used to handle under-voltage and over-voltage conditions. The Digital-Top-Level
block represents the top module of digital logic including input/output pads. The digital core logic handles the
product’s state transitions and activation/deactivation of analog modules. Other features such as Serial Peripheral
Interface (SPI) communication, watchdog and error monitoring are also handled by the digital module.

After analyzing the RTL implementation, the following blocks/sub-blocks and clusters of logic were selected as
suitable for applying formal methods: SPI logic, Register files, SECDED unit (Single Error Correction Double Error
Detection), Protection logic block and DEVCTRL (Device control) logic. Next, we created a unified vPlan capturing
all the functionalities to be verified. Every checker/assert is assigned a proper metric as formal or simulation (If
a checker is implemented with FV then the metric is formal). For FV we used the formal tool JaseprGold from
Cadence Design Systems. JasperGold contains several automated ‘Formal Apps’, a Formal App can be defined as a
pre-packaged solution addressing a specific verification problem. These formal apps read meta-data information in
the form of IP-XACT or CSV and generate properties in an automated manner [13]. Formal apps FPV App, CSR
App and COV App were used for our work on the topic.

4Voltage regulators are devices used to automatically maintain a stable voltage levels by using feedback loops.
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Figure 2: Block Diagram of Test Vehicle - DUT
Blocks enclosed by the dotted red line are identified as formal-friendly blocks.

A. User-defined Property Verification

We wrote manual properties to verify the SPI logic, SECDED logic, Protection logic and Device control logic. As
already mentioned, the DUT is a mixed-signal design and reset for the digital module is released after a power-up
sequence. During power-up, the output rails of the regulators are power sequenced to reduce the inrush of electrical
current. In order to specify the reset of the digital module, it was required to bring the design to a known stable
state. JasperGold allows to specify the reset signal from a supplied waveform [13]. Using dynamic simulation, we
brought the design to a known stable state and loaded the waveform as a reset sequence into the formal tool. In
addition to asserts/checkers and assumptions that were captured in the vPlan, we implemented cover properties to
confirm the absence of over-constraining proof environment.

B. Register files Verification

“Multi-Voltage Safety System Supply” DUT consisted 62 registers, split between 4 different register files: R0, R1,
R2 and R2 CFG. Register files consist of an array of registers with uniform structure and hence, properties could
be generated in an automated manner. We used the CSR App for register file verification in which all properties
were generated by the tool. The register file description was available in a meta-data format which we converted
into IP-XACT format before applying the CSR App. Assert and cover properties, generated by the CSR App for
different access policy modes were extensive and comprehensive. Interesting scenarios such as simultaneous bus
read/write and direct (volatile) read/write are also covered and verified.

C. Coverage collection

In a properly constrained (absence of over-constraining) formal verification environment, completeness is implicit
when the checkers are implemented to capture all required functional behaviours of the design. Nevertheless, we
still need to determine if the property suite has captured all the required functional behaviors of the design [3]. We
first review and assess the implemented checkers to confirm the functional completeness. Then, we collect structural
information from the tool to confirm the absence of over-constraining, perform RTL code coverage and to identify
coverage holes.

For structural coverage, we used the COV App and various structural coverage metrics offered by the tool were
considered. JasperGold (v2016.03) supports block and statement coverage models (expression and toggle coverage
models are forecast for the coming versions). After analyzing the available coverage models, following structural
coverage metrics from JasperGold were considered:

• Dead-code and Stimuli coverage: Provide sanity check information (in addition to user-defined cover properties)
to determine the presence/absence of over-constraining.

• ProofCore and Bounded coverage: Our approach uses ProofCore data as the main coverage metric for structural
coverage. ProofCore analysis is elaborated in the next section. Bounded coverage shall be considered for
properties with bounded proof.
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V. PROOFCORE
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1. abstract the COI Cp,1n : Cp,Ax ; 
2. proof: prove (P) on the abstracted COI Cp,Ax; 
3.     if (CEX) { 
4.                   Prove (P) on full COI Cp,1n  

5.                   If( CEX ) { 
6.                       true negative; 
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10.                     extend_the_abstraction; 
11.                     goto proof; } 
12.    else if (P holds) 
13.                 ProofCore = PAm 

 
Figure 3: ProofCore Analysis

ProofCore contains only that portion of the COI, which is in entirety required to prove or disprove the property.
ProofCore is a structural coverage model in JasperGold.

