
A Holistic View of Mixed-Language IP Integration

Pankaj Singh
Infineon Technologies AG
pankaj.singh@infineon.com

Gaurav Kumar Verma
Mentor Graphics Corporation

gaurav-kumar_verma@mentor.com

ABSTRACT
IP reuse has long been touted as one of the key factors in enabling
development of today’s complex SoC designs. The concept of reuse
seems simple and easy in theory, but there are a number of obstacles
that design and verification teams must address to be successful,
especially in the case of commercial IP cores. One of the significant
barriers to IP reuse today is the wide variety of design languages
used in IP. SystemC, SystemVerilog, and conventional HDL
languages have unique strengths which make them more suitable for
writing certain portions of a design or IP. Designers also often
choose a language based on their past experience. This frequently
leads to portions of designs written in different languages being
integrated in a single design. IP available from different sources may
also come in different flavors. Connecting such IP requires special
skills, in terms of expertise in all the different languages involved,
which is not always easy to find. The wide variety of options
available to make these connections further increases the complexity
of the problem.

The above challenge necessitates the need for a methodology that
compares the different ways of making mixed-language connections
(such as direct instantiation, the SystemVerilog bind construct,
SystemC control/observe, SC Verification-connect, and SC-DPI) and
defines their pros and cons, providing precise information to help
users select the best approach for their particular SoC.

In the past, most of the work was done by EDA companies to
develop tools that understand mixed-language design for simulation
but very little has been done toward providing a comprehensive
methodology that highlights best practices, thereby minimize mixed-
language design integration issues. Only relevant available work
written on mixed language IP reuse [1] used direct instantiation and
SystemVerilog bind methods without providing solution/benefits of
other alternate approaches or comparing the two against each other.

This paper looks at mixed-language design integration from both the
EDA tool developers’ and designers’ perspectives. It describes
different approaches and provides useful insights to help users select
the best option for integrating two IP blocks in a mixed-language
environment. It is an extension of our past work and illustrates the
performance comparison of various approaches using 10 Gigabit
Ethernet verification environment. A ‘mixing methods’ approach is
also introduced to help designers make their mixed-language
connections in scenarios where all methods get eliminated or where
using more than one method for integration provides a more
optimized connection.

The methodology presented in this paper is further used to develop a
utility that takes the two regions, written in different languages, as
input and automates the hook-up connection process by suggesting
the most suitable approach. It also generates snippets of code that can
be automatically inserted in the design to make these connections
seamless and less prone to the kind of errors that may result from
manual updates. The paper contains a working prototype of this
utility, highlighting productivity improvement results from real-
world, mixed-language design integrations.

Keywords

• ICU : Inter Connect Utility
• DCF : Designer Configuration File
• SC-DPI : SC Direct Programming Interface
• SCV : SystemC Verification

1. INTRODUCTION

The wide variety of design languages available today poses a
significant barrier to IP reuse. Often designers are not aware of
various mixed-language design integration options. Other times the
knowledge on various options is available, but it is difficult for a user
to choose the best suitable option based on their mixed language
design scenario. This difficulty in mixed-language IP integration and
reuse often leads to finding issues late during the design cycle, which
impacts the overall productivity.

This paper provides a comprehensive methodology that highlights
the best practices for mixed-language design integration and
automatically comes up with an option for designers to select the
optimal method for integration. There are broadly five ways of
making mixed-language connections. Pros and cons of each of these
approaches and their comparison is described in terms of the usage
scenarios, performance implications of using one versus the other,
delta cycle value update concerns, and more. A step-by-step
guideline based on decision-making trees that designers can follow
to help them decide which approach best suits their particular mixed-
language integration scenario is also discussed.

The paper starts with details on various options for connections of
mixed-language IP blocks, illustrating each method with a common
example. It also includes a summary of comparisons between
different methods. The third section elaborates on a step-by-step
methodical approach for integration. The fourth and fifth sections
cover the details about the utility that automates the IP integration.
The last section highlights the benefits of this methodology.

2. METHODS TO CONNECT MIXED-
LANGUAGE IP BLOCKS

In this section we will introduce each of the five methods for making
mixed-language connections and discuss their pros and cons. A

comparison of different approaches will also be provided to help
determine the best suitable IP reuse option for a user based on the
design scenario.

2.1 Direct Instantiation
In the direct instantiation method, an IP block written in any
language is instantiated directly inside the target IP block (written in
any language) within the SoC. Here the instantiation statement
follows the syntax of the target IP block, as if the instantiated IP
block was written in the same language as the target IP block.

