
DRAFT 24-JUL-2014

1

A GUIDE TO USING CONTINUOUS
INTEGRATION WITHIN THE VERIFICATION

ENVIRONMENT

Jason Sprott, Verilab Ltd., UK
André Winkelmann, Verilab Ltd., UK

Gordon McGregor, Nitero Inc., USA

July 24th 2014

Abstract—In 2012, we introduced the EDA world to

the power of Continuous Integration (CI) with “A 30
Minute Project Makeover Using Continuous
Integration”[1]. Now, two years later, there is still some
confusion between the roles of Continuous Integration
and EDA regression tools, when it comes to verification
management and test execution. Also, some of the
challenges faced when integrating CI with EDA tools,
touched on in the previous paper, need to be expanded
upon using concrete examples. While the technology for
CI has been available for years, the methodology and
mechanics of how best to use these tools in an EDA
environment is not always obvious. In this paper we will
clarify the roles of CI and regression management, and
provide a practical guide on how users can quickly
deploy CI within their verification environment

Keywords—Software testing; Computer simulation;
Digital Simulation; Logic design

I. INTRODUCTION
A CI server can be installed and managed with

little to no interaction with the IT department. The
initial setup can often be done in as little as 30
minutes. In our examples we use Jenkins, which is a
freely available open source tool, used on many large-
scale software projects. Jenkins works with the most
commonly used version control systems and can
easily be integrated with existing regression scripts.
The original paper [1] describes how to install and
configure a basic set up, so this will not be covered
again. Instead we will focus on the following:

• How to control simulation and regression tools
from Jenkins

• How to get pass/fail results from simulations
into Jenkins

• How to make simulation test results and
reports available from Jenkins

A quick reminder of where Jenkins fits into a
typical EDA development environment, using source
control management (SCM), e.g. Subversion, Git, or
ClearCase, is shown in Figure 1. The value of CI is
built upon the idea of releasing and integrating code
early and often. The main development branch is kept
healthy, by Jenkins monitoring changes that

developers check in, automatically running tests, and
keeping the team continually informed of the current
state. This paper focuses on the integration between
Jenkins and the EDA environment, required in steps 3,
4 and (to some extent) 5, in the diagram.

Figure 1: Jenkins Environment Overview

A typical so-called Metric Driven Verification
(MDV) environment provides a platform for
launching, controlling and triaging many simulations.
The task of analyzing the results from such an
environment can be daunting enough from a
verification (finding bugs in the design) point of view,
but as with any software project, there is an additional
challenge of keeping the build healthy. Today’s EDA
tools have built-in features designed to optimize
effectiveness on the verification side of things, and are
typically tightly integrated with verification language
features, methodologies used, and other
complementary tools in the chain. The EDA tools aim
to make sense of, and present the results from, the
many metrics collected during simulation. This is
crucial for the detailed debug and analysis required for
verification closure.

However, we also need to ensure issues with the
checked-in code are detected quickly, effectively and

2

preferably automatically. This is typically done by
running some of the same tests used for verification,
in the same MDV environment, but with a more
coarse-grained view of status. This is where CI tools
such as Jenkins come into play. In the following
sections we will look at where a line can be drawn
between the features best left to the EDA tools and the
additional benefits that Jenkins provides.

The paper will show two examples of a Jenkins
integration. Two versions of a commonly used EDA
tool (Cadence vManager), are used to illustrate how a
significant tool API change affects the Jenkins
integration code. One version of vManager makes use
of the e-language API, while the other (vManager
C/S) uses a new TCL-based API.

For a quick start, all necessary scripts and code
examples have been put in a publicly available
repository [7]. Instructions on how to set up the
environment and use the code are provided in a
README file. The solutions presented are based on
knowledge gained from several years of CI use on live
verification projects. The concepts and much of the
code provided are generic and applicable to any MDV
tool/environment.

II. COMPARING CI AND REGRESSION TOOLS
The installation of a CI tool may be easy, but it’s

often surprising to learn that not everyone understands
the difference between what a tool such as Jenkins
does for the project, as compared to a typical EDA
tool, handling verification planning, management and
regression control. In fact both tools automate the
submission of simulations and provide analysis of
results, so you can see how there might be some initial
confusion. Sometimes there’s enough confusion to
cause CI to be dismissed out of hand, as not being
capable of adding enough value to a project. From a
project management point of view, taking lessons
from the many complex software design projects
using CI, this is almost certainly a big mistake.

