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Abstract— This is a report on experience, using a bidirectional asynchronous channel between a SystemC device 
model and a physical, full system prototype of the same device on FPGA. The asynchronous channel uses TCP 
sockets when the SystemC model is on a different host, and shared memory when the model is on the same host. 
Synchronization is maintained between the two sides by aligning the SystemC side with the real-time clock (using 
Realtimify). The full system is used to co-simulate a complete firewall application, consisting of a NoC firewall 
module (the DUT), drivers, OS, and application software running on an ARM v7 Zedboard.  The asynchronous 
channel has good performance, especially for shared memory communication, with an overhead in the ms range. 
Overall simulation speed is sufficient such that real-time performance characteristics can be verified. 
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I. INTRODUCTION  

As shown in Figure 1 (a), traditional SystemC — RTL co-validation techniques are based on co-simulation of 
RTL models of the design under test (DUT) with the corresponding system-level model usually implemented in 
a virtual platform [3, 4, 12]. Thus, in this design flow, an application scoreboard can simultaneously compare 
the input interface signals on the time-annotated SystemC model and the synthesizable RTL reference model, and 
provide assertions (e.g. in UVM [1]) that compare the corresponding traces for specific application testbenches. 

 
Figure 1. Traditional RTL co-validation (shown in a) vs proposed near real-time full system co-validation technique (shown in b). 

In contrast, as shown in Figure 1 (b), our technique focuses on validating a full system, by performing near 
real-time, command-to-command co-simulation of the hardware DUT implemented on FPGA as a full system 
prototype (with CPU, on-chip interconnect, memory, application, drivers, and operating system, typically Linux) 
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against its equivalent cycle-approximate system-level model of the DUT. Notice that command-to-command 
co-simulation means that an application command (e.g. memory-mapped to HW DUT on FPGA) is run on both 
the hardware DUT and its equivalent SystemC model before any subsequent application command is executed. 
Thus, in our approach, we keep the hardware DUT and system-level IP synchronized and check for a specific 
application testbench, command-for-command, if transformations during high-level synthesis preserve 
correctness and satisfy specifications, such as performance requirements.  

This concept is particularly important for co-validation during rapid prototyping. For example, we can 
validate correct translation by the high-level synthesis tools.  

II. CO-SIMULATION PLATFORM 

In order to support command-to-command co-simulation, an asynchronous channel is necessary for efficient 
interaction between real and virtual world (and vice-versa). This hybrid channel will allow a scoreboard to closely 
monitor and validate changes in control flow or system state. For example, simulation output from the virtual 
world may result, via OS-layer interactions, in updating parameters or data structures in the real world. This can 
occur at discrete time intervals, e.g. during SystemC evaluate cycle, update cycle, or at a later time 
synchronization point. In a similar pattern, events captured in the real world, such as data output or system 
interrupts, can be relayed to the virtual world, as SystemC events. 

 
Figure 2. Layered co-simulation approach, showing OS Kernel/Hardware Plane (real world) and System Level Plane (virtual world). 

Figure 2 provides a general perspective on the proposed near real-time co-simulation platform and introduces 
the asynchronous, bidirectional, hybrid SystemC channel (called asynchronous channel). 

● The bottom and top right part (called OS Kernel/Hardware Plane, or real world) implements IOCTL or 
GPIO communication for accessing the memory-mapped HW DUT device via its Linux driver from an 
application scoreboard. This software mechanism resides in the platform on which the HW DUT is 
embedded, typically a prototype FPGA development board running Linux; in our case, a Xilinx 
Zedboard.  

● The top left part (called System Level Plane, or virtual world) concerns the system-level model which 
communicates with the external application scoreboard via an asynchronous, bidirectional, hybrid 
SystemC channel. This channel implements IPC (either TCP socket-based, or shared memory 
mechanisms) to interact during runtime with the application scoreboard. The channel a) propagates each 
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command received from the application scoreboard to the SystemC DUT model, using an asynchronous 
TLM socket, b) activates the SystemC model, possibly including a so-called Realtimify module [9] for 
synchronizing the real clock of the Hardware DUT with the clock of our SystemC kernel and c) returns, 
through another TLM socket, timing, status and performance characteristics from the system-level IP 
(running on host PC or Zedboard) back to the application scoreboard for co-validation against output 
from the hardware DUT (running on Zedboard). The application scoreboard may invoke standard UVM 
technology to perform co-validation, cf. blue and red arrow paths. The system-level IP could run either 
on a host PC running Linux on top of the SystemC kernel, or even on Zedboard, i.e. the system on which 
the hardware DUT is prototyped. 

