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Abstract- PMC's verification teams started exploring simulation acceleration (SA) with hardware-assisted verification 

in 2011, as one of the early adopters of UVM Acceleration. They undertook this effort because of the complexity and size 

of their mixed-language designs, which were coded in SystemVerilog, Verilog, and VHDL, and stimulated using state-of-

the-art testbenches coded in UVM-e.  

 

A few years later, the task of porting a design and testbench from simulation to acceleration evolved into a 

methodology and is now re-used across multiple verification teams. Finally, PMC has achieved the holy grail of SA, 

conquering the most complex challenges of SA verification including: 1) Speed – achieving 67x speed up, 2) Time to First 

Test – taking only a month to port a verification environment to run in acceleration mode, 3) Consistent – Running the 

same tests with RTL and an accelerated DUT, producing the same results.  

 

This methodology exploits essential capabilities of the tools in use, and production proven procedures. This paper 

outlines a step-by-step guide to port an existing UVM-e testbench to SA. The verification user community can use this 

paper as a template to plan their migration from simulation to hardware acceleration. 

 

I.   INTRODUCTION 

RTL simulation has been the major work horse since the dawn of verification.  However, as the designs continue 

to follow Moore’ law, long simulation time is one of the major bottlenecks in verification.  Ultra long testcases 

running over several days or even weeks impact the productivity of the verification team.  Many technologies have 

been introduced to speed up simulation times, and the one that deliveries the most speed up is the use of hardware 

acceleration box (the box).  Hardware acceleration technology has been around for almost a decade.  It started out as 

a niche technology trying to replace custom FPGA emulation boards and today it has become one of the essential 

verification tools.  The top three EDA vendors have their propriety hardware acceleration solutions, and all of them 

deliver the performance of tens of thousands if not millions times speed up compared to plain old RTL simulation.  

Traditionally, verification teams use the hardware acceleration box in in-circuit emulation (ICE) mode.  In ICE 

mode, the box behaves like a FPGA emulation board, where the design is compiled into the box and the traffic 

stimulus is generated by using actual equipment or testers connecting to the box via the speed bridge.  ICE-mode 

can run up to almost at-speed as running the actual design in the silicon.  It is ideal for software/firmware testing or 

performance stress tests.  However, due to the limitation of the speed bridge, ICE mode lacks fine control of the 

traffic stimulus, and it has poor observability in the traffic monitor to debug low level RTL bugs.   

 

To address this problem, the next evolution of hardware acceleration comes in the form of the embedded 

testbench.  Both the design and a synthesizable testbench are compiled into the box; traffic stimulus is generated 

from the embedded testbench running inside the box instead coming from the speed bridge.  The compiled design 

and testbench run as fast as ICE-mode, and the embedded testbench provides full control over the traffic stimulus.  

However, synthesizable testbenches are very difficult and time consuming to implement, and it is often as 

complicated, if not more, as the RTL itself.  Embedded testbenches also lack the convenience and ease of use of 

being implemented using a high level verification languages (HVL), such as Specman e or SystemVerilog (SV).  

Writing embedded testbench is like writing a piece of RTL to test another piece of RTL.  Finally, the next logical 

evolution in hardware acceleration is simulation acceleration (SA) which combines the best of the both worlds, the 

speed of the hardware accelerator and the usability of a HVL testbench.  In SA mode, the design is compiled and run 

inside the box, while the HVL testbench is running in the simulator connected to the box.  In SA mode, the design is 



running much faster than the testbench that its run time is negligible compared to the run time of the testbench.  The 

simulation speed is no longer limited by the speed of the RTL simulation; the simulation runs as fast as the testbench 

runs plus a small transaction overhead from communication between the box and the testbench.  In short, SA mode 

is like running the RTL simulation in a superfast computer. 