Cadence vManager, is a modern verification
planning and management tool, focusing on MDV.
The tool offers a lot of built-in automation capability,
and sophisticated features for results management and
analysis. This is useful in order to illustrate the split of
responsibilities, between the CI and MDV
environments.

The MDV environment provides the user with the
ability to manage simulations (sequential and in
parallel), as part of a regression, and the capability to
efficiently analyze the complex stream of results.
That’s no small feat, as a typical verification
environment these days must filter, analyze and
correlate a huge amount of output, e.g. log file
errors/warnings, assertions, code coverage, functional
coverage, plan coverage. The goals of a MDV
environment are to simplify the overall debugging
effort by using sophisticated triage features, and
manage the overall complexity of the data presented,
in order to achieve verification closure.

Jenkins’ job on the other hand is to automatically
monitor the on-going state of checked-in code, and
make the results of this easily available to all
interested parties. This may be interesting in a wider
context than just a single project. For example, an IP
library might be shared across multiple projects, so a
change that breaks something can have significant
implications. Today’s projects are full of such
dependencies.

There is an overlap with the MDV environment as,
in order to do this, simulations (unit tests) have to be
run by Jenkins and the results analyzed. These unit
tests are normally run in the usual way, using the
MDV environment, but the CI and MDV tools are
working on slightly different problems. The thing that
a CI tool cares most about is the PASS/FAIL status of
these unit tests. The tests can be a carefully selected
subset of an overall regression; however, it’s very
important that the tests are able to pick up issues
associated with the functionality of the checked-in
code. In other words the tests say something about the
state of the code that has just been added, or modified.
This is a significant distinction between MDV and CI
goals. It’s possible to select tests that are meaningful
in a verification context, i.e. provide functional
coverage of the design under test, but are not sensitive
enough to pick up errors, due to changes in the source
code that triggered the test.

The type of triage done at the CI level is aimed at
increasing project efficiency overall, by identifying
problems introduced as early as possible. This means
that failures (build or test), are tracked and presented
at regular intervals, and fixed quickly. Although it’s
possible to pass all sorts of information from the
MDV environment to the CI tool (e.g. verification
plan or functional coverage figures), the most basic
and most useful requirements are the per-test
PASS/FAIL results, and links to detailed results (if
available) in the MDV environment.

The quickest way to integrate the CI and MDV
environments is to allow them to play to their own
strengths. Out of the box, Jenkins tightly integrates
with SCM tools, tracks per test PASS/FAIL trends,
provides an easy mechanism to publish results to web
pages and notify interested parties by email.

Out of the box, vManager provides regression
management and features to analyze results; but most
importantly for CI integration, the following two
features are available:

• Customizable log file filtering (for PASS/FAIL
status)

• A mechanism to link to the build and test
results

Not all tools provide this filtering out of the box,
but ultimately the environment somehow has to
implement a common way to do it.. Leaving this
filtering to the MDV, as opposed to providing a
separate mechanism for the CI tool, is very important.
It not only allows the MDV environment to do the

3

heavy lifting on the log file pass/fail parsing, it also
provides a consistency between CI and MDV
environments, and keeps the amount of data passed to
Jenkins to a minimum. Detailed analysis of the results
is best handled in the MDV, but links to the results
can easily be provided on the Jenkins dashboard.

III. THE SOLUTION

A. Overview
As previously mentioned, the solution presented in

this paper is not specific to vManager. The concepts
themselves apply generally. The implementation has
been split into two distinct parts:

• Generic: code and techniques independent of
the MDV environment. A standard Comma
Separated Values (CSV) data interchange
format and standard python libraries are used,
to provide a reliable and easy to understand
integration to Jenkins. One MDV tool could be
swapped out for another tool without the need
to modify the generic implementation.

• Specific: code and techniques tailored to the
specific EDA tool being used (vManager and
vManager C/S). The issues dealt with apply to
most tools, but implementation is dealt with in
a tool specific way.