Our co-simulation platform uses the Realtimify SystemC module to synchronize execution of the SystemC 
model with respect to real-time, e.g. using usleep(). The synchronization interval in Realtimify must be carefully 
selected to match requirements of the application and complexity of the hardware DUT. If this interval is not 
carefully selected, there could be an increase in the duration of the SystemC evaluate cycle when modeling the 
System-Level IP, and as a result we would not be able to verify the hardware DUT in near real-time. 

As explained above, one of the relatively novel techniques that our co-simulation framework defines is an 
asynchronous, bidirectional, hybrid SystemC channel for connecting a simulated device with its equivalent full 
system prototype. This allows asynchronous co-validation of the real system with the simulated device in near 
real-time. The proposed asynchronous channel extends preliminary ideas by Black presented in DVCon 2014 that 
advocate using TCP sockets for communication between virtual world (SystemC model) and real world 
(hardware DUT embedded on FPGA in an embedded system running Linux) [2, 3]. Specifically, we have 
implemented a bidirectional socket- or shared memory-based channel interface from the Hardware Plane to the 
System Level Plane.  

Our co-simulation environment  
● provides an open-source experimental framework for co-validating a hardware DUT (embedded in 

a real system with an OS stack) against its equivalent SystemC model, 
● implements a non-intrusive asynchronous SystemC channel  based on shared memory or TCP 

socket primitives. This channel allows an application scoreboard to send commands to a SystemC model 
for co-validation against a full system prototype device (running in an FPGA); this device is accessed by 
the scoreboard via IOCTL (or GPIO).  

● (optionally) supports a near real-time option using Realtimify SystemC module that allows 
matching simulation time with real-time execution. 

The asynchronous, hybrid channel that we have used is a relatively novel approach for co-simulating SystemC 
models with real systems [5]. Alternative full system validation techniques, such as in-circuit prototyping from 
inPA systems in [6], stimulate the system via its real-world interfaces, meaning that validation is executed at real-
time speed, but ignore comparisons with equivalent executable specifications in system-level design languages. 
Another closed-source industrial approach extends the Standard Co-Emulation API: Modeling Interface (SCE-
MI) developed by Accellera for SystemC and RTL co-simulation, to address faster SoC simulation between 
SystemC and FPGA prototypes, but does not address a full system built around the FPGA prototype [6]. 
Similarly, commercial rapid prototyping tools from Synopsys allow a virtual prototype (ARM Versatile Express 
running Linux) to directly perform transactions on an FPGA-based prototype (peripheral subsystem synthesized 
from HDL source) via two channels: a) a signal-level link for cycle-accurate co-simulation, and b) a transactor 
library based on TLM-2.0 for efficient transaction-based validation [10]. The transactor library API models 
communicate to SoC models and real blocks (assigned to FPGA-based prototype) using the AMBA bus: read, 
write, and callback operations (e.g., see testbench in Section 3). Other commercial SystemC/FPGA prototyping 
solutions address full system co-validation only on the side of the virtual platform, e.g. consider ARM Fast 
Models, SystemC with QEMU, and Cadence hw/sw codesign [7].Compared to these tools, the proposed platform 
expands the scope of co-validating a hardware DUT prototype built on FPGA in a real system with OS stack 
against its equivalent SystemC model for the first time. Past work has considered the hardware DUT in the 
context of bare metal or within fuly virtualized systems [7] [10]. 
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III. THE ASYNCHRONOUS CHANNEL 

Figure 3 illustrates the block diagram of the co-simulation platform, outlining how an application scoreboard 
can communicate commands to the SystemC model (System-Level Plane) using the proposed asynchronous 
channel. The channel is implemented using shared memory (or simply using TCP sockets). The application can 
also communicate with the memory-mapped HW prototype device, the DUT, (OS Kernel/Hardware Plane) on the 
FPGA development board, via its hierarchical Linux driver. Finally the application can receive and compare 
respective responses from both the System model and Hardware DUT.  