 

PMC is one of the early adopters of SA. We started experimenting with SA in 2011 when Cadence first 

announced SA support in their Palladium platform.  For a trial project, we selected a complex, mixed-language RTL 

design (Verilog, VHDL and SystemVerilog) coupled with a state-of-the-art UVMe Specman testbench that supports 

transaction level processing.  The initial bring-up of this design/testbench in Palladium running in SA mode took us 

over a year.  Enhancing the testbench to run in SA mode is a very steep learning curve; it involves an in-depth 

knowledge of HVL, writing synthesizable RTL code and low-level C language programming.  Additionally, a 

relatively new tool chain presented an additional hurdle.  At the end, we demonstrated a 40x speed up for a 26M 

gates design with heavily patched RTL [1].   Back then, porting a testbench to SA seemed like black magic, the 

process wasn’t scalable and difficult to transfer the process to other projects.  Flash forward to 2014, after several 

iterations of the tool and a few more designs ported to run in SA mode, we have refined our methodology on porting 

an existing testbench to run in SA mode.  The time it takes to get a testbench up and running in SA mode is 

drastically reduced from over a year to just a few months or even merely a couple of weeks.  Finally SA is ready for 

widespread adoption and it is easy to pick up by any verification team by using our methodology. 

 

In this paper, we are presenting a methodology of porting an existing UVM-e testbench to run in Palladium SA.   

This paper is structured as a step by step guide on how to migrate the testbench.  The first section discusses the 

prerequisite of the testbench, what types of testcases are best suited to run in SA.  The following sections go over 

types of simulations it takes to debug the migration, the RTL compilation flow, the testbench enhancements, and 

regression management strategy respectively.  We shared lessons learnt and pitfalls users should be aware of.  

Finally, the paper presents some benchmark results for reference, followed by a brief discussion on the future 

development of this methodology and concluding remarks.  The verification user community can use this paper as a 

template to plan their migration from simulation to hardware acceleration. 

  
II.   TESTBENCH PREREQUISITES 

Not every testbench or testcase is suitable to run in SA mode.  Previous papers [2][3][4] highlight some important 

points and example calculation to help users determine whether a testbench is suitable to run in SA mode.  In this 

paper, we are focusing on porting the testbench for transaction base acceleration running in blocking mode, where 

the testbench and the hardware are running alternately.  We have experimented with signal based acceleration in the 

very beginning of the trial; although it sounds like the logical step to start hardware acceleration, it turned out to be a 

dead end.  Signal based acceleration could not deliver the simulation speed up performance to justify the cost of the 

hardware accelerator.  We also investigated using non-blocking mode where time advances concurrently instead of 

alternately for both the software and hardware domains.  In theory, non-blocking mode could deliver the best 

performance, since the testbench and the hardware are running in parallel, but it changes the behavior of the 

simulation testbench which we saw as undesirable. 

 

The primary performance bottleneck of SA is the execution time of the testbench.  It is recommended to profile a 

typical simulation run and make sure the testbench uses less than 2-3% of the total CPU time in order to achieve a 

meaningful speed up in SA mode.  Smaller design tends to yield higher testbench CPU usage, so they are not 

suitable for SA in general.  Testbenches that are structured to use excessive interactions between the testbench and 

the DUT, such as continuous monitoring of RTL signals on every clock, are not well suited for SA acceleration.  

The user should investigate whether those interaction are required for the testcases targeted for SA mode and see 

whether those interactions can be disabled or minimized in the testbench.  Some testbench CPU usage is simply an 

artifact of poor coding style, and thus the user should optimize their code to yield better simulation performance.  

Techniques for testbench optimization is outside the scope of this paper; user can refer to [5][6] for more details. 

 

Another potential performance bottleneck is the synchronization and data transfer between the testbench and the 

box, but its performance impact is relatively low compared to the CPU runtime of the testbench and the context 

switch overhead between software and hardware.  The testbench is running on a host simulator which is directly 

connected to the box by an ultra-high bandwidth cable.  The throughput of the cable is very high; it is rarely a 

bottleneck when transferring big chunks of data between the testbench and the box.  Therefore as long as the traffic 

stimulus can be generated by the testbench without taking up too many CPU cycles, there is no need to generate the 



traffic stimulus form a synthesizable BFM inside the box.  Moreover, writing a synthesizable BFM for data 

generation has the same challenges as writing an embedded testbench, which is complicated and time consuming to 

write.  It is more productivity to reuse the traffic generator VIP from the simulation testbench given that the traffic 

generators support transaction level processing.  The synthesizable BFM and collector inside the box simply act as 

dumb pipes to transfer data between the testbench and the box, and most of the data processing reuses existing code 

in the testbench. 