This method is the most commonly used for making mixed-language
connections as it offers seamless integration with the rest of the code.
However, because of the nature of its use-model, it requires that the
source code of the target IP block is available. This significantly
limits the usability aspect of this otherwise powerful method in real-
world IP reuse situations.

Figure 1. Example of Direct Instantiation

2.2 SystemVerilog Bind Construct
The SystemVerilog bind construct provides an IP block access to
both external ports and internal signals in the target IP block. The
selected and target IP blocks can be written in any design language.
This method provides a powerful capability that, together with a
specifically designed use-model, can be used to conveniently connect
the two IP blocks independent of their languages.

The SystemVerilog bind construct is increasingly becoming the
preferred method for connecting IP blocks in SoC's today, as it offers
hook-up connections between two IP blocks without requiring their
source code to be present.

Though using SystemVerilog bind construct to bind to a
SystemVerilog target scope has been standardized, using this
construct to bind to VHDL or SystemC target scopes has not been
standardized yet, and as such, it is not fully compatible with all the
available simulators. What may work with a simulator from one
EDA vendor cannot be guaranteed to work with the simulator of
another EDA vendor. Besides this limitation, EDA vendors also
differ in their use models.

Figure 2. Example of SV Bind Construct

Also, since bind is a SystemVerilog construct, it must be used only
in the SystemVerilog regions of the SoC. For instance, if a user
wishes to connect a VHDL IP block with a SystemC IP block, an
intermediate dummy SystemVerilog wrapper module will have to be
created to use the bind construct, which may not be a very efficient
approach. These factors somewhat restrict the usage of this otherwise
powerful method of making connections.

2.3 SystemC Control/Observe
SystemC control/observe is a powerful construct that allows
connection of signals across the hierarchy of a SystemC IP block to
any other signal across the hierarchy of another IP block written in
SystemVerilog or HDL. It can also be used on pre-compiled
SystemVerilog and HDL IP blocks, but the SystemC IP block where
SystemC control/observe constructs are used must have source-code
visibility. This method cannot be used on compiled IP blocks.

Secondly, it requires the full hierarchical path of the source and
destination objects, increasing the complexity. Also, since this
method creates a jumper to connect the two signals across IP blocks,
specialization and parameterization of IP blocks is not possible when
this method is used. All these factors and its requirement for a non-
compiled SystemC IP block somewhat restrict the usability of this
otherwise useful construct.

Figure 3. Example of SystemC Control/Observe

2.4 SystemC Verification Connect
SCV-connect is the standard version of SystemC control/observe for
IP blocks that include the SystemC Verification Library. It is not as
optimized as the SystemC control/observe method and requires the
SystemC Verification library to be included in the IP.

Figure 4. Example of SystemC Verification Connect

2.5 SC-DPI
The SystemC Direct Programming Interface (SC-DPI) method
provides an interface between SystemVerilog and SystemC that
facilitates inter-language function calls. This means a SystemVerilog

SystemVerilog Test bench

VHDL DUT

VHDL DUT

SystemC
Test bench

VHDL DUT

scv_connect()

scv_connect()

SystemC Test bench

Instantiated VHDL DUT

SystemC Test
bench

SystemVerilog
DUT

control_foreign_signal

observe_foreign_signal

IP can call a function defined in a SystemC IP, and vice versa. It is a
fast and suitable technique of connecting SystemVerilog IP blocks
with SystemC IP blocks that have their external interfaces defined in
the form of methods only.

Figure 5. Example of SystemC-DPI

2.6 Comparison between Different Approaches
The table [1] below provides comparison between different
approaches for making mixed-language connections. Various
important aspects, such as usage scenarios, performance implications
of using one versus the other, delta cycle value update concerns, etc.
are listed for comparison.

Table 1: Comparison between Different Methods

 A B C D E F

Direct
Instantiation Yes Yes No 2 Yes All

SV Bind
Construct Yes Yes Yes 3 Yes All

SystemC
Control/Observe Yes Yes No 4 No 1 SC +

1 SV/VHDL

SCV_connect Yes Yes No 4 No 1 SC +
1 SV/VHDL

SC-DPI Yes Yes No 1 No 1 SC + 1 SV

Legend:
A: Method Works If Source Code Is Available
B: Method Works If One IP Is Compiled
C: Method Works If Both the IPs Are Compiled
D: Performance (Lower Is Faster)
E: Delta Delay in Data Transfer
F: Languages Supported

3. THE METHODOLOGY

This section presents a 3-step methodical approach that helps users
select the best option for integrating two IP blocks in a mixed-
language environment.

