
A Formal Verification App Towards Efficient,

Chip-Wide Clock Gating Verification

Prosenjit Chatterjee

NVIDIA Corp.

Santa Clara, CA

PChatterjee@nvidia.com

Scott Fields

NVIDIA Corp.

Santa Clara, CA

sfields@nvidia.com

Syed Suhaib

NVIDIA Corp.

Santa Clara, CA;

ssuhaib@nvidia.com

Abstract— Ensuring correct clock gating has been a major

verification challenge. A chip can have dozens of clock gating

islands, where each island has a control bit to enable/disable

clock gating. We present an automated methodology for

exhaustive clock-gating verification using Sequential Equivalence

Checking (SEC) analysis. This automated methodology is

enabled via an SEC formal verification “App”. This “App”

performs various optimizations automatically to achieve deeper

proof bounds or even full proofs, in many cases, taking

advantage of the symmetry of the setup. We apply this

methodology across the chip to illustrate its usefulness. We

found multiple clock gating bugs across many projects using this

approach, where over half of these were found after supposedly

high simulation coverage of the design.

Keywords—clock-gating verification; low power; Sequential

Equivalence Checking; SEC; formal; formal analysis; formal apps

I. INTRODUCTION

Advances in the mobile technology are causing a shift on
how designs are being architected these days. Low power and
high performance in complex systems and processors,
especially those targeted toward mobile applications, is one of
the biggest concerns surrounding the industry. A plethora of
devices, such as mobile phones, tablets, laptop computers, as
well as wearable digital devices, are some of the examples of
technologies where either custom processors or off-the-shelf
System-On-Chips (SOCs) are used and rely deeply on
prolonged battery life. Hence, processors designed these days
are focused highly on such use cases.

 Clock gating is one of the common strategies being used
for reducing dynamic power consumption of such designs, but
it is not without risk [1]. A chip is traditionally divided into
multiple functional islands (units) where each island may have
one or more clock domains. The use of multiple clock domains
does increase the complexity; however, it helps in reducing the
power dissipation on execution.

Clock gating can be classified into functional clock gating
and non-functional clock gating [1]. Functional clock gating
refers to gating of the clock that turns off functionality. This

type of clock gating is part of the functionality and is required
for correct execution. Hence, turning this clock gating off
would yield incorrect results. On the other hand, non-
functional clock gating refers to the case where gating of the
clock does not affect the functionality. In other words, the
clock-gate logic is created in such a way that irrespective of the
clock, the functionality is still correct. Usually, the clock
enable of such clock-gater is designed in such a way that it is
activated based on the presence of valid data, and in case of no-
data, the output result is not affected. This type of clock-gater
is solely used for power savings. In this paper, our focus is on
verification of non-functional clock-gating.

Verification is known to be one of the biggest challenges in
the design cycle of a chip. Ideally verification is started very
close to the design phase. However, since clock gating is one
of the late aspects of the functionality added into the design,
verification of correct clock gating becomes even more
burdensome. As a result, clock gating verification is left as one
of the later things to do.

Traditional simulation and coverage closure techniques are
necessary but insufficient due to difficulty in evaluating timing
corner cases. Furthermore, missed terms in the logic of clock
gating enable are invisible in code coverage. Writing a
comprehensive set of functional coverage goals for clock
gating is difficult, and exercising such goals can take a lot of
time and become engineering resource intensive. Secondly,
when bugs are found in simulation, debugging the source of
failures becomes very time-consuming. On the other hand,
traditional formal property verification tools can be used where
one writes assertions on correct functionality irrespective of
clock gating on or off. This requires a large effort in getting the
necessary set of clean environmental constraints, which carry a
risk of over-constrained assumptions [5,6].

Given the late verification push on clock-gating, bugs do
get slipped into the design. Such bugs due to clock gating can
result in flawed functionality, including the erroneous
shutdown of whole regions of the chip. To circumvent the bugs
and avoid costly ECOs, software work-arounds are
implemented which un-necessarily increase the complexity of

the software. Also, to get around the bugs, large sections of the
chip may be turned-off, which may result in loss of
functionality. Given the target market of the chip, a big loss on
power budget in most cases becomes un-acceptable [7].

