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Abstract: Today’s complex, low-power analog and mixed-signal (AMS) systems on chip (SoCs) are comprised of logic 

(boolean, real) and transistor-level abstractions for design implementation, verification, validation, and test readiness. 

This situation mandates extensive use of AMS co-simulation[1][2][3]
. Such designs are increasingly becoming power man-

aged with multiple power/multi-voltage domains by nature. There are various techniques for verification and validation 

of these low-power designs, but most of them either have dependencies on the block-level designer to use the right power 

domain for a multi-power design, or require lot of manual effort for setting up the flow, which is error prone. This paper 

discusses the verification of AMS SoCs in a very effective way by using the power intent information in the form of Com-

mon Power Format (CPF). We begin with discussing the traditional methods[4][5][6] used for insertion of interface elements 

(IEs), also called connect modules (CMs), to handle inter-discipline signal traversal, followed by how AMS-CPF based IEs 

proved to be very simple, straightforward, and accurate for top-level co-simulation. 
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I INTRODUCTION 

 

Traditionally, Analog and Mixed Signal (AMS) verification was carried on by introducing power supply sensi-

tivity for logic-to-electrical signal conversion (and vice versa) by one of two methods, viz., static supply voltages 

that perform conversion based on fixed thresholds, or to use a special type of interface elements (IEs) or connect 

modules (CMs) named inherited IEs[4] that inherit a user-specified power supply for signal conversion. In this meth-

od of inherited IEs, we first used the CPF[5][6] (from a backend/physical design implementation phase, the Cadence® 

Encounter® Digital Implementation™ tool suite, for example) to infer the power domain information and then post-

processed this information to define the block disciplines needed for AMS or digital mixed-signal (DMS) simula-

tions and create the IE groups that inherited the supplies based on the block disciplines assigned (using Cadence -

setdiscipline constructs), as illustrated in Figure 1. 

 

However with multi-power domain designs, the complexity scales up for the discipline specification both with 

static and inherited IEs. It is a manual, error-prone, effort-intensive task to ensure correct discipline specification at 

the digital boundaries. Though this post-processing can be done through automation scripts and is a one-time effort, 

for SoCs with many voltage and power domains, creating multiple IE groups require considerable effort and time. 

 

 
 

Figure 1: Traditional verification approach towards setting domain disciplines in AMS simulations[6] 

 

In the proposed and implemented method, we discuss making use of CPF directly for implementing supply sen-

sitivity in AMS-RTL simulations[7] and thus eliminating all the manual effort needed to define the block disciplines 

for IE insertion. We will also see that the flow is more accurate, enables reuse of existing power intent information 

provided by the designer, and eliminates false failures because of incorrect supply information,which is very costly 

for AMS simulations in terms of their run times. 

 

 

II OVERVIEW OF THE TRADITIONAL CPF-DERIVED INHERITED-IE METHOD  

 

Before we delve into mixed-signal design verification directly using power intent in the form of CPF, let us have 

an overview of the traditional inherited IE method. As explained above, the power intent information is captured in 

the form of CPF and is considered as the golden reference for the given IP or SoC. Most of the recent flows (for 

example, Encounter Digital Implementation tool suite and NC-Verilog® simulator with low-power capability) use 

this information in all stages of the design to implement/verify the power intent, which is sufficient enough to know 

voltage or power domain of each pin of the IP it belongs to. For example, some typical Encounter Digital Implemen-

tation commands used to get the pin power domains are shown in Figure 2. 

 

 



 
 

Figure 2: Encounter Digital Implementation commands to get the pin domain information[6] 

 

The power domain information thus obtained is then post-processed to get the discipline information that a func-

tional simulation tool (like NC-Verilog) can understand. Figure 3 illustrates the complete flow where the CPF and a 

synthesized gate-level netlist are passed to the Encounter Digital Implementation tool along with the Tcl file con-

taining the above commands for power domain identification. The first-level output of this flow is the power-domain 

information that is then passed through a PERL script to create the constructs that the simulator can understand to 

run AMS co-simulation. The constructs are those of Cadence’s Incisive® AMS Use Model[3] flow, which uses the 

IRUN command for the simulation. 