Any solution will have a tool specific component.
The requirements for this will depend on the
capabilities of the tools used in the MDV
environment. For example, not all tools have the
ability to handle exiting at the right time (with respect
to job control), with meaningful exit codes, or can
export results as HTML and CSV. Their APIs may be
in different languages and have different limitations.

Figure 2: Overview of Jenkins/vManager

Integration

Figure 2 provides an overview of the vManager
solution. The tool-specific part of the solution is
encapsulated in the grey vManager box. This is
described in more detail in Section B, but it’s useful to
note the following:

• batch_run.sh: is the build/run regression
launch script called by Jenkins, which starts
the regression. This script runs all the steps
necessary to create the input for Jenkins and
generate the overall PASS/FAIL status of the
run (return code from the script itself).

• vm_launch.pl: is the vManager launch
script, called by batch_run.sh, which
starts the vManager regression with the
appropriate arguments. This is a script shipped
by the vendor.

• vlab_post_session.e: is a simple script
developed by the authors, to wait on the end of
all simulations in the vManager regression run,
and generate a CSV file with the aggregated
per-test information the JUnit plugin needs.

4

• The fields required in the CSV file are defined
by JUnit’s reporting capabilities. This is a
generic requirement.

• csv_to_junit_reporter.py: is a
Python script developed by the authors, which
builds the JUnit XML used by the Jenkins
JUnit plugin, taking the vManager generated
CSV file as input.

• vManager generated HTML reports are
published as links in the Jenkins dashboard,
using the Jenkins HTML Publisher plugin.

The generic part of the solution (including
csv_to_junit_reporter.py), can be used as-
is without modification. The details are covered in
section C, but only to explain the construction and
requirements considered.

B. Specific - vManager Integration
This section aims to describe the tool specific

implementation, required to integrate Cadence
vManager with Jenkins. The first section describes
how to control a vManager session in a Jenkins-
friendly way. We will also look in more detail at how
to determine overall, and individual, test pass/fail
statuses. Finally we show how to embed HTML
reports from the vManager environment into the
Jenkins dashboard.

No matter which regression tool is used, there are
some common requirements in order to ensure the
Jenkins integration solution is robust and provides
consistent results. The following should be
considered:

• If the regression environment has built-in
capability to determine the pass/fail status of a
test, it should be used. This avoids
inconsistent log file parsing results, between
built-in and any Jenkins rules.

• Pass/fail results in Jenkins must absolutely
match pass/fail results of the regression. The
first point above hopefully ensures this. It is a
crucial requirement, as issues here can destroy
trust in the results presented by Jenkins.

• If the initial build/compile fails, the entire
regression in Jenkins has to be marked as
failed. Nothing can be guaranteed if this
happens. As well as running the risk of picking
up bogus code/executables, building cleanly is
essential good housekeeping.

• If (for whatever reason), the generated CSV
file, or the JUnit XML is missing, the
regression has to be marked as failed.	

Where possible, it’s a good idea to avoid repeating
functionality, or work done, by the regression tool
itself. In vManager it is possible to utilize the user
"batch API" to analyze individual runs of a regression
and output the results in CSV format. This can then be
processed by csv_to_junit_reporter.py.
Since the input to this generic part of the solution

handles a standard (CSV) format, it’s perfectly
acceptable to have the regression tool generate this for
us.

The details of the vManager specific
implementation can be broken down as follows:

1) Launching the vManager regression

Jenkins will consider a non-zero return on any of
the commands executed in the launch script as an
overall failure, so it’s important to program with that
in mind. Each command in the toplevel script has
been designed to return zero on success, and non-zero
when it fails. This ensures that if any step in the flow
fails, Jenkins will recognize it.

To give some context to the following discussion,
a simplified view of the steps in the batch_run.sh
script called by Jenkins is shown in the following
listing:

#	
 launch	
 vmanager	
 in	
 batch	
 mode	

vm_launch.pl	
 ...	