 

The last potential performance bottleneck is the time it takes to download the snapshot into the box and to upload 

the waveforms at the end of simulation.  For a very short testcase, the download and upload overhead may exceed 

the testcase execution time, which results in deceleration instead of acceleration. The ideal testcase candidate for SA 

should have a long run time, with long periods of minimal interaction between the testbench and the design other 

than sending and receiving bulk traffic with occasional event based signal monitoring.  It is fine for the testcase to 

have heavy interaction between the testbench and the box in a given test phase that contributes to a very small 

percentage of the total simulation run time.  The speed up factor during that test phase will slow down significantly, 

but the testcase still maintains a decent overall speed up. 

 

III.   TYPES OF SIMULATIONS 

The migration of a simulation testbench to run in SA mode is a multiple step process.  It is almost impossible for 

anyone to implement all the required testbench enhancements and the have the SA simulation working the first time 

it is brought up in the box.  Due to the high cost of the hardware accelerator, it is often shared among many 

verification teams; thus, it is not economical to lock down domains in the box to debug SA integration problem 

interactively in live sessions.  It is easier to break down the migration process into four phases using different types 

of simulations; each has its strength to identify different kinds of problems. 

 

1) Normal simulation. It is recommended to use the same simulator from the same vendor of the hardware 

accelerator.  There are many subtle differences in how the RTL behaves in different simulators; it is hard to 

guarantee tools from different venders will interoperate correctly.  First, select a testcase as the target of the 

first bring up.  This testcase should not be too long, which allows many quick debug iterations, but it should 

not be too short so it can provide some interesting performance metrics.  This testcase should avoid using 

backdoor register accesses and disable all unnecessary interaction between the testbench and the DUT.   For 

this step, run the testcase until the end of the simulation, save the seed and the log file, which will be used as 

the golden reference in the following phases. If it is not already done, the user should also run profiling to 

identify and fix performance bottle neck in the testbench. 

 

2) SA_SIM simulation.  This type of simulation is used to debug errors in the SCEMI pipe and DPI integration 

of the testbench.  The DUT is still running in the RTL simulator, but the testbench is fully enhanced to run in 

SA mode.  The testbench should not consume any simulation time, it should identify and disable all external 

port bindings and be recompiled with a clean stub file.  Re-run the selected testcase with the saved seed and it 

should have the same simulation result as the saved log file from previous phase.  Identify and fix any 

discrepancy in the simulation result, which is probably due to a mismatch in the behavior of the transaction 

BFM and collector.  Users can also rerun profiling to benchmark the performance of the transaction BFM and 

collector. Usually the SA_SIM simulation runs slightly faster than normal simulation. 

 

3) SA_SW simulation.  This type of simulation uses the host simulator to run both the testbench and the DUT.  

The DUT is synthesized to the binary format of the hardware accelerator and is simulated using a model of 

the hardware accelerator which runs inside the host simulator.  Again, rerun the selected testcase with the 

saved seed and compare the simulation results.  This step is to identify any potential bugs in the tool flow that 

synthesized the RTL into the box.  Usually SA_SW simulation is somewhat slower than normal simulation 

due to the overhead of the software model of the box.  Since the launch command is identical to the actual SA 

simulation, it is also used to debug the shell script environment that runs the testcase. 

 

4) SA_HW simulation.  The testbench is running in the host simulator and the DUT is running in the box.  First, 

run SA_HW in tbrun mode. Here, the box is running in lock step with the SA_SW simulation which flags any 

potential mismatches between the software model of the box and the actual hardware implementation of the 

box.  Finally, run the actual SA simulation using SA_HW in normal run mode, where user can measure and 

benchmark the speed up factor of simulation acceleration. 



 

 

IV.   COMPILE THE RTL FOR THE HARDWARE ACCELERATOR 

Based on our experience, the most challenging part of the SA migration process is compiling a complex mixed 

language design implemented in Verilog, VHDL and SystemVerilog into the hardware accelerator box.  Although 

all the compilation tools are from the same vendor, the SA tool chain is not exactly the same as the commonly used 

tool chain in frontend simulation and backend RTL synthesis.  The Verilog, VHDL and SV parser in the SA tool 

chain may have a slightly different implementation and have a different interpretation of certain syntax of the code, 

which results in mismatching behavior between SA and normal simulation.  The frontend simulation tool chain and 

backend RTL synthesis tool chain are more mature comparing to the new SA tool chain.  It is highly recommended 

that the user starts a trial RTL compilation targeting the accelerator early in the project, before spending 

considerable efforts in testbench enhancement to support SA.  If the RTL cannot compile for the box, then there is 

zero speed up.  Although there are occasional compilation issues with the SA tool chain, there are always 

workarounds available to patch the RTL code to avoid those issues.  However, we do not recommend that the user 

branches off from the original RTL code and maintain a patch copy of the code just for SA.  It will be a maintenance 

nightmare to keep track of the patches and on-going changes in the design.  Moreover, it introduces a verification 

gap as we cannot guarantee that the patched code behaves exactly the same as the taped-out version of the RTL.  

