
A Guide To Using Continuous
Integration Within The

Verification Environment

Presented by: Jason Sprott, Verilab

Other authors:
Gordon McGregor, Nitero
André Winkelman, Verilab

Jenkins & vManager
Jenkins server

www

vManager

e API

vManager CS

TCL API

vPlan

Integration
Code

Two Examples

HTML

JUnit

Jenkins(CI) Refresher
SCM

check out
& run

indicate
change results

notify &
feedback

regressions

Jenkins server

developers

managers,
leads, etc.

check in

www

See: DVCON 2012 “30 Minute Project Makeover Using Continuous Integration”, Gray & McGregor

HTML Publisher

JUnit

Lots more …

MDV vs CI

CI (Jenkins)
• Code health
• Keep main branch passing
• Release early & often
• Quickly spot and fix issues
• Integrated with SCM
• Automates test execution
• Communicates status
• PASS/FAIL dashboards

MDV (vManager)
• Finding RTL bugs
• Managing complexity
• Integrated with verification

language features
• Verification closure
• Integrates with vplan
• Verification specific results
• Specialized analysis tools

Key Requirements

• Same results on Jenkins as standalone sims
– Common PASS/FAIL parsing
– If build fails whole regression is a FAIL
– CSV or JUnit XML missing is a FAIL

• Regression must run in batch mode
• No return until all threads complete

Two Examples

• Demonstrates generic and specific code
• Generic: csv_to_junit_reporter.py
• Ex. 1 (vManager) using a e-language API

– Specific: initial launch script
– Specific: e code to control exit and export results

• Ex 2 (vManager CS) using TCL API
– Specific: initial launch script
– Specific: TCL to control exit and export results

Regression Launch Script

Export HTML
Reports

Export Per-
Test Results

(as CSV)

Convert CSV
to JUnit XML

(Python)

JUnit
Plug-in

HTML
Publisher

Plug-in

build/run Return overall
PASS/FAIL

Jenkins

vManager

Import to
JUnit plug-in Import to HTML

Publisher plug-in

To
ol

 sp
ec

ifi
c

batch_run_e.sh

vlab_post_session.e

csv_to_junit_reporter.py Regression Control &
Result Output

~90 lines of code

~45 lines of code

~180 lines of code

CSV Output from vManager

Slightly clearer in excel:

XML Input to Junit Plugin
Output from csv_to_junit_reporter.py

Custom data in the failure
message

Project Status in Jenkins

Results in Jenkins

Getting the Code

https://bitbucket.org/verilab/jenkinsintegration

Location of csv_to_junit_reporter.py

Running vManager

From: vmanager/batch_run_e.sh

A bit of messing around for tidy HTML reports

vManager e API

Excerpt from: vmanager/scripts/vlab_post_session.e

There’s about 80 lines of supporting code in total

Running vManager CS

From: vmanagercs/batch_run_e.sh

From: vmanagercs/scripts/run.tcl

Jenkins Project Configuration

Summary

• CI and MDV are complementary
• Two Jenkins integration examples shown

– Different APIs

• There are some integration requirements
– e.g. Pass/Fail and exit handling are important

• Generic JUnit XML generation code provided
• CI not just about the tools

– Cultural change is required

	Slide Number 1
	Jenkins & vManager
	Jenkins(CI) Refresher
	MDV vs CI
	Key Requirements
	Two Examples
	Slide Number 7
	CSV Output from vManager
	XML Input to Junit Plugin
	Project Status in Jenkins
	Results in Jenkins
	Getting the Code
	Running vManager
	vManager e API
	Running vManager CS
	Jenkins Project Configuration
	Summary