We next focus on the asynchronous channel, examining its data structures and methods. In order to  
communicate with the virtual world (System-Level Plane), the application scoreboard defines two POSIX 
threads: a) to_sysc_thread which transfers command packets from the OS to our asynchronous channel, and b) 
from_sysc_thread which transfers results in the opposite direction. These two POSIX threads in the application 
scoreboard communicate with a POSIX thread in our asynchronous channel (os_thread) implemented in the 
asynchronous channel using POSIX shared memory and POSIX semaphores, as shown in Figure 3; (alternatively, 
they can use TCP sockets alone, or utilize SystemV shared memory and POSIX semaphores if they are defined as 
processes). 

 

Figure 3. Block diagram of the asynchronous channel implemented within our Co-Simulation Platform. 

In turn, the os_thread synchronizes with a second SystemC thread in our asynchronous channel 
(sysc_thread). The os_thread and sysc_thread support the necessary channel interface primitives (asynchronous 
blocking push/pull functions and non-blocking nb_get/nb_put methods) to transfer commands and results.  A 
command, eventually destined for the SystemC DUT, will be temporarily buffered in the  queue_to_sysc, and read 
by the SystemC DUT input thread via its TLM-2.0 AXI Interface (see below). Subsequently, as a result of 
executing the command, result data from the SystemC DUT, eventually destined for the scoreboard (in the 
os_thread), will be temporarily buffered in the queue_from_sysc and finally read by the from_sysc_thread.  

These channel primitives are protected by mutexes (m_mutex_to_sysc and m_mutex_fm_sysc) and are shown in 
the code snippet below. 
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// os_thread methods for communicating to/from sysc_thread 
void push (async_packet async_payload_ptr); 
void nb_push (async_packet async_payload_ptr); 
bool can_push (void); 
void pull (async_packet &async_payload_ptr); 
bool nb_pull (async_packet &async_payload_ptr); 
bool can_pull (void); 
// sysc_thread methods for communicating to/from os_thread 
void nb_put (async_packet async_payload_ptr); 
void put (async_packet async_payload_ptr); 
bool can_get (void) 
bool nb_get (async_packet &async_payload_ptr); 
void get (async_packet &async_payload_ptr); 
bool can_pull (void) 
// sysc_thread events 
const sc_core::sc_event& sysc_pushed_event(void) 
const sc_core::sc_event& sysc_pulled_event(void) 

The command packet data structure in the asynchronous channel is listed below: 
typedef struct { 
  int32_t  tid;      // unique transaction id for each packet exchanged 
  uint8_t  command;  // for memory-mapped devices, AMBA AXI read/write or interrupt 
  uint8_t  status;   // SystemC TLM socket communication status 
  uint32_t address;  // physical address to access device (e.g. memory-mapped) 
  uint8_t* data_ptr; // result data 
  uint16_t data_len; // result data length 
  uint64_t rx_timestamp; // timestamp upon receiving the command packet 
  uint64_t tx_timestamp; // timestamp placed upon transmitting the result 
} async_packet; 

Since we mainly target ARM-based reconfigurable embedded systems (i.e. we use an AMBA AXI System 
Interconnect for prototyping on the Zedboard), we implement, (cf. bottom of Figure 3), a limited TLM-2.0 AXI 
interface between the asynchronous channel and the System-Level IP. Using this interface, the system-Level IP 
of the DUT can respond to external memory read/write or interrupt operations arriving via the asynchronous 
channel. For a list of commands used in our testbenches, refer to Section IV. 

The interface is implemented by extending the SystemC TLM template class simple_initiator_socket<T> with 
the methods and states to operate as a master AXI interface and support 4-way AXI handshaking with normal 
read/write and burst read/write transactions. We similarly extend the SystemC TLM template class 
simple_target_socket<T> to operate as an AXI-Lite Slave interface and support 4-way AXI handshaking with only 
normal read/write transactions. 

The final module (omitted from Figure 3) is a so-called Realtimify module [9]. Using this module, we are able 
to synchronize the clock of our SystemC kernel with the real clock of the Zedboard running the application 
scoreboard. Notice also that the system frequency and CPU power affect the simulation clock. By using the 
Realtimify module alongside the blocking methods of the asynchronous channel, the System-Level IP can react to 
external events during runtime. 