STEP 1: Understanding the IP Blocks
As the first step towards deciding which approach to use, designers
should:

• identify the design languages of IPs
• check the availability of source code of IPs

At the end of this stage the designer will have a clear understanding
of the two IPs that are to be connected.

STEP 2: Understanding the Connections
After gathering information about the two IP blocks, designers
should further:

• Analyze and list down the connections that are required to
hook-up the two IP blocks together.

All connections can be broadly divided into four categories.

CATEGORY A
All connections are confined to one, and only one, design-unit in the
two IP’s, respectively.

Figure 6. Category A Connections

CATEGORY B
All connections are confined to one, and only one, design unit in one
IP block but are distributed across the hierarchies spanning through
multiple design units in the other IP block.

Figure 7. Category B Connections

CATEGORY C
All connections are distributed across the hierarchies spanning
through multiple design units in both the IP blocks.

Figure 8. Category C Connections

CATEGORY D
All connections are through method ports only.

IP Block 1 IP Block 2

axicore
ip1.axistimgen.clk->
ip2.axicore.clk

ip1.axistimgen.reset->
ip2.axicore.reset

data−>data

axistimgen

IP Block 1 IP Block 2

axicore clk−>
ip2.axicore.clk

reset−>
ip2.axicore.reset

data−>data

SystemC IP
SystemC function

SystemVerilog IP

SC
-D
PI

IP Block 1 IP Block 2 data−>data

clk->clk

reset->reset

Figure 9. Category D Connections

STEP 3: Finalizing the Method
This is the most important step of the proposed methodology where
the designers will zero-in on the best method to connect the two IP
blocks.

This step goes through a comparison of available methods,
elimination of methods, and mixing method routines to arrive at an
optimized approach.

Elimination
As the first step, designers should eliminate the choices which cannot
be used at all to connect their two IP’s together, purely on the basis
of the nature of the IP’s or the connections required.

The following table can be used for this elimination process:

Table 2: Elimination process for optimal method selection
Method Elimination Criteria: Eliminate When =>
Direct
Instantiation

Both the IP blocks are pre-compiled
Category C connections are required between
IP blocks

SV Bind
Construct

Category C connections are required between
IP blocks

SystemC
Control/Observe

One of the IP blocks is not SystemC
All SystemC IP blocks are pre-compiled

SCV-
CONNECT

One of the IP blocks is not SystemC, which
uses SCV

All SystemC IP blocks are pre-compiled

SC-DPI One of the IP Blocks is not SystemVerilog
One of the IP Blocks is not SystemC
Connections between IP blocks does not
involve method ports only

Mixing Methods
There may be situations where it is desirable to use more than one
method to connect two IP blocks. Mixing methods is especially
useful in the following scenarios:

All Choices Eliminated: There could be situations where elimination
process results in elimination of all the available choices. Mixing of
modes may be the last hope of making connections in such scenarios.

As an example, consider the case where a precompiled SystemC IP
needs to be connected to a SystemVerilog IP whose source code is
available, and the connection involves a mixture of Category A and

Category D connections. In such a situation, elimination process will
result in elimination of all the available choices.

Figure 10. Connecting IP Blocks with Both Category A

and Category D Connections

For connecting these two IP blocks, a mixture of direct instantiation
and SC-DPI will have to be used.

More Optimized Solutions: Sometimes mixing multiple methods of
connections can provide more optimal results as compared to one
single method.

As an example, consider the scenario where a precompiled
SystemVerilog IP needs to be connected to a SystemC IP whose
source code is available, and the Category C connections are
involved with a majority of connections being confined to one, and
only one, design-unit in both the IP blocks.

Figure 11. Connecting IP Blocks with a Special Case of

Category C Connections

In such a situation, the elimination process will result in SystemC
control/observe or scv_connect(). However, it may be more efficient
to use SV bind construct, or direct instantiation for connections that
are confined to a single design-unit in the two IPs, and use SystemC
control/observe or scv_connect() for the rest of the connections.

The steps for mixing methods process are as follows:

• Search for a method for each connection separately.
• Select the most optimized method for the connection.
• Once methods have been finalized for all individual

connections, create a list sorted by the methods used.
• Finally use the selected methods to make connections.

Comparison of Choices
After the elimination and mixing methods steps, designers will be
left with one or more choices. They can then use details provided in
Table [1], Section 2 (Methods to Connect Mixed Language IP
Blocks) to select the best approach for their SoC.