ProofCore technology provides a comprehensive structural coverage model for discovering coverage holes in
the property set. To understand the ProofCore technique, let us consider a property P as shown in Fig.3. CP,1−n

represents the Cone Of Influence (COI) of the property P , I1 − In are on the boundary of the COI. A pseudo-
algorithm for ProofCore analysis is listed in Fig.3. The validity (pass/fail) of property P is determined by the formal
engines in the COI CP,1−n. But, it is not effective to prove a property by considering all the signals on I1 − In
boundary line. This is the brute-force approach (SAT without any optimization) and may lead to possible state-space
explosion, depending on the number of state variables. Formal tools employ various state-space reduction techniques,
in order to minimize the evaluation time required for the property proof. Such optimization techniques are internal
to the tool.

JasperGold employs ProofCore technique, which is a state-space optimization that results in an effective COI for
a property. Instead of validating the property P at input boundary line (I1In), JasperGold abstracts a line (A1, need
not be a straight line) that is closer to the point P and evaluates the property. If property P holds for the abstracted
line, it holds for the entire COI CP,1−n. The prior statement is in congruence with the proven theory, which is
stated as follows: “if a property holds for an abstracted model, it also holds for the original model” [3]. In case of
a CEX, the tool must check the validity of abstraction by checking if the same CEX can be found using the actual
COI (CP,1−n). If yes, the CEX is a true negative and the tool reports an error. Otherwise, the abstracted line A1 is
too coarse. JasperGold picks a line A2 away from the first abstracted line and evaluates the property. If property P
holds at this line, it holds for the entire COI (CP,1−n). Otherwise, the abstracting line is again too coarse.

Let us assume that the property fails at abstracted lines A1, A2 and holds at the line A3. The cone represented by
CP,A3 is the ‘ProofCore’ for property P . A section of the original COI between abstracted line A3 and the input
boundary I1 − In, has no influence on the outcome of property proof. Also, fault injection ( F 1, F 2) in the region
between A3 and I1In has no influence on the property P . This part of the RTL logic is not included in proofCore
and hence, should be covered by adding another property or checked for redundancy. However, inserting a fault F 3
inside the ProofCore results in a CEX for the property P . This confirms that the logic has been covered by the
property P . [13]

ProofCore data of a property is the subset of original COI and contains only that section of the logic that is
required for the pass/fail of a property. With ProofCore data, design mutation or error injection techniques become
redundant. ProofCore data is a pessimistic approximation of a COI and thus provides higher confidence levels.
ProofCore data helped us to identify coverage holes of our property suite. After carefully analyzing the ProofCore
results, we wrote more properties to include the uncovered RTL logic.

To summarize the FV part, various blocks in the interface logic and register files are verified using the FPV App
and CSR App respectively. Functional properties, sanity-checks and connectivity checks were implemented. The
COV App was used to extract the ProofCore results. We loaded the coverage results from JasperGold to the Incisive
vManager.
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VI. SIMULATION

With the proposed approach, FV and simulation can be implemented in parallel and in a mutually-exclusive manner.
Blocks, sub-blocks or clusters of logic that are verified with FV are no longer verified in simulation. However, since
the register files are verified with formal methods, certain changes are required in the UVM-SystemVerilog (UVM-
SV) simulation environment. This is because, various blocks/sub-blocks interact with register files through volatile
as well as non-volatile register fields. When such blocks are verified in simulation, it is necessary to make sure that
register fields are properly updated by the core logic (blocks/sub-blocks).