 

 
Figure 3: Complete flow of CPF-derived discipline information[6] 

 

Once the full list of –setdiscipline (or –setd) constructs is available for all the boundary ports of the IPs, it is time 

to configure the IEs by associating them with the discipline names in the –setd constructs. Suppose an SoC contains 

four power domains, viz, avdd (always on domain), vddc (digital core domain), vddm (memory power domain), and 

vddsw (switchable domain). For each of these power domains, unique discipline names are assigned in the above 



flow. Then the connect rules and CMs for an inherited IE (constituting an IE group) are customized (as a copy from 

the Cadence software installation path) for each of the power domains. Thus in our case, four IE groups are created. 

 

 
 

Figure 4: IE groups for different power domains in an SoC[6] 

 

Each IE group will have a default discipline, such as logic, in it. This logic discipline is replaced by the disci-

pline associated with each power domain. Accordingly, the IEs or the CMs inserted into the design during elabora-

tion will be named with the corresponding discipline name as the suffix (illustrated in Figure 4). 

 

The semantics of an IE group consisting of connect rules and CMs for an inherited IE from Cadence installation 

and how the discipline name is specified in the connect rule is illustrated in Figure 5. 

 

 
 

 
 

 
 

Figure 5: Semantics of an IE group and constructs to use IE groups in the simulator[6] 

   

As seen above, the switch –amsconnrules is used to compile the IEs from each IE group along with the design 

source codes. All the –setd constructs can be placed in a file, say disciplines.f, and this file can be added to the irun 

command. During the discipline resolution, the tool uses discipline information of each interface and picks up the 

appropriate IE. The IEs that are inserted into the design based on the –setd commands can be seen by referring the 

file named ams_ieinfo.log created after the elaboration. This file is created by adding the switch –ieinfo to the irun 

command. 

 

A snippet of the IEs inserted at various levels in the design as shown in ams_ieinfo.log (Figure 6). 

 



 
 

Figure 6: IEs inserted into the design based on the discipline 

 

Though it is a one-time effort to create IE groups, it requires considerable effort to create such IE groups for 

SoCs with multiple voltage and power domains. In the next section, we shall see how using CPF directly on an AMS 

RTL design eliminates these efforts and will see how much time and effort is saved by using very minimal con-

structs and set up.  

 

However, we need to keep in mind that today’s use of CPF for RTL AMS co-simulations is possible only when 

we make the physical electrical supply connection from the design under test (DUT) to the IPs instantiated by it. 

This is because CPF constructs as of today do not support supply port connections, as they work only based on the 

power domains that the ports belong to. By extension, any supply variation (fluctuation) can not be tracked by CPF, 

so we must have a feature where we can model the supply variations in the CPF file.  

 

In order to overcome this limitation, work is under progress by Cadence to enable supply port connection in CPF 

as a proprietary feature so that the simulator can track the supplies continuously and perform signal conversion, 

which gives rise to fully automatic true supply sensitivity through CPF. Currently, this physical electrical supply 

connection is needed only at the DUT level or at the level where the electrical and logical design partitions interact 

directly. Once the work to comprehend CPF supply connections is complete, we can use a Verilog-D DUT without 

physical power connections, and the tool can automatically handle signal conversion based on supply information 

through CPF. 

 

As we need to make the physical electrical supply connection from DUT to the IPs, we need to have the DUT 

coded in Verilog-AMS, as Verilog-D does not support electrical supply ports. In the next section, we will see how 

this has been implemented in an industrial testcase by first going over basic CPF constructs, and then illustrating the 

case with CPF-based IEs for AMS simulation. 

 

 

 

 

 

 



III PROPOSED CPF-BASED IEs FOR MIXED-SIGNAL DESIGN VERIFICATION 

 

We will begin with a quick overview of some basic CPF constructs so that one may understand how power intent 

is captured for the IPs and how this power intent information is used by the simulator for classifying the blocks un-

der respective power domains.  

To identify portions of the design that operate on the same voltage, associate these portions with a power domain 

using the create_power_domain command. 

 

create_power_domain -name power_domain [-instances instance_list] [-boundary_ports pin_list] [-default] 

[other options…] 

 

To specify additional information that applies to power and ground routing, use the update_power_domain 

command. 

 

update_power_domain -name domain { -primary_power_net net | -primary_ground_net net } [other options…] 

 

When instantiating a macro cell in the design, indicate which CPF macro model applies to the specified instance  

using the set_instance command.  