When the user encounters a tool issues, it is recommended that the user first confirms that the same piece of code 

works fine in the frontend and backend tool chain, then the user should report the problem to the tool vender.  If 

possible, the user should also send a tar ball of code snippet to help the tool vender recreate the error for internal 

debug.  Once the vender is able to confirm the tool bug, usually it takes a few days for them to distribute a new 

patch of the SA tool chain to fix the problem.  

 

Given that there is no tool problems, getting the design to compile for SA is fairly straight forward.  The SA 

compilation flow can reuse most of the compile scripts and reuse components from the ICE compilation flow.  We 

recommend that the user uses the normal simulation workspace for SA compilation instead of creating separate 

workspaces and vaults.  There are many benefits of using the same workspace, which includes incorporating design 

changes, since there is only a single RTL code base to update and debug.  The user can launch a testcase in either 

normal simulation or SA mode from the same workspace and use the most appropriate simulation type to debug 

RTL problems.  Assuming RTL compile scripts for normal simulation is readily available; compiling the RTL for 

SA requires the following steps: (our example is illustrated using the Palladium compile flow) 

 

1) Define the path to the compiled library for SA. (Generate a libmaprc file from the existing cds.lib file). It is 

recommended to put the SA compile library in the same path as the simulation compile library.  This allows 

easier cleanup of the workspace when checking-out updates of the latest RTL changes and it also allows 

partially recompile of the design by cleaning up some of the compiled libraries. 

2) Generate synthesizable RAM models for all behavioral RAM models in the design.  This is the same RAM 

generation script used in ICE mode. 

3) Identify all non-synthesizable common behavioral components in the design, such as RAM models, 

DesignWare or gtech libraries, and then swap in a synthesizable version.  There are many ways to swap in the 

synthesizable code, we recommend using SV configuration to determine the binding at the elaboration phase 

for different snapshots.  This allows both non-synthesizable and synthesizable versions of the compiled 

design to co-exist in the same workspace.  The user will compile all the synthesizable version of the code to 

be swapped into an accel_lib library and set it as the default binding in the SV configuration file with  
 

config accel_top; 

design work_lib.top; 

default liblist accel_lib; 

end config 

 

4) Parse the simulation compile scripts; replace all references of the simulator compiler with the SA compiler. 

(Replace ncvhdl with vhan, ncvlog with vlan) and add +rtlCommentPragma and any other 

synthesize_on/off pragma to compile the synthesizable version of the code.   

5) After the RTL code is analyzed, call the synthesizer (ixcom) to synthesize the RTL code into the accelerator 

binary.  Since everything in the design should be synthesizable and target to run in the hardware, it is more 

convenient to force the tool to synthesize everything into the box. (–rtlchk off option in ixcom).  It avoids 

the synthesizer to guess which module is synthesizable and which one should runs in software module, as this 



process is prone to error and may end up with having some module running in software instead of hardware, 

which will heavily impact the SA performance.  Instead, the tool simply reports an error when it encounters 

non-synthesizable modules. This step may require a few iterations to clean up all the non-synthesizable code 

in the design.  Unlike the binary for ICE mode, the SA binary are not limited by the physical location of the 

speed bridge. Thus, it can run in any domains or boards in the box.  The user should specify the design to 

target contiguous domains in the box and enable the symmetric boards option to allow the design to be 

deployed across any domain.  If the SA binary generation is successful, the user can find out how fast the 

design runs and the number of domains required from log files, like 

 
INFO (db2util-1067): This design is scheduled in 400 steps. 

INFO (qt2dadb-1086): Maximum emulator operating speed is 1238 kHz. 

... 

Info        [FLOW_SUCCESS] 

Successfully built target (xeCompile) 

... 

... 