We present a methodology implemented by a formal
verification “App” that enables clock gating verification of
non-functional clock gaters in an effective and timely manner.
We show how this methodology can be applied at the chip-
level or even for larger blocks by using divide and conquer
approach. The methodology is based on comparing two copies
of the RTL, where in one instance, the clock is un-gated and in
the other instance the clock is gated. Basic combinatorial logic
equivalence checking tools, such as LEC, Formality, etc., are
inadequate since our clock gating schema creates different state
elements in the “new” clock gated design vs. the original un-
gated design. As a result, major control path registers do not
match between the clock-gated version and un-gated version of
the design. Furthermore, combinational equivalence checking
tools do not support transactional equivalence [8].
Transactional equivalence in this scope means that a given
transaction between the two instances of the RTL provides the
same results.

A clean recipe to achieve a sequential equivalence checking
[9] between a clock-gated RTL and an un-gated version of
RTL requires the following: (1) Ability to express temporal
properties (SVA), (2) Ability to express constraints at the
primary inputs as well as internal signals, (3) Ability to abstract
initial state of the DUT for a subset of registers, (4) Ability to
abstract logic functions, (5) Clean approach to automatic
assume guarantee reasoning, (6) Ability to express
transactional equivalence and (7) Ability to automatically
populate the mismatching traces between the two instances of
the RTL and point to the root cause of the mismatch, which
speeds up the debugging capability of the design. The
combination of above recipe requires that we need a sequential
equivalence checking capable tool with formal property
verification (FPV) features. For this methodology, we use
JasperGold [11], which has the capabilities for formal property
verification, along with an “App” that understand/creates the
environment suitable for clock gating verification.

In this paper, we show how this methodology is
implemented and highlight key features of the “App” that helps
in effective clock-gating verification. We show how we
implement this methodology at the chip level, and we provide
results of the case-studies. One thing to note is that this process
helps in verifying the correctness of non-functional clock-
gating only.

The paper is organized as follows: Section II describes the
ports and relevant information of a common clock gater. In
Section III, we discuss the verification setup and methodology.
Section IV discusses how this approach is applicable to large
designs and techniques to handle large state space issues

associated with formal verification. Section V discusses the
application of this methodology as well as results, followed by
conclusion and future work in Section VI.

II. CLOCK GATER

The interface of a traditional clock gater consists of four
ports as shown below:

where clk_ul is the gated clock, which is output of the module,
gclk is the un-gated global clock, func_en is the enable of the
clock signal, which is used as enable signal with the gclk, and
cg_cya_disable, which is the CYA disable that turns off clock
gating. The cg_cya_disable signal equates the gclk to clk_ul.
As a fail-safe, special defeature bits (controlled by software)
are put in place to protect against the late bugs due to clock
gating. These defeature bits are connected to cg_cya_disable
ports. In some cases, the cg_cya_disable port is connected to 0
for non-functional gaters, which results in clock gating always
being enabled and may become troublesome if/when bugs arise
in the logic. The source of the bugs is usually in the logic
driving the func_en signal.

III. SETUP

A chip consists of multiple units with various
functionalities that fulfil multiples tasks. Furthermore, each
unit can potentially have multiple clock gating domains which
can be enabled or disabled based on availability of inputs.
Recall that in this paper, we address verification of non-
functional clock gaters. Hence, as a first step, for each unit all
non-functional clock gaters are identified. Ideally, non-
functional clock gaters should be defined by a different module
name than the functional clock gaters such that the usage is
clearly expressed. A formal tool can be used to list out all the
instances of such non-functional clock gaters. As mentioned in
the previous section, the cg_cya_disable bit controls the
enabling or disabling of the clock gating. We also look at the
signals connecting the corresponding cg_cya_disable port for
all such non-functional clock gaters because, as mentioned
earlier, in some cases this bit mistakenly gets connected to 0.
Ideally, there is a defeature bit connected to the cg_cya_disable
port.