 

set_instance <inst_name> -model <cell_name> -domain_mapping { {PD_1 PD_1 }  {PD_3 PD_4 } } 

 

To identify which cells in the libraries can be used as special cells for power management functions like state re-

tention cells and level shifter cells, use the below commands. 

 

define_state_retention_cell -cells *DRFF* -restore_function RETN 

create_state_retention_rule -name string { -domain power_domain | -instances instance_list } [other options…] 

define_level_shifter_cell -cells LVLLHEHX* -input_voltage_range 0.8 -output_voltage_range 1.0 -

output_power_pin VDD -ground VSS  

create_level_shifter_rule -name lsr1 -from PD1 -to PD2 

create_level_shifter_rule -name lsr2 -from PD2 -to PD3 

 

The definition of a CPF macro model starts with a set_macro_model command that specifies the name of the library 

cell that represents the macro cell. 

 

set_macro_model ABCD_203 

 

In CPF, operating voltages are associated with nominal conditions. To specify the operating voltages used in the 

design, use the create_nominal_condition command. 

 

create_nominal_condition -name string -voltage {voltage | voltage_list} [-ground_voltage {voltage | volt-

age_list}] 

Examples: 

create_nominal_condition -name N1 -voltage 1.2 -ground_voltage 0  

create_nominal_condition -name OFF -voltage 0 -ground_voltage 0 -state off 

 

To associate the nominal conditions with the power domains, use the create_power_mode command. 

 

create_power_mode -name string -domain_conditions domain_condition_list –default 

Example: create_power_mode -name PM2 -domain_conditions { PD_VDD1_VSS1@N1 

PD_VDD2_VSS2@OFF }  

 

End the CPF macro model with the below command. 

 

end_macro_model 



The industrial testcase used here is a complex AMS SoC (shown in Figure 7). This SoC uses four power do-

mains as we saw in the example in the previous section. A high-level block diagram of this SoC is shown below, 

where we have digital (boolean, real) and analog (behavioral model, transistor level) for various modules based on 

their level of abstraction. We had used CPF-derived inherited IEs initially, and now we will see how CPF-based IEs 

are directly used for mixed-signal verification of this SoC.  

 

 
 

Figure 7: SoC comprising various levels of abstraction[6] 

 

 

For this SoC, we use a Verilog-AMS testbench and a Verilog-AMS DUT to establish the physical supply con-

nections at the DUT level, to cover the limitation (of CPF) as mentioned in Section II. As seen below, the module 

named DUT has its input/output/inout ports along the supply/ground ports (VDD*/VSS*) and these supply ports 

have to be electrical by nature. 

 

module DUT (P1, P2, P3, VDD1, VDD2, VSS1, VSS2,  F1, F2, F3); 

 

inout VDD1, VDD2, VSS1, VSS2; 

input P1, P2, P3;  

output F1, F2, F3; 

 

electrical VDD1, VDD2, VSS1, VSS2;   

… 

endmodule 

 

This one-time effort overcomes the current limitation of the CPF lacking a supply port connection, and this 

workaround enables the physical supply connectivity between the DUT and the IPs. The rest of the design is gov-

erned by CPF, and signal conversion happens by following the power domain information from CPF. 

 

Snippets of some of the power-intent information in the CPF for this SoC are shown below. 

 



create_power_domain -name PD_1 –default 

update_power_domain -name  PD_2 -primary_power_net VDD1 -primary_ground_net VSS1 

 

set_instance u_inst_1 -model model1 -domain_mapping { {PD_VDD1_VSS1 PD_DIG_1 }  {PD_VDD2_VSS2 

PD_VDD3 } } 

 

create_state_retention_rule -name RET1 -instances    {  

tb/duv/u_dig/u_ip_wrap/u_0 tb/duv/u_dig/u_ip_wrap/u_1 } \ 

-save_edge  {tb/shutoff_condition }\ 

-restore_edge  {!tb/shutoff_condition }  

 

     set_macro_model flash_ ip 

create_nominal_condition -name N1 -voltage 3.3 -ground_voltage 0  

create_nominal_condition -name OFF -voltage 0 -ground_voltage 0 -state off  

 

create_power_domain -name PD_VDD2_flash -boundary_ports { \ 

    flash_3P3V clk_3P3V en_flash_3P3V ……} 

 

update_power_domain -name PD_VDD2_flash -primary_power_net \ 

    VDD_flash -primary_ground_net VSS  -equivalent_power_nets \ 

    { VDD2 VDD3 VDD4 } -equivalent_ground_nets \ 

    { VSS1 VSS2 VSS2 VSS4 } 

 

create_power_mode -name PM1 -default -domain_conditions { \ 

    PD_VDD2_flash@N1 }  

create_power_mode -name PM2 -domain_conditions { PD_VDD2_flash@OFF }  

 

end_macro_model 

 