00 ET5NLOPT | Assuming instruction usage 80%, the design requires at least 6 domains. 

 

V.   TESTBENCH ENHANCEMENT 

Provided that the testbench already meets the prerequisites described in section 2, there are not many testbench 

specific changes required to support SA mode, other than extending the VIP to support TBA mode and hook up the 

reuse testbench controller (TB_CTRL) module that facilitates the interaction between the testbench and the box.  

The VIP components and the TB_CTRL unit are reuse components that can be shared among different verification 

projects. Once they are already created, it significantly lowers the barrier to port additional testbenches to support 

SA mode.  In fact, in our SA methodology, project specified code to support SA mode in each specific testbench is 

limited to a single e file with just a few dozen lines of code.  We also highly recommend maintaining the same code 

base for both normal simulation and SA simulation.  Thanks to Specman’s unique aspect oriented programming 

(AOP) ability, which allows different implementation of the same function API based on the aspect configuration at 

run time, we can use the UVM sequence code verbatim in SA mode.  The exact same testcase importing the exact 

same UVM sequences runs on both normal simulation and SA and will generate the same simulation result with the 

same seed.  The testbench supports running the testcase in two different aspects, one for normal simulation and one 

for SA mode.  The user has to refactor the code to consolidate external port binding and agent type under the normal 

simulation aspect, so none of the external ports is bound when running in the SA aspect.  The following is an 

example of how to define the two aspects: 

 
type uvm_abstraction_t : [UVM_SIGNAL, UVM_ACCEL]; 

  extend any_uint { 

uvm_abstraction : uvm_abstraction_t; 

// pass the aspect down the unit tree 

keep uvm_abstraction == get_parent_unit().uvm_abstraction;  

  };  

 

// disable the external binding in UVM_ACCEL 

extend UVM_SIGNAL <unit name> { 

 keep agent() == “NCSV”; 

keep bind(<signal port>, external); 

}; 

extend UVM_ACCEL <unit name> { 

keep agent() == “”; 

keep bind(<signal port>, empty); 

  }; 

 

Enhancing a 3
rd

 party VIP to support SA mode is probably the biggest challenge in migration. Unless the VIP 

comes directly from the vendor of the hardware accelerator, it is very hard to find ready-made accelerable VIP in the 

market.  For in-house reuse VIP and testbench specific functions, [7] provides a detail description on different 

communication methods between the testbench and the box.  We are not going covering the implementation of those 

methods in this paper; please refer to the corresponding document for detailed information.  Instead, we include a 

brief discussion on how we use each of those communication methods in our SA methodology; users are welcome to 

use the information for reference.  Please keep in mind that there is no “one size fits all” solution in selecting which 

communication method to use as it highly depends on the characteristics of the targeted application. 



 

1) SCE-MI pipe.  This is the preferred method to transfer high data rate traffic between the testbench and the 

box.  The SCE-MI pipe proxy built into the SA tool supports auxiliary functions, such as query queue status, 

flush queue, etc.  The full Accellera SCE-MI specification is very complicated and it is probably overkill for 

VIP TBA mode operation.  Here is an analogy to help the user to understand SCE-MI pipe concept:  On the e 

side, the SCE-MI is like a blocking TLM get or put port.  It supports auto pack/unpack the physical field of a 

struct, the struct is packed into a 2 dimension byte array with the size of the pipe width X pipe depth.  On the 

SV side, it is like one side of a RTL FIFO module.  On each clock cycle, the TX side reads one word with the 

size of the pipe width from the FIFO, and the RX side writes one word into the FIFO. 

2) e/SV DPI interface.  This is the preferred method to implement a command/control interface in the testbench 

and VIP.  It works like a method port, allowing e to call a SV function and vice versa.  It is required to write 

some C glue to stitch the e/SV DPI call.  The DPI interface supports non-TCM function calls only, however 

TCM calls can be implemented using two separate DPI calls under the hood, first setup the forward call from 

e to SV, then wait in the box until the timer expires, then trigger a backwards call from SV to e.  Any DPI call 

will trigger a context swap between the testbench and the box; consequently, too frequent DPI calls will 

impact performance. 