#	
 Check	
 if	
 overall	
 regression	
 passed	

grep	
 PASS	
 regression_result.txt	

#	
 generate	
 junit	
 XML	
 from	
 CSV	
 output	

python	
 csv_to_junit_reporter.py	
 <CSV>	

junit.xml	
 	
 	

#create	
 links	
 to	
 HTML	
 reports	
 for	
 Jenkins	

...	

ln	
 –s	
 <PATH-­‐TO-­‐REGRESSION-­‐RESULTS>	
 <LOCAL-­‐
PATH>	

Two things are important in order to run a
command as part of a Jenkins build:

• The command needs to run solely in batch
mode

• The command should not return before all its
threads (i.e. running simulations and any
processing), have completed.

The authors decided to use the vendor supplied
vm_launch.pl utility, which simplifies starting a
vManager batch session, and satisfies the two
aforementioned points. Figure 3 details options used
for the vm_launch.pl script. The same options
can also be used on vManager directly.

	
 	

vm_launch.pl / vManager Options

-­‐vsif	
 <path/to/my.vsif>	

-­‐batch	

-­‐command	
 "load	
 vlab_post_session.e;	

sys.vlab_analyse_session()"	

-­‐output_mode	
 log_only	

Figure 3: vm_launch and vManager options

5

The batch and log_only options, make the
session described in the vManager session input
control file (vsif), start automatically in batch
mode with no windows. To satisfy the requirement of
only returning once all simulations have completed,
the vlab_post_session.e script contains the
following call:

vm_util.trace_all_sessions_to_finish();	

Once this call has returned, the results of the
session are analyzed.

2) e-language user API

vManager has an e-language user “batch API”, which
provides the functionality needed to output regression
results in a format we can post-process easily. In the
new version of vManager C/S, the e-language API
has been replaced by a TCL API (see section D). The
same CSV file can be generated through a TCL
function (via csv_export available from version
13.20 onwards). The following listing shows the e-
language API in use:

vsof:	
 vm_vsof	

=	
 	
 vm_manager.get_all_sessions()[0];	

vsof_result:	
 bool	
 =	
 	

	
 	
 vsof.get_failures().is_empty();	

runs:	
 list	
 of	
 vm_run	
 =	
 vsof.get_runs();	

attr:	
 string	

=	
 runs[0].get_attribute_value(

	
 	

vm_manager.get_attribute_by_name("test_nam
e"));	

run_result:	
 bool	
 =	
 runs[0].has_passed();	

The vm_manager object is the entry point into

the batch API, providing access to all loaded, or
completed sessions, via the
get_all_sessions() method. This returns a list
of sessions, represented by vm_vsof objects. It is
possible to load multiple sessions into vManager. In
order to access the tests executed in a session, a list of
vm_run objects can be obtained using the
get_runs() method of vm_vsof. More
information can be found in the documentation [9].

We can find out if there are any failures related to
the session runner itself using the
get_failures() method, e.g. a vManager
“dispatching failure”. This does not include failures of
individual tests.

The get_attribute_value() method lets
you access any attribute you can find in a vsof file.
In order to retrieve the same pass/fail status as shown
in vManager itself, the has_passed() method of a
vm_run object can be used.

3) Determine overall regression pass fail result

The authors decided to output a single file
(regression_result.txt), with just the word
“PASS” or “FAIL” in it, to signify the overall
regression result to Jenkins. This allows a simple grep
to return a non-zero exit code from the build/run script
executed by Jenkins, if the simulation has failed. If
this happens, it will appear as a failed regression run
in Jenkins. This technique also provides a safety net in
case any of the scripting fails, e.g. if the
regression_result.txt is not generated, the
grep will fail.

To find overall status, the
vlab_post_session.e script uses the
get_failures() method of the vm_vsof object,
first to determine if the overall regression runner had
any issues. Secondly, if this method returns an empty
list, the script continues to go through each vm_run
and evaluate the has_passed() method. If all runs
pass and the session does not include any failures, we
write a “PASS” to
regression_result.txt.Otherwise we write
“FAIL”, denoting the regression has failed for some
reason.

