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See: DVCON 2012 “30 Minute Project Makeover Using Continuous Integration”, Gray & McGregor   
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MDV vs CI

CI (Jenkins)
• Code health
• Keep main branch passing
• Release early & often
• Quickly spot and fix issues
• Integrated with SCM
• Automates test execution
• Communicates status
• PASS/FAIL dashboards

MDV (vManager)
• Finding RTL bugs
• Managing complexity
• Integrated with verification 

language features
• Verification closure
• Integrates with vplan
• Verification specific results
• Specialized analysis tools



Key Requirements

• Same results on Jenkins as standalone sims
– Common PASS/FAIL parsing
– If build fails whole regression is a FAIL
– CSV or JUnit XML missing is a FAIL

• Regression must run in batch mode
• No return until all threads complete



Two Examples

• Demonstrates generic and specific code
• Generic: csv_to_junit_reporter.py
• Ex. 1 (vManager) using a e-language API

– Specific: initial launch script
– Specific: e code to control exit and export results

• Ex 2 (vManager CS) using TCL API
– Specific: initial launch script
– Specific: TCL to control exit and export results
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batch_run_e.sh

vlab_post_session.e

csv_to_junit_reporter.py Regression Control & 
Result Output

~90 lines of code

~45 lines of code

~180 lines of code



CSV Output from vManager

Slightly clearer in excel: 



XML Input to Junit Plugin
Output from csv_to_junit_reporter.py

Custom data in the failure 
message



Project Status in Jenkins



Results in Jenkins



Getting the Code

https://bitbucket.org/verilab/jenkinsintegration

Location of csv_to_junit_reporter.py



Running vManager

From: vmanager/batch_run_e.sh

A bit of messing around for tidy HTML reports



vManager e API

Excerpt from: vmanager/scripts/vlab_post_session.e

There’s about 80 lines of supporting code in total



Running vManager CS

From: vmanagercs/batch_run_e.sh

From: vmanagercs/scripts/run.tcl



Jenkins Project Configuration 



Summary

• CI and MDV are complementary
• Two Jenkins integration examples shown

– Different APIs

• There are some integration requirements
– e.g. Pass/Fail and exit handling are important 

• Generic JUnit XML generation code provided 
• CI not just about the tools

– Cultural change is required
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