Next, we create two instances of the same RTL, where in
one instance (calling it un-gated version), we force the
cg_cya_disable port of all non-functional clock gaters to 1 (to
disable clock gating). This can be done by adding a cut-point to
each cg_cya_disable that makes it free to take any value, and
then force the value 1 (disable) by adding an assumption. On
the other hand, in the clock gated instance of the RTL, we
force the signal to be random and stable throughout the proof.
This would give us the ability to ensure that all values in the
clock gated instance are exhaustively verified. Again, this can
be done by adding a cut-point, and an assumption which
ensures that the value remains stable. Figure 1 illustrates this
setup, where we have two instances of RTL (sfv0 and sfv1),

module cg_ul (clk_ul, gclk, func_en, cg_cya_disable);

where sfv0 is the un-gated instance and sfv1 is the gated
instance.

The output signals can be classified into control and data
signals. For each of the output control signals, assertions are
added which state that signals in one instance are equal to the
signals in the other instance.

Below is an example assertion that is used for control
signals:

For each output data signal, we append the appropriate
control signals as preconditions (as applicable). Note that the
corresponding data signals between the two instances are
allowed to be different as long as the corresponding control
signals are low. Below is an example assertion that is used for
data signals:

Another important factor to consider is the reset values of
the flops. The reset sequence can be configured in various
forms: (1) Run the proofs with design initialized flops, and
keep the uninitialized flops as they are. This is the ideal case,
were we would catch not only clock-gating bugs, but also bugs
due to x-propagation from un-initialized flops. (2) Run the
proofs with design initialized flops, and force all un-initialized
flops to be equal in both the instances. In this case, we only
focus on clock-gating bugs. (3) Run the proofs with design
initialized flops, and force the un-initialized flops to be 0 or 1.
This is a subset of previous case; however, it might help with

the depth of the proof runs. (4) Run the proofs with all un-
initialized but equal flops. This allows exploration of more
states; however, one might end up debugging false failures.

IV. APPROACH

 Our methodology is based on formal verification techniques,
and it has the issue of state space explosion. Given this issue, a
complete chip setup with millions of gates and flops would not
be tractable for formal tools. Hence, the chip is divided into
smaller units which act as functional partitions of the design.
These partitions are physical as well as logical decompositions
of the chip, resulting in self-contained units. Some of the larger
units of the design are further broken down into smaller sub-
units based on functional partitioning. The partitioning is done
based on the segregation of the functional behaviors across the
sub-units. Ideally, one must ensure not to create very small
“unnecessary” partitions that would result in the addition of
many assumptions. Furthermore, these extra partitions would
result in unwanted setups, requiring additional engineer and

compute time and resource overhead.

A wrapper in the form of a formal verification “App” is created
containing the two instances of the RTL with the inputs
connected, and assertions generated for each of the output
signals (as described in the previous section). This process is
further simplified by the SEC “App” that takes in RTL and
automatically creates the wrapper with connections
surrounding the two instances of the RTL. The “App” also
generates the necessary assertions on the output signals. In this
case, the “App” is part of the Jasper Gold verification
environment. Hence, it uses the environment’s existing proof
engines, which take advantage of the symmetry between the
two instances of the DUT and help in achieving better proof
convergence [11].

 Furthermore, various techniques are employed to circumvent
the state-space issue of the formal verification problem.
Abstraction is one of the key techniques used to address the
state space issue. We identify and abstract out sub-units in the
design that have no clock gating. This is done by black-boxing
them in the setup. The following steps are used: (1) Identify
subunits within the design which are oblivious to clock-gating.
(2) Black-box these sub-units in both the instances of the setup.
This will make the outputs from these black-boxed sub-units as
free signals. (3) Add assumptions on the output signals from
black-boxed sub-units to be equal. This ensures no false
failures are seen downstream. (4) Add assertions on the input
signals to the black-boxed sub-units to be equal. This will
ensure that the input signals are equivalent, and no bugs arise
due to clock gating. Figure 2 illustrates this abstraction. One
important thing to note is that if the sub-unit being black-boxed
is driven from a gated clock, then care must be taken to ensure
that none of the enable signals to the black-boxed unit must be
high when the gated clock is low.