4) Generating CSV output for per test results

The vlab_post_session.e script generates a
CSV file which provides individual test results. This
file is the direct input to
csv_to_junit_reporter.py, which translates
the CSV into JUnit XML report. The e-language script
iterates over the list of vm_run objects and extracts
the data to be written to the CSV file, using the
get_attribute_value() method. The
following data (by CSV column names) is extracted.
The CSV column names are the same as the CSV file
outputted by vManager C/S:

• Test Name: The name can be directly
extracted from the vsof attribute
"test_name".

• Test Group: The JUnit testsuite name is
extracted from vsof attribute "test_group"
e.g. "my_session/my_group”.

• Seed: This column uses the vsof attribute
"seed" which is used by the Cadence Specman
tool.

• SV Seed: This column uses the vsof
attribute "sv_seed" which is used by
SystemVerilog testbenches.

• Status: This column uses the vsof attribute
"status" and represents the pass/fail status of
the test.

• CPU Time (ms.): Recorded CPU time to
run the test. The vsof attribute "cpu_time" is
used for that.

6

• Log File: This is the full path to the logfile
of the test. The vsof attribute log_file
contains a list of log files. For this reason the
script picks one log file. It either chooses the
first "irun.log" it can find, or if this does not
exist, picks the first alternative in the list.

• First Failure Description: The
vsof includes an attribute called
"first_failure" which includes the text of the
first error message leading to the failure of the
test. If no failure is present, this column will
stay empty. The formatting of this column is
crucial, since the "first_failure" attribute could
include new lines, or commas, which could
break the CSV format for the next processing
step. To handle this, the string is simply double
quoted in this column. The python CSV parser
works properly afterwards even for multiline
strings.

5) Linking to HTML reports in Jenkins

The Jenkins HTML Publisher plugin is used to
handle publishing HTML reports, produced by the
tools, on the Jenkins dashboard pages. The plugin can
take any HTML page, or directory of files, and link
that into the Jenkins project page. There is an option
in Jenkins to actually store these pages on disk for
historical reference if desired.

In vManager we can generate a regression report
showing overall session statistics, including detailed
information about any collected coverage, and
correlation of this data to a verification plan. This
level of information is very useful to have access to,
but does not need to be displayed natively on the
Jenkins dashboard. In our experience this is an area
the MDV tools, specifically in this case vManager,
handle very well themselves. Creating the links to
these reports is low effort, and is the best way to make
the information available from Jenkins.

In order to publish the vManager reports in
Jenkins, two things have to be set up. Firstly, in the
vManager vsif file, the following attributes must be
setup:

	
 	
 post_session_script	
 	
 :	
 "vm_analyze.pl";	

	
 	
 auto_regr_report	
 	
 	
 	
 :	
 ON;	

	
 	
 auto_report_vplan	
 	
 	
 :	

"path/to/my_module.vplan";	

Secondly, as part of the Jenkins project
configuration, add a post build action "Publish HTML
reports" specifying the directory which includes all the
HTML files needed for the report. This directory must
include an index page, which is also specified in the
setup.

vManager happens to generate reports in a
directory, with an index page, a subfolder with the
HTML files we’re interested in, plus some other stuff
we aren’t. Some of these files can be quite large, so

the authors decided to restructure things a bit, and
only link to the HTML reports we’re actually
interested in from Jenkins. This was done by copying
the index page to a new directory and creating
symbolic links.

If the Jenkins plugin is configured to store HTML
reports for historical reference, available disk space
should be considered. Some of files can be very large.

C. Generic– Jenkins JUnit Integration
The csv_to_junit_reporter.py script

covered here can be used without modification. The
details are only covered to allow a better
understanding of the implementation.

Jenkins is useful out of the box, using only the
overall PASS/FAIL status of the whole regression.
However, functionality can be extended, using support
for JUnit reports, to provide history for individual
tests within a regression. This includes the following:

• PASS/FAIL status over time

• Runtime of a test (in addition to the whole
regression)

• Specific error messages

• Log files from each simulation run

The JUnit reporting can be especially useful for
quickly triaging regression failures, watching the
behavior of tests over time, and assessing the cause of
a test failures, before detailed debugging starts. This
data is input to Jenkins from a JUnit format XML
report, generated after the regression is complete, by
running the csv_to_junit_reporter.py
script.