(All of the above power intent information are samples for illustration purpose from the original SoC, and they 

don’t represent the entire power intent information required for correct and comprehensive low power implementa-

tion and verification.) 

 

With this information, the set up is ready for the simulation. We will see some of the IRUN options that need to 

be added to make use of the power intent information properly to insert power-smart IEs. The next section explains 

the final stage of the verification setup. 

 

 

IV SIMULATING THE DESIGN USING CPF 

 

The IRUN options to be added before starting the simulation include:  

 

-amsconnrules CR_full_fast to use Cadence-provided built-in power-smart CPF-based IEs 

-discipline logic to set a global logic discipline to the entire design 

-ams_generate to support IEs inside VHDL generate statements 

-lps_pmode to enable power-mode simulation 

 

These options were added and the irun command was executed with all the other required source codes, analog 

control files, and AMS control files. Simulation was completed and results matched with the traditional inherited IE 

method. The turnaround time for the set up was reduced from few weeks to less than two days.  

 

Figure 8 shows the snapshot of the ams_ieinfo.log file showing the CPF-based IEs. Note that CPF-based IEs 

have a __LPS suffix to denote low-power simulation.  

 



 
 

Figure 8: Snippet of CPF-based IEs from ams_ieinfo.log file 

 

Cadence’s SimVisionTM waveform viewer shows these CPF-based IEs inserted in the design hierarchy as shown 

in Figure 9, and enables plotting its internal signals just like inherited IEs. One can plot, trace, and look at the drivers 

of these signals, which show that the signals are driven from the CPF.  

 

 
 

Figure 9: Snippet of various CPF-based IEs inserted into the design 



In the next and final section, we will summarize the limitations and future scope of using CPF-based IEs for 

mixed-signal SoCs. 

 

 

V LIMITATIONS AND FUTURE SCOPE OF CPF-BASED IEs 

 

The two major limitations in the existing flow of using CPF-based IEs are explained below. 

 

A. CPF-based IEs can be used only for RTL AMS co-simulations, but not for gate-level AMS co-simulations 

This limitation is because the synthesized gate-level netlist has the physical power ports connectivity 

that will be overridden by CPF for domain selection and CM insertion. There is a need for AMS co-

simulation using gate-level abstraction with timing annotation for covering timing-critical analog-

digital interface paths. To support such requirements, we need true supply sensitivity without having to 

resort to direct use of CPF, since the use of CPF for supply sensitivity in AMS co-simulation overrides 

the actual physical/electrical supply connectivity available in the power-connected gate-level netlist. 

 

B. Need for physical supply port connections in CPF to track the supply variations 

As briefly mentioned in Section II, current use of CPF for RTL-AMS co-simulation is possible only 

when we make the physical electrical supply connection from the DUT to the IPs instantiated by it. 

Currently, CPF constructs do not support supply port connection, as they work only based on the pow-

er domains of the ports, so any supply variation (fluctuation) cannot be tracked by CPF. In order to 

overcome this limitation, work is under progress by Cadence to enable supply port connection in CPF 

as a proprietary feature, so that the simulator can track the supplies continuously and perform signal 

conversion accordingly. This feature will provide fully automated true supply sensitivity through CPF. 

 

 

VI CONCLUSION 

 

     In this paper, the authors have presented the need for moving from traditional static or inherited IEs to CPF-based 

power-smart IEs. The flow of generating discipline information from CPF for inherited IEs was first explained as an 

interim measure before a fully automated flow, and the time and effort saved by using CPF-based IEs directly was 

explained. Basic CPF constructs with examples from an industrial testcase were shown. Practical usage of CPF and 

its limitations were summarized, with future scope and work under progress.  
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