 Another helpful technique used with this methodology is
assume-guarantee approach. This is done by adding
intermediate cut-points at locations, where the signal in the un-

asrt_CORE_unit_data_output_signal_a: assert property
 sfv0.output_control_a |->
 sfv0.(sfv0.output_data_a == sfv1.output_data_a);

asrt_CORE_unit_control_output_ctrl_a: assert property
 (sfv0.output_ctrl_a == sfv1.output_ctrl_a);

Figure 1. Formal Verification Setup

gated version and clock-gated version of the RTL are equal.
There are two steps to this procedure: (1) Add an assertion to
ensure that these points are equal for the upstream logic. (2) If
(1) is proven true, then add assumption that both signals are
true for the down-stream logic. The SEC “App” easily enables
this in the same environment internally. Furthermore, addition
of cut-points at intermediate points helps to prune away the
driving logic. Furthermore, cut-points can be added in one or
both instances. The ideal choice would be adding cut-points to
both instances; however, this may result in false failures. One
of the reasons might be that the downstream logic was
dependent on the behavior that got abstracted out as a result of
the cut-point. Hence, a single side cut-point may help get away
from this issue. Alternately, one may add helper assertions for
each of the proven intermediate point that may also help in
getting better proof convergence.

Figure 2. Black-box Setup

 When multiple cut-points are added in the design, ordering
the evaluation of cut-points helps with better proof
convergence. The idea here is to prove the easiest assertions
first. These assertions usually have the smallest cone of
influence (COI) compared to other properties in the design.
Once proven, these helper assertions are used to prove the next
set of properties. This ordering of assertions to enable an
incremental proof convergence is referred to as “levelizing”.
This is done based on Topological sort starting from output
signals and measuring the depth to the corresponding primary
inputs. The SEC “App” automates this process internally, and
helps automatically with proof convergence with less user
interaction.

V. APPLICATION AND RESULTS

 The SEC “App” and the approach were applied
successfully to various chips across Nvidia. In this paper, we

will discuss the results of two different chips, one from GPU
and another one from Tegra, which is a mobile processor [12].
Note that we abstract out the details of the chip due to
confidentiality.

 In the GPU chip, this approach was applied to multiple
units where each unit was broken into up to 5 different sub-
units based on the functional partitions. In total, there were 250
different testbench setups. The break-down was such that the
setup size was amenable to the formal verification tool. For
each of the sub-units, all FIFOs and RAM modules were black-
boxed. Inputs to these were proven equivalent and primary
outputs of the subunits were proven under the precondition that
output of the black-boxed modules were proven. The FIFOs
were proven separately. The initial values of the counters and
major finite state machines were abstracted out to help achieve
deeper proof depth. A wrapper was created in an internal
macro based language where two instances of the sub-unit
were declared, and the primary input signals were
automatically connected. The setup time for each sub-unit was
0.5 days on average. Around 1-4 weeks were spent on iterating
over constraints and RTL fixes. OVL assertions per primary
output were generated in the following form:

 Table 1 illustrates sample results for some of the sub-units
of a unit in GPU. It lists the approximate size of each unit
along with maximum pipe stages as well as the clock gating
domains in it. The table also lists the percentage of assertions
that saw full proofs and the lowest cycle bounds for the worst
case for assertions with bounded proofs.

Table 1 Partial Results of SEC Application to GPU

A total of 32 bugs were found related to clock-gating where
simulation found 50% of the bugs, and other 50% were found
by SEC approach. The simulation had started much earlier than
SEC and continued until DV signoff. From a post-mortem
analysis, simulation could have found 50% of the bugs found
by SEC, but they would have appeared in the form of post FNL
or post silicon bugs. The remaining 8 bugs found by SEC were
very difficult–to-hit corner cases and would have required an
additional 9 man-months of effort.