While working on projects, the authors noticed on
that the features available to tie the results of
simulations back into Jenkins, are not very well
understood. There is built-in support for handling
JUnit reports, but the XML schema itself, and in
particular how it is then used within Jenkins, isn't well
documented. There have also been many fragile, and
often half-hearted, attempts at writing scripts that
partially wrap up results into something close to the
correct format. These tend to fall over quite often, due
to hitting XML corner cases, or input formatting
issues.

In this paper we try to address reliability issues, by
using a clean encapsulation of a JUnit XML generator,
in csv_to_junit_reporter.py, to produce
test results for Jenkins consumption. It’s built on top
of the Python standard library XML implementations.
The output is well formatted, and potentially illegal
characters are managed without additional user code.
XML elements and attributes are properly included
and well formed. This encapsulation simplifies the
creation of results that meet the JUnit schema.

However, Jenkins only makes use of a small part
of the full JUnit specification. As a result, it becomes
important to understand which particular elements and
attributes are used in Jenkins and how they will be

7

presented on the Jenkins dashboard. This knowledge
can be used to structure the JUnit results to include
useful data that can help track regression performance
and test history.

The following is a list of CSV column names and
the corresponding specific structures in JUnit that are
useful from a Jenkins perspective:

• Test Name: <testcase> name attribute.
This is the name of an individual test, which
can be within a group hierarchy defined by the
classname attribute.

• Test Group: <testcase> classname
attribute. This is the name of the hierarchical
group that contains one or more testcases. The
classname describes the hierarchy using
dots to separate each layer, e.g.
"smoke_tests.dma_controller". Since the CSV
column Test Group contains slashes as
separators, these are replaced with dots by the
Python script.

• Seed: Seed value for the testcase. In case of a
failure, it is printed as part of the First
Failure Description.

• SV Seed: SystemVerilog seed value for the
testcase. In case of a failure, it is printed as part
of the First Failure Description.
Only valid when SystemVerilog is used.

• Status: This represents the pass/fail status of
the test.

• CPU Time (ms.): <testcase> time
attribute. Time taken for the particular testcase
to run.

• Log File: Full path to the logfile of the test.
In case of a failure it is printed as part of the
First Failure Description.

• First Failure Description:
<failure> element text. The first error
message which lead to the failure of the
testcase.

Using the script is straightforward. An instance of
the report is created as follows:

report	
 =	
 JunitReport()	

A JUnit report for Jenkins has one toplevel
<testsuites> element, which is called 'results' in
this implementation. This element then contains one
or more <testsuite> elements, which are
containers for a variety of <testcase> result
elements.

<testsuites>	

<testsuite>	

	
 	
 	
 	
 	
 	
 <testcase>	

	
 	
 	
 	
 	
 	
 <testcase>	

	
 	
 	
 	
 	
 	
 ...	

	
 	
 	
 	
 	
 	
 <testcase>	

	
 	
 	
 </testsuite>	

	
 	
 	
 <testsuite>	

	
 	
 	
 ...	

	
 	
 	
 </testsuite>	

</testsuuites>	

A <testsuite> element can have several
attributes:

• name: The name of the testsuite

• id: An index number for the testsuite

• time: CPU time (seconds) taken to execute
the testsuite

• failures: The number of failing tests within
the testsuite

• passes: The number of passing tests within
the testsuite

At creation time of the testsuite, depending on how
the regression results are being accessed, you may not
know the values of some or all of these attributes. The
JunitReport() object allows you to create a
testsuite element in advance, which can be returned to
later, to update any of the attributes as needed. This
can be useful when iterating over a set of results and
don't yet know how many passed or failed. It’s
possible to create the <testsuite> element, add all
the associated <testcase> elements, tracking the
pass and fail counts along the way, then update the
<testsuite> element appropriately.

testsuite	
 =	
 report.add_testsuite(

	
 	
 	
 name="regression",	
 	

	
 	
 	
 id=1,	
 time=200,	
 	

	
 	
 	
 failures=0,	
 passes=0)	

The object is stateful and remembers the currently
active testsuite or testcase, defaulting to adding any
new information to the previously created
testsuite/testcase. If results span multiple testsuites,
the testsuite reference returned from the
add_testsuite() call can be used to selectively
add results to different containers. Otherwise, the
add_testcase() method will add the result to the
last testsuite that was created, which is typical the
required behavior.