3) MARG (direct memory copy) interface.  This is the preferred method to transfer a memory block between the 

testbench and the box in zero time.  SCE-MI pipes are implemented using MARG under the hood.  MARG 

provides raw memory access to the box, it is the fastest communication method, but it does not provide any 

helper function to facility the memory transfer.  It is good for one-off deposits or read back a value from the 

deposit. It is also the mechanism to implement custom pipes if the SCE-MI pipe does not meet the VIP 

requirement.  It works on any synthesizable Verilog array or register type.  For Verilog array, users have to 

declare a piece of memory in the testbench with the same size of the memory array in the box.  For register 

types, users have to explicitly export the register signal in the HDL code.  In the testbench, the user has to 

facilitate when to wake up the testbench and call the MARG memory copy methods to transfer the content of 

one memory to another. 

4) Tcl deposit/force/value.  Believe it or not, Specman can still use simulator_command()to issue simulator tcl 

command in SA mode.  The testbench can still use tcl deposit/force/value commands to communicate with 

the DUT.  This method is very slow, but it is a very handy debug method as a last resort, since Specman can 

extend the testcase and inject additional code without recompiling the SA snapshot or even without restarting 

the simulator. 

 

The TB_CTRL module is a reuse component that encapsulates commonly used functions to enable rapid 

testbench migration in SA mode.  It facilitates the interaction between the testbench and the box; it has the following 

major features implemented using the DPI interface: 

 

1) Emit a Specman tick event periodically based upon a hardware clock running in the box.  It is used to wake 

up the testbench and move the time consuming sequences forward in simulation time. 

2) Provides a wait_delay() method replacing the standard Specman wait delay statament.  In 

UVM_SIGNAL the wait_delay() is just a wrapper for wait delay, but in UVM_ACCEL, wait_delay() 

converts the time notation  into counting the number of elapsed tick events or the nearest HW clock cycles in 

the box depending on the timer granularity configuration. 

3) Provides general purpose output (GPO) pins to drive a simple repeating pattern to a pin using the TB_CTRL 

module in the box via a method call from the testbench.  Since there is no external signal port binding in the 

testbench in SA mode, any output to external signal port should be rerouted through the GPO pins of the 

TB_CTRL module.  The number of the GPO pins is configured by SV parameter of the TB_CTRL module.  

The testbench reset in SA mode is also implemented using the GPO pins. 

4) Provides general purpose input (GPI) pins that will emit an event to the testbench if there is any change to the 

pin and/or the new value matches the predefined mask value.  Any input from external event port should be 

rerouted through the GPI pins of the TB_CTRL module.  The event will cause context swap between the box 

and the testbench and can be used to trigger testbench function or UVM sequence like normal simulation.  

Interrupt monitoring of the DUT is implemented using the GPI pins.  In normal simulation, the testbench may 

monitor all interrupt changes, but in SA mode, the interrupt should be configured to flag only serious design 

failures that require intervention from the testbench. 

 



Very often, many verifiers work on the testbench, writing testcases and UVM sequences.  The person who is 

responsible for the testbench migration may not know all instances of code violation for SA, such as using tick 

notation, orphaned external bindings and wait delay statements.  We have implemented the following debug utility 

to help the user inspect the testbench code for code violation using Specman macros and the reflective interface. 

 
define <delay_override'action> "wait delay(<exp>)" as { 

    outf("WARNING wait delay at %s\n", source_location()); 

}; 

define <force_override'action> "force <any>" as { 

    outf("WARNING force at %s\n", source_location()); 

}; 

define <tick_read_override'exp> "'<any>'" as { 

    outf("WARNING tick read at %s\n", source_location()); 

}; 

define <tick_write_override'action> "'<lval'any>'=<rval'any>" as { 

    outf("WARNING tick write at %s\n", source_location()); 

}; 

extend any_unit { 

    check_generation() is also { 

        if (agent() != "") { 

            outf(WARNING agent() at %s is not empty\n", e_path()); 

        }; 

        var s       : rf_struct = rf_manager.get_struct_of_instance(me); 

        var f_list  : list of rf_field = s.get_fields(); 

        for each (f) in f_list { 

            var t : rf_type = f.get_type(); 

            if (t.get_qualified_name() == "pm_mtf::uvm_abstraction_level_t") { 

                var v :int = f.get_value(me).get_value().unsafe(); 

                if (t.as_a(rf_enum).get_item_by_value(v).get_name() != "UVM_ACCEL") { 

             outf("WARNING uvm_abstraction_level_t at %s.%s is not UVM_ACCEL\n", 

             e_path(), f.get_name()); 

