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Paper Abstract
Modern processor designs present some of the toughest hardware 
verification challenges. These challenges are especially acute for RISC-V 
processor core designs, with a wide range of variations and implementations 
available from a plethora of sources.
This paper describes a verification methodology available to both RISC-V 
core providers and system-on-chip (SoC) teams integrating these cores. It 
spans functional correctness, including compliance, detection of security 
vulnerabilities, and trust verification that no malicious logic has been 
inserted. 
Detailed examples of design bugs found in actual RISC-V core 
implementations are included.
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Outline
• RISC-V introduction
• Processor verification challenges
• Formal verification 
• Processor Integrity Verification Solution
• Under the hood
• Results
• Conclusion
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OneSpin IC Integrity Assurance

© Accellera Systems Initiative 5



The Rise of RISC-V
• 2010 - University of California at Berkeley
• Open-source ISA
• Support a wide variety of applications
• Many possible configurations
• Custom extensions – Domain Specific Architectures

• Number of members is increasing continuously
• Ecosystem maturing quickly – toolchain, simulators, 

verification, …
• Not-for-profit commercial-grade cores – OpenHW Group
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Instruction Set Architecture
• “I” base integer instruction set
• “M” extension for integer multiplication/division
• “A” extension for atomic read-modify-write memory accesses
• “F” extension for single-precision (32-bit) floating point
• …
• 32 registers (32-bit, 64-bit, 128-bit)
• 3 privilege levels
• 4096 CSRs
• Interrupts and exceptions
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RTL Verification Challenges
• Checking compliance with ISA is a significant task …
• … ensuring functional correctness is a very complex task

• Pipelined implementation optimized for power, performance, area

• Many pipeline-based corner cases are impossible to foresee
• Corner-cases related to interrupts, exceptions, privileged modes
• Risk of security vulnerabilities and hardware Trojans 
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Formal Verification
• It’s great …

– Systematic detection of corner-cases bugs
– The only technology that can provide exhaustive verification

• Proof of bug absence
• Simulation/emulation explore a fraction of the state space

• … but
– Requires expertise to write good quality assertions
– Difficult to assess quality of assertions, detect gaps
– Complexity issues - Inconclusive proofs
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RISC-V Verification Methodology
• Inputs

– Core’s RTL
– RISC-V ISA (Spec)
– Design implementation decisions (e.g., 

number of pipeline stages)

• Outputs
– Trusted executable spec
– Proof that RTL is equivalent to executable 

spec
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OneSpin’s Processor Integrity Solution

• Automatic extraction of 
design info

• Built-in, proven RISC-V ISA 
formalization in SVAs

• Optimized for exhaustive, 
unbounded proofs

• Proof that SVAs achieve 
100% coverage – no gaps

• Integrated debug features
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Operational Assertions

• SVAs use library of 
Operational Assertions

• Strict coding style to express 
the expected behaviour of 
each instruction
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Formalizing ISA using Operational Assertions

• Capture effects of instruction and exceptions on the architectural state
• Decoupled from micro-architectural details
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GapFreeVerification

• Systematic process to cover 
100% of functionality

• Formal proof that no gaps are 
left
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Outcome
• Proof that ISA’s executable model 

(SVAs) and RTL are equivalent
– For any input trace the two models 

produce the same output trace

• Any undocumented or 
deliberately hidden function is 
detected
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Results – RI5CY (CV32E40P)
• 4 stages, 32-bit
• Core now curated by 

OpenHW Group
• Target is commercial-grade 

quality
• Solution applied to bring 

core’s quality to the level 
of most advanced IP 
providers
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Results – RI5CY (CV32E40P)
• github.com/openhwgroup/cv32e40p/issues
• #157: Exception Handling Violation - dcsr
• #159: Exception Raising Violation - Fetch/Store/Load Access
• #169: Exception Raising Violation - Illegal Instruction - dynamic rounding mode
• #170: Exception Raising Violation - Illegal Instruction - FS field
• #174: F extension - Dynamic Rounding Mode Violation
• #175: F extension - Wrong Result Calculation
• #182: Trap Return Handling Violation - mstatus’ MIE
• #185: Debug Mode Violation - Exceptions Update CSRs
• #438: Illegal Instruction Exception not Raised - URET
• #439: Illegal Instruction Exception Raised Incorrectly - C.EBREAK
• #440: Illegal Instruction Exception Raised Incorrectly - CSRs
• #441: Illegal Instruction Exception Raised Incorrectly – MRET
• #442: Illegal Instruction Exception Raised Incorrectly – FENCE
• #443: Incorrect DCSR value read/ written
• #509: Core executes wrong instruction
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Results RocketCore
• 5 stages, 64-bit
• Chisel
• Mostly in-order
• Long latency instruction 

DIV completes out of 
order
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Results RocketCore
• github.com/chipsalliance/rocket-chip/issues
• #1752: DIV result not written back to register file
• #1757: JAL and JALR jump instructions store different return PC – instruction fetch unit 

responsible to prevent this issue
• #1861: replay of illegal opcode instruction or instruction with fetch exception
• #1868: undocumented non-standard instruction (opcode 32'h30500073) detected - CEASE
• #1868: presence of non-standard instruction (opcode 32'h30500073) not declared in misa

register
• #1949: access to non-existent CSR does not raise illegal instruction exception – open
• #2022: DRET instruction outside of Debug mode does not cause illegal exception 
• #2043: DRET instruction illegal exception tied to M mode status
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Conclusion
• RISC-V pre-silicon functional verification is challenging
• Complex implementations – pipeline, performance optimizations
• Many configurations and custom extensions possible
• Many cores – open-source, in-house, third-party

• Formal verification using automated solution
– Prove that the core complies with RISC-V ISA
– Detect all corner-case bugs, including in custom extensions
– Identify security weaknesses, vulnerabilities, and hardware Trojans
– Applicable during core’s RTL development and IP integration into a SoC
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Questions?

You can also reach me at
nicolae.tusinschi@onespin.com
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