IV. NOC FIREWALL DUT AND APPLICATION TESTBENCHES 

Preliminary evaluation is based on prototyping a NoC Firewall targeting data privacy in m-Health 
applications. The hardware module (DUT) has been designed in cycle- and bit-accurate SystemC and synthesized 
on the ARM v7 Zedboard using Xilinx Vivado HLS and Vivado tool v2014.4.1 [11]. As shown in Figure 4, the 
hardware DUT, supported by a hierarchical Linux driver, attempts to thwart on-chip access to different output 
ports (BRAMs) by setting read/write deny rules that take into account not only the BRAM number (1 to 4), but 
also the actual network access path.  
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 Our bit-accurate SystemC model of the NoC Firewall model consists of 1700 lines of code, with 14 SystemC 
clocked threads (most of them related to module interfaces). Vivado NoC Firewall synthesis on Zedboard FPGA 
uses: 11421 LUTS, 12012 registers and 4 BRAMs. In comparison, a 12-node STNoC from STMicro configured 
with 4x4 routers uses: 24939 LUTS and 17983 registers on Zedboard FPGA. The hierarchical Linux driver is 
approximately 1900 lines of code, and the application (including crypto library calls) approximately 2500 lines of 
code. For more details and downloading the open hardware and software for installing on Zedboard, cf. [8].  

Although details are omitted due to space restrictions, it’s sufficient to say that the firewall setup corresponds 
to writing a register set configured to protect data in a particular BRAM address range from illegitimate access 
from specific input ports. This NoC Firewall setup info is always checked before any read/write access to a 
BRAM. Setup and access functions are supported by a hierarchical driver that performs memory-mapped 
operations at admin and user level via IOCTL. 

 

Figure 4. The NoC Firewall DUT. 

In our Linux driver implementation, we handle firewall setups for specific input and output ports ranges by 
accessing memory-mapped firewall setup registers from the kernel space via Low-Level Driver (LLD) I/O 
memory accesses: ioread32 and iowrite32 operations. In addition, the Mid-Level Driver API (MLD) defines 
IOCTL calls for firewall setup and read/write access to BRAMS and statistics registers (logs the number of 
passed, dropped, denied packets) from specific input and output ports on the NoC Firewall. This involves a) AXI-
to-NoC packetization of the write access request at the NoC interface, as well as transfer of the NoC packet for 
execution at the BRAM and b) AXI-to-NoC packetization of the read request with subsequent response NoC-to-
AXI de-packetization for read data. The High-Level Driver API (HLD) completes the driver hierarchy by 
supporting high-level data privacy and security primitives for industrial m-Health applications [8]. 

For accessing the SystemC model via the asynchronous channel, we use the same philosophy, and implement 
counterpart sc_ioread32/sc_iowrite32 operations (equivalent to LLD’s ioread32/iowrite32), and connect them 
with the the Mid-Level Driver API. 

In this context, three different testbenches are considered: 

Our first two DUT testbenches provide complete coverage tests for a large matrix of test conditions: co-
validating read and write access to Rule, Statistics registers and BRAMs via the NoC Firewall for all possible 
input and output ports, for all possible settings of the firewall (accept all, deny read, or deny write mode for each 
port), and for both Simple and Extended Operating Mode. The tests also resolve synchronization issues related to 
accessing BRAM via two different paths:  through the NoC firewall and direct access via another AXI interface 
(backdoor). The final testbench (mHealth) concerns a modular NoC firmware security solution that supports 
two modes. First, it provides anonymity of patient data by hashing to an appropriate location in FPGA memory 
(BRAM) using the unique patient ID. Second, it provides healthcare data protection in BRAMs from malicious 
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or unauthorized physicians (illegitimate Linux group ID) by setting NoC Firewall rules and controlling network 
paths to BRAMs based on group ID.  

V. EXPERIMENTAL FRAMEWORK AND CO-SIMULATION RESULTS  

We first consider average application delay for our different channel implementations, considering all 
testbenches: full coverage read test via the firewall, similar write test, and telemedicine (m-Health) application 
supporting secure access to patient data based on Linux group.  