 In the Tegra project, 52 setups were created, which were
spread across 20 verification and design engineers. All the
setups were up and running within the week. The smaller units
had around 5k flops, whereas the larger units were over 250k
flops. Hence, larger blocks were broken down into smaller sub-
sets to become friendlier for formal tool. A lot of features from

Name Flops Pipe
Stages

Clock
Gate

Domains

Proofs
(full)

Cycles Bugs

Unit A 7k 2 3 83% 16+ 4

Unit B 40k 5 4 7% 16+ 0

Unit C 150k 13 8 5% 19+ 6

Unit D 56k 15 7 9% 6+ 1

wire cond_1x = sfv0_vld[0] == sfv1_vld[0]

assert_always #(0,0,”equiv”) equiv_bit_1x (clk, reset_, cond_1x);

the SEC “App” were used to speed up the verification time.
The SEC “App” allowed quick and automatic mapping of the
inputs and outputs. As some of the setups were created much
earlier than the tool, a special mode was developed in the
“App” called the “attached” mode which could read in existing
setups and automatically map the inputs/outputs. Table 2
illustrates a subset of results from SEC “App” vs running the
setup in FPV. For some of the designs, much improvement was
realized, and this was due to the fact of using automated
abstraction along with “levelizing”, which proved easier
properties first, then used them as assumptions to prove
downstream properties. For some of the difficult models, the
cut-points were applied to all the flops and evaluated for every
level. Note that an automated tcl script was written that
removed cut-points for the failing properties. After removal of
these cut-points, the script would automatically rerun the
proofs until all the properties were proven or bounded proven.
For each of the units, we had a different acceptable bound
point dependent on the number of cycles it took to hit the
deepest cover property.

Table 2. Subset of Results from SEC “App” vs FPV “App”

Debugging capabilities of the “App” were very beneficial. It
allowed viewing two instances of the RTL side by side and
quickly identifying the mismatches. A script was developed
which would automatically plot the mismatching signals in a
breath-first search manner. This help save about 8-10 minutes
of debugging time per failure. Over 40+ bugs were found via
this approach where more than half were discovered after many
months of simulation.

 To improve upon the verification time, black-boxing of
various unwanted sub-units was easily done. The below
commands would automatically populate the assertions on all
inputs of the black-boxed module and add assumptions on all
its outputs.

Furthermore, cut-points were added as discussed in Section IV
to improve the proof depth. These were added by identifying
which flops were to be equivalent. Below is a sample
command used to add the cut-points.:

We were able to achieve full proofs for many of the properties
using these techniques.

 There were various types of bugs found. Most of the bugs
fell into one of the three buckets:

1. Missing terms: A common bug across many sub-units
was that a term was missed from the func_en term
which was used as the enable for the clock gater.
Given the following example,

vld_3 was mistakenly omitted from clk_en1 which
was driving the logic related to vld_3.

2. Bad clocks: Incorrect clock enable was hooked in to
func_en of the clock gater by mistake.

3. Hang Case: Clock enable was stuck due to bad logic
driving it. As a result, valid data was not getting
propagated.

Each of the units had a signoff checklist. The checklist had
a variety of items, and was not limited to the following:

• Resolve all counter-examples

• Re-confirm that all relevant defeature bits are
accounted for and exercised in the setup file.

• Re-confirm that all outputs have equivalence
properties.

• Ensure that reset states for un-initialized flops is
random to catch X-propagation issues.

• Increase the per-property runtime to at least 10 hours

• Review the input constrains with the designer or
enable them in simulation.

• Prove all assertions to an acceptable depth

VI. RELATED WORK

Various approaches to clock gating verification have been

applied in the industry. [4] presents a solution where a

sequential equivalence checking of clock gating can be

reduced to a combinational equivalence checking problem

based on specific preconditions of the design. They formulate

Name Flops Clock
Gate

Domains

FPV
Proofs
(SFV)

SEC “App”
Proofs (SFV)

Unit A 25k 4 30% 100%

Unit B 35k 4 100% 100%

Unit C 25k 8 70% 100%

Unit D 35k 9 40% 60%

Unit E 45k 14 25% 65%

clk_en1 = vld_1 || vld_2 || vld_3

func_en = defeature_clk_en1|| clk_en1

check_sec -map -auto -spec sfv0.a.ram -imp sfv1.a.ram -type

bbox_input -tag ram_input

check_sec -map -auto -spec sfv0.a.ram -imp sfv1.a.ram -type

bbox_output -tag ram_output

check_sec -map -spec sfv0.b.large_counter -imp sfv1.b.large