Once the testsuite is created, it is then a matter of
iterating over each testcase within that testsuite and
adding the appropriate information. A <testcase>
element can take several attributes, shown below:

• name: The name of the testcase

• classname: A grouping hierarchy for the
test

8

• time: Time taken for the testcase to run (in
seconds)

report.add_testcase(

	
 	
 	
 name="first_test",	
 	

	
 	
 	
 classname="sample.class",	

	
 	
 	
 time=100)	

It is maybe a surprise that there is no pass/fail
indication in the attributes. Instead this information is
captured by sub-elements of the <testcase>. A
<testcase> actually supports several sub-elements
that Jenkins can use. These are encapsulated in the
JunitReport object, using the add_failure()
and add_log() methods. The two sub-elements
supported here are <failure> and <system-
out>. The <failure> element has an associated
type attribute (e.g. Fail) and will also take a message
attribute (first_error), that Jenkins will display
separately from any log added. This is useful as the
first_error string is displayed at the top of the
particular test results page, making for quick triage of
failures, instead of reading an entire log file.

report.add_failure(

	
 	
 	
 type="Fail",	

	
 	
 	
 message="UVM_ERROR:	
 The	
 data	
 is	

invalid.")	

For passing testcases, no additional information is
added after the add_testcase() method has been
executed. Typically only logs for failing testcases are
added to save space. The add_log() method
automatically truncates the log by capturing only the
first and last 500 lines of the log, keeping just the top
and tail of the logfile. This helps to avoid occasional
problems where Jenkins and the Java VM run out of
memory when processing very large logfiles. Every
now and again huge log files are generated, e.g. when
debug features are turned on with full verbosity. This
is often by accident, since such large log files can
cause all sorts of problems. By using the top and tail
method, we avoid a small mistake causing the entire
regression system to fail, which could ruin the results
of many other runs. The size of the truncation can be
varied by changing the TRUNCATE_LINES value in
the script.

After adding all of the testcases associated with a
particular testsuite, the number of passes and fails can
be updated, by calling:

report.update_testsuite(

	
 	
 	
 failures=number_of_failures,	
 	

	
 	
 	
 passes=number_of_passes)	

Again, the default is to update the last created
testsuite. Alternatively a different testsuite handle can
be passed to the update_testsuite() method.

D. Example 2: vManager C/S TCL API
vManager C/S is the successor of vManager,

adding a whole new client/server architecture and new
functionality. However, the most relevant difference
between the versions for Jenkins integration, is the
change to the tool’s API. The e-language based API
has been replaced with a TCL based API. This is the
API that provides us with access to the information
Jenkins needs, e.g. simulation results and HTML
report generation. This example was provided to
illustrate the effect a tool, or API, change can have on
the implementation.

As well as the API implementation language,
some of the API functionality has been changed. In
the previous version, the authors needed to program
their own CSV export in the
vlab_post_session.e script. vManager C/S
provides a TCL function csv_export() which
does that. However, in order to produce the same CSV
file, with the same columns, one needs to configure a
so called "view". A view stores a set of column names
which can be used in GUI reports, and are also used
by the TCL csv_export() command. It is stored
on the vManager C/S server, so that all users will have
access to it. Unfortunately, at the time of writing, it
was not possible to automatically create a view
through the TCL API. That step has to be performed
manually using the vManager C/S GUI. This only
needs to be done once. For the example provided, the
authors created a view called "vlabCSV". The scripts
provided work out of the box using that view name,
and will export the correct CSV format. The
README file provides detailed instructions on how
to create a view.

There is one difference worth noting with regard
to the CSV output. The Test Group column
originally stored a value that contained the session
name, e.g. "my_session/my_group/inner_group".
vManager C/S does not store the session name, e.g.
"/my_group/inner_group" in this column. The authors
don’t believe this impacts the usability of the
presented solution, based on the expected use-model
with vManager C/S.