SV IP SC IP

axicore

ip1.axistimgen.reset->
ip2.axicore.reset

data−>data

axistimgen
addr−>addr

crc−>crc

flags−>flags

SC IP SV IP

Method

clk->clk

data−>data

IP Block 1 IP Block 2

Method
Method

4. PROPOSED MIXED LANGUAGE INTER
CONNECT UTILITY

The methodology presented in this paper is used to develop a mixed
language Inter Connect Utility (ICU) that takes the two IP blocks
written in different languages as input and automates the hook-up
connection process by suggesting the most suitable approach, while
taking the minimum input from the user. It also generates snippets of
code that can be automatically inserted in the design to make these
connections seamless and less prone to errors that may result from
manual updates.

Designer Configuration File
A Designer Configuration File (DCF) can be provided with the
utility to automate it even further. This designer configuration file
(DCF) will have information about the two regions to be connected,
port-maps of the two regions, name of the output generated, and so
on.

Figure 12 depicts Inter connect Utility Step 1; parsing and
identifying the design

 Figure 12: Snapshot of ICU Step1

At the end of the ICU run, an option will be provided to store the
DCF containing all the settings that were gathered or requested from
the user in this run. The stored DCF can also be edited by the user to
make small changes in his bindings as per the requirement for
subsequent CIU runs.

Snapshots of Inter Connect Utility below show the Step 2 and Step3
process (described in section III) of analyzing and making IP
connections.

Figure 13: Snapshot of ICU Step2

Figure 14: Snapshot of ICU Step3

5. VALIDATING ICU ON A REAL WORLD

DESIGN

Initial results on a small design indicate time savings in comparison
to manual integration effort, with the additional benefit of removing
the dependency on user’s know-how of various integration methods
by automatically analyzing and proposing the best option.

The methodology described in this paper is validated on standard 10
Gigabit Ethernet protocol as shown in Figure 15.

The 10 Gigabit Ethernet (10GbE) aims at promoting the use and
availability of Ethernet in the WAN environment. It defines a version
of Ethernet with a nominal data rate of 10 Gbit/s, ten times as fast as
Gigabit Ethernet.

10GbE supports only full duplex links which can be connected by
switches. Half Duplex operation and CSMA/CD (carrier sense
multiple access with collision detect) are not supported.

The 10GbE standard encompasses a number of different physical
layer (PHY) standards. A networking device may support different
PHY types by means of pluggable PHY modules.

Figure 15: 10 Gigabit Ethernet Environment

We used the methodology proposed in this paper to connect VHDL
DUT to the SystemVerilog wrapper. The proposed methodology
indicates direct instantiation and SV bind construct as the two most
optimized methods of connection for our 10 Gigabit Ethernet
example. The performance details of different approaches for
connecting mixed language IP is listed in Table 1 (column D).

6. CONCLUSION

The step by step methodology presented in this paper eliminates the
limiting factor of IP reuse due to the complexity of mixed language
designs. A new ‘mixing methods’ approach is also introduced to help

designers make their mixed-language connections in scenarios where
all methods get eliminated or where using more than one method for
integration provides a more optimized connection.

The main benefits of the proposed methodology are twofold:

1. Removing the basic issue with “how to” interconnect mixed-
language IP’s by analyzing several standardized/non-standardized
methods and proposing the best option with the highest benefit and
minimal risk.

2. Improving the productivity by minimizing issues found late during
the design cycle due to incorrect interconnect approach or manual
error in IP integration. The proposed utility selects and automates
most of the process of mixed language IP hook-up connection. It also
provides flexibility to the user to select his choice of method.

7. REFERENCES

[1] Rudra Mukherjee and Sachin Kakkar, “System Verilog – VHDL Mixed

Design Reuse Methodology”, DVCon 2006.
[2] Rich Edelmen, Mark Glassar, et al. “Inter Language Function Calls

Between SystemC and SystemVerilog”, DVCon 2007
[3] Rudra Mukherjee, Gaurav Kumar Verma, et al. "SystemC Mixed-HDL

IP Reuse Methodology", IP-07
[4] Gaurav Kumar Verma and Rudra Mukherjee, “Adding New Dimensions

to Verification IP Reuse”, DVCon 2009
[5] Rajeev Ranjan, Homayoon Akhiani, et al. “Towards Harnessing the

True Potential of IP Reuse”, DesignCon 2009
[6] SystemC LRM IEEE 1666-2005 (www.systemc.org)
[7] SystemVerilog LRM IEEE 1800-2005 (www.systemverilog.com)
[8] VHDL LRM IEEE 1076-2002 (www.vhdl.org)

IMPORTANT NOTE

The utility presented in this paper is a standalone tool to help users
automate connecting their mixed-language IP’s. As of today, there
are no plans to add this utility in Questa.

10G
Sequence

Device 0
Agent

10G Ethernet
Interface

Device 1
Agent

VHDL DUT