                }; 

            }; 

        }; 

    }; 

}; 

extend sys { 

   check_generation() is also { 

        for each (p) in sys.get_ports_recursively() { 

            if bind(p, external) { 

                outf("WARNING Port %s is bound external\n", p.e_path()); 

            }; 

        }; 

    }; 

}; 

 

VI.   REGRESSION MANAGEMENT 

Launching testcases in normal simulation and in SA mode uses the exact same interface, the only difference is the 

simulation snapshot loaded into ncsim and the targeted machine to run the job.  Our regression manager (vManager) 

is used to facilitate regression runs in SA mode, just like the regressions running in normal simulation.  Due to the 

overhead of downloading the design into the box, it is recommended to group all testcases using the same snapshot 

into one regression session.  The pre session script should reserve the domains required by the design in the box, 

then it should use the keep host alive feature of the tool to keep the design in the box between SA simulation runs to 

avoid having to download the design into the box again. The post session script should free the reserved domains 

once the regression suite is finished. 

 

When a testcase fails in the regression suite, even though recreating the failure using SA simulation is 

considerably faster than normal simulation, it is still more convenient if the regression manager re-launches the 

failed testcase automatically and has the simulation session stop right before the failure point, waiting for the verifier 

to debug at their next opportunity.  However there is one concern in auto re-launching for SA simulation, the 

hardware accelerator has a very high cost, and thus it is unwise to leave some domains sitting idle for the whole 

night waiting for the simulation to be debugged.  When the simulation session stops at the failure point, it should 

hot-swap from SA_HW mode into SA_SW mode and release the domains, thus allowing other testcases to utilize 

these limited resource in the box. 



 

 

VII.   BENCHMARK 

Table 1 presents some benchmark results for reference.  Project A was the initial trial run, we spent over a year 

learning the fundamental of SA and struggling with various tool problems.  Project B was the first project to utilize 

the lessons we have learnt in project A, where we refined our SA methodology and prepared it for wide adoption.  

The schedule for project B includes the time to build all the SA compilation scripts, TB_CTRL reuse components, 

porting two additional VIP to support SA and deal with occasional tool problems.  Project C applied the matured SA 

methodology; it neither has any new VIP SA mode development nor encounters any tool problems.  
TABLE I  - Benchmark Results 

  Project A (2012) Project B (2014) Project C (2014) 

Design size (in Mgates) 26 38 50 

Domains used 6 6 8 

Speedup factor 40x 67x 52x 

Migration schedule 1 year plus 3 months 3 weeks 

 

VIII.   FUTURE DEVELOPMENT 

One of the biggest drawbacks of SA is that it does not support checkpoint save and restore like normal simulation.  

Saving a simulation checkpoint and then restoring it to the closest simulation time before the point of failure 

drastically decreases the debug turnaround time.  No matter how fast SA runs, it is always slower than simply 

reloading a checkpoint saved right before the point of failure.  We will work with the tool vendor to implement 

checkpoint save and restore in the next evolution of the SA methodology. 

 

IX.   CONCLUSION 

Compared to the benchmark results in [2][3], our speed up factors do not seem very impressive.  We focused our 

efforts in bringing up SA mode and put it to use in the shortest period of time. We did not focus on optimizing the 

testbench to deliver the best possible speed up factor, other than fixing some obvious performance bottleneck due to 

poor coding, such as list operations that keep allocating and releasing memory.  This is a calculated trade off based 

on the expected use model of SA.  No matter how hard we optimize the testbench, SA can never run nearly as fast as 

ICE mode.  For heavy duty simulations that require ultra-long simulation times, one should always stay with ICE 

mode.  The advantage of SA mode is to shorten the normal simulation time while keeping the flexibility of the HVL 

testbench.  As long as the simulation runs fast enough, like a simulation finishes within an hour, it does not provide 

much extra value to squeeze the simulation time down to thirty minutes.  We have done some internal ROI 

calculation, factoring in the CPU operation cost and license fee of normal simulation.  We found that the breakeven 

point for SA is around 30-40x depending on the discount of the license fee and the lease contract of the hardware 

accelerator.  As long as the speed up yields a positive ROI, it is a sound investment to use SA mode.  On top of the 

calculated ROI based on the raw simulation throughput, there are other intangible benefits like decreased debug 

turnaround time and increased productivity of the verification team. 
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