Once the CSV file has been created the remaining
steps are exactly the same as before, using the
csv_to_junit_reporter.py script
unmodified.

vManager C/S handles the generation of HTML
reports slightly differently, with more options and
reports to select from, but the VSIF attributes to
generate HTML reports have been removed. The tool
now provides a set of TCL functions for HTML
generation, e.g. the TCL function "report_vplan"
creates an HTML report containing detailed coverage
information annotated to the vPlan. It’s possible to
generate several different HTML reports (adding to
vmanagercs/scripts/run.tcl), and publish
each of them on the Jenkins dashboard.

The HTML reports generated by vManager C/S
are Jenkins-friendly, in the sense that all files

9

including the index page are stored in one directory.
That way the Jenkins HTML publisher plugin can be
configured to use these reports, without the need for
any linking or copying into a different directory
structure, as was required with the previous version.

IV. CONTINUOUS INTEGRATION METHODOLOGY
Even with a perfectly working Jenkins integration,

the authors still find one of the biggest challenges to
making CI work for the project, comes down to
people. A sometimes contentious, but key point, in CI
is the idea of a working main branch that everyone
commits to. In other words, HEAD is live and is kept
working. Releases aren't hidden away and integrated
once a week, once a month, or once in a blue moon.
Everyone works on the latest version of everything, as
much as is possible.

Changes as a result are smaller. Branches can exist
and are used for shared development, but should exist
for as short a time as possible. Changes are propagated
to the rest of the project as early as possible. This
means the integration effort is low and divergence is
minimized. Architectural disagreements are brought to
light quickly. Cultural team behavior has to develop to
ensure people care about the health of the build and
maintain it as a top priority.

Also, often verification and RTL changes need to
be combined to allow a working check-in. Such
changes are typically done by more than one person.
As a result it is useful for the verification engineer and
designer to be able to share code and ensure it builds
together, first, before checking in to the repository.
While this can be done with branches in any useful
version control tool, it may be interesting to mention
that this requirement for shared data between users is
ideally suited to the use of distributed version control
tools, such as Git and Mercurial, which make
versioned exchange of files for this purpose much
easier.

V. CONCLUSIONS
In this paper we showed that Jenkins plays a

complementary role with MDV tools, such as
vManager. Jenkins is an industrial strength Open
Source tool, used to automate the continuous build of

software (or in this case chip design) projects, monitor
the execution of externally run jobs, and integrates
seamlessly with commonly used SCM solutions. This
is a useful layer on top of what we commonly
consider the MDV environment, which provides
specialized, sophisticated regression and analysis
capabilities.

Jenkins does not replace MDV tools, but instead
provides further useful automation, and a way to
easily publish a developer-view of regression results
and code status. We can leverage features and plugins
in Jenkins to make reports from the MDV regressions
available to developers, where detailed analysis is
required.

Using vManager and vManager C/S as examples,
we show that it’s possible to integrate Jenkins with the
MDV environment quickly and neatly. We provide
implementation code for the generic part of this
solution, written in Python, using standard libraries.
We also provide example code for the two specific
examples. The code we’ve provided should make it
possible to get a basic CI server installed and running
with vManager in just a few hours.

ACKNOWLEDGEMENTS
The authors would like to thank everyone in the

Cadence team for helping with vManager, especially
the e-language and new TCL APIs for vManager and
vManager C/S respectively. In particular a big thanks
to John Brennan, John MacBeth, John Nehls and Dan
Leibovich.

REFERENCES
[1] JL Gray, Gordon McGregor, “A 30 Minute Project Makeover

Using Continuous Integration,” DVCON	
 2012
[2] http://nelsonwells.net/2012/09/how-jenkins-ci-parses-and-

displays-junit-output/
[3] http://windyroad.com.au/dl/Open%20Source/JUnit.xsd
[4] http://stackoverflow.com/questions/136168/get-last-n-lines-

of-a-file-with-python-similar-to-tail
[5] http://pymotw.com/2/csv/
[6] http://martinfowler.com/articles/continuousIntegration.html
[7] https://bitbucket.org/verilab/jenkinsintegration
[8] Incisive® Enterprise Manager Managing Regressions

Appendix D Enterprise Manager Batch API