 

Figure 5. Average testbench delay for a) SystemC model (with POSIX, SystemV shared memory or TCP-based asynchronous channel) and 
b) the real device (full system running Linux) for all three applications on Zedboard. 

In Figure 5, we compare average delay for running each testbench 100 times, i.e. accessing the NoC Firewall 
HW DUT built on Zedboard FPGA via hierarchical Linux driver, and its equivalent SystemC model via our 
asynchronous channel. Our asynchronous channel implementations provide different performance metrics: 
POSIX shared memory is 6.5 to 11.1% faster than SystemV, and 22 to 23% better than TCP. The latter TCP 
version is less efficient, although we have used the loopback interface (localhost) to minimize communication 
delay. The loopback interface will consume space in the Linux kernel socket buffer until the packet is processed, 
just as if it had come from the Ethernet while avoiding real Ethernet delays. Real Ethernet layer delay could be 
important for supporting remote co-simulation, e.g. similar to Amazon Web Services for FPGA access. 

 

Figure 6. Asynchronous channel and SystemC model delay for POSIX-, SystemV shared memory-, and TCP-based implementation, 
assuming mHealth application on Zedboard. 

In Figure 6, we consider the mHealth security application on Zedboard and compare the minimum, average 
and maximum delay for each communication stage in our asynchronous channel using system timestamps. Notice 
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three types of delay (in ms): *_sc values correspond to SystemC model delay, *_in values relate to overhead for 
channel input, and *_out values are the delays for channel output. Our channel is non-intrusive, since its delay is 
small relative to SystemC application delay. For POSIX shared memory only 5.2% of the total time is spent for 
channel input and output compared to SystemC processing; comparably, this overhead is 5.6% for SystemV, and 
larger, up to 41.0% (with very large fluctuation) for TCP socket implementation. For the SystemC testbench 
code, refer to [8]. 

 

Figure 7. Experimental framework focusing on Realtimify/Monitoring Unit. 

Next, we focus on channel overhead with Realtimify, examining first the synchronization error for using this 
module during co-simulation. Our experimental framework focuses on measuring the System-Level Plane 
overhead, examining the synchronization error for our NoC Firewall model. For this reason, as shown in Figure 7, 
we record at regular application–specific intervals the current simulation time (sc_time_stamp()) and compare 
against real-time (clock_gettime() with parameter CLOCK_REALTIME). The difference between these two timers 
refers to the time that simulation is ahead of real-time. Since this time difference must be zero for near real-time 
co-simulation, we propose either to suspend the model (e.g. using SystemC events), if model time is ahead, or 
freeze the real-time process (e.g. using system methods that allow entering an idle CPU state), if real-time is 
ahead of simulation time. Other techniques, such as using a simulation warp to the future, or selectively altering 
the abstraction level of the System-Level IP are not possible.  

 

Figure 8. Average synchronization error on Zedboard. 

As shown in Figure 8, for a SystemC period more than 1ms, we can support near real-time co-simulation 
between the SystemC model and the full system prototype in the ms period range, since the synchronization error 
is very small. This is especially true, if the system-level IP is placed on the board together with the DUT 
(communication via shared memory). 

Figure 9 shows that with Realtimify, relative overhead in computation time of the proposed asynchronous 
channel is very small compared to the SystemC model (up to 3 orders of magnitude smaller), demonstrating 
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efficiency of our channel for real-time co-simulation. Corresponding delays without Realtimify differ by only one 
order of magnitude.  

 
Figure 9. Asynchronous channel and SystemC model delays, assuming mHealth application on Zedboard. 

VI. SUMMARY 

We have developed a co-simulation platform, which enables co-validation of a hardware IP (DUT) prototyped 
as a full system on an FPGA development board, along with executable system-level specifications. We 
demonstrate efficiency of our platform, by considering an industrial m-Health security application based on a 
NoC Firewall IP. In the future, it would be interesting to examine near real-time co-simulation when the HW IP is 
embedded in a platform that uses a real-time OS (e.g. ThreadX), with appropriate drivers, and executes 
unmodified code (and not just memory accesses over AXI). By using the Realtimify module, the System-Level IP 
can react to runtime events (e.g. hardware interrupts from sensor devices) in a genuine environment. 
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