The UVM Register Abstraction Layer (RAL) enables high-level, object oriented models of register files. In a
typical UVM-SV environment, RAL is used as an active model for register file validation and as a single-point
reference for all SV models probing register field values. Register file validation is no longer required in simulation
since they are already verified with the CSR App. In order to check core outputs, RAL needs to be in sync with the
DUT registers. For this, we implemented a back-door mechanism using add hdl path() function calls and updated
the register fields in RAL by peeking (peek() function call) into RTL registers upon a bus write/read transaction. After
converting the RAL into a passive model, register-adapters and register-predictors are removed from the testbench.
Next, we implemented checkers to check core outputs that modify the register fields. The checking mechanism
is bidirectional and evaluated over a tolerance window of specified number of clock cycles. This is because SV
reference models might predict the value of a volatile field earlier or later than the corresponding change in RTL
registers depending on the testbench construction. After the changes, coverage results were collected from the Incisive
simulator (NCSIM) and imported them into vManager. Overall, simulation metrics are reduced with respect to:

• Generation: Test cases or sequence items for blocks that are verified with formal are removed.
• Modeling: For blocks verified with formal methods, constructing reference models in UVM-SV is no longer

required.
• Checking: It is imperative to remove checkers from simulation environment for the functionalities verified with

formal methods.
• Coverage: Cover groups for all the blocks verified with formal methods including register files are removed

from simulation environment.

VII. VISUALIZING COMBINED EFFORTS

  Merged cover-db 
(FV + Simulation) 

FV 
 

Simulation 
Coverdb 

(ProofCore data)
 

  

Coverdb
   Merge 
Cover dbs

Figure 4: Merging coverage databases of Formal and Simulation.

In general, merging coverage from different environments (FV/simulation) can be challenging as there is no
guarantee that the checker model is consistent in each environment. This makes it possible for one environment to
cover an item and potentially trigger a bug, but if the appropriate checker is not present, it goes undetected. An
appropriate checker may be present in another environment but the item does not get covered there, so the bug is
not triggered. By merging the coverage from both environments the risk is coverage goals appear to be met and the
project is signed-off with undetected bugs.

The problem is vastly reduced by taking a mutually-exclusive approach and partitioning the design into distinct
functional blocks. It now becomes possible to clearly define the checker requirements for each functional block and
then ensure they are fully implemented by the corresponding environment. A verification plan is key to achieving
this where both checks and coverage from all environments can be viewed simultaneously to determine overall
completeness, enforcing links between the specification and final implementation.
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Real-life designs often contain functionalities that span several blocks. Following our approach, the functionality
is either verified with FV or simulation depending on the decision made earlier (formal-friendly block selection).
Complete isolation of blocks is not possible in such scenarios. However, this could potentially be addressed during
RTL implementation by defining design guidelines (“Design for Formal”). Regardless, since the feature is only
verified with one technique (FV/simulation) we still achieve mutual exclusiveness.

For functional completeness5, pass/fail results of the property suite were mapped back to the vPlan. For structural
coverage, ProofCore results from COV App were imported to the Incisive vManager. In simulation, we followed the
existing standards by mapping the checkers pass/fail results back to the vPlan. Next, we collected coverage reports
from NCSIM and imported them to the Incisive vManager. Then, coverage databases from both formal tool and
simulator are merged into a single cover-db as depicted in the Fig. 4. After merging coverage results from both
JasperGold and NCSIM, the overall coverage results were analyzed in vManager.

VIII. CONCLUSION

In this work, an approach that makes efficient use of both simulation and formal verification is proposed. The
core idea of this approach is to use Formal Verification (FV) as a mutually-exclusive/complimentary technique
to simulation. Design blocks are categorized based on the applicability of formal methods on them and selected
formal-friendly blocks are only verified with FV. Such mutually-exclusive mechanism became possible, as formal
tools provide coverage models similar to the ones established for simulation. Efforts needed in simulation are
practically reduced. Reductions are realized in terms of generation, modeling, checking and coverage. With the use
of automatic formal apps in which property generation is automated by the tool, efforts required in deploying FV
is considerably reduced. This, in turn, increases the productivity of overall verification. By applying FV on more
blocks, high verification quality can be reached. Since this work was pursued as a master thesis6, we considered
only the interface logic for selecting formal-friendly blocks. Since our simulation was small, reductions were also
small, and potentially non-significant. We have not tabulated these results. Further work on larger designs would
need to be undertaken to show the size of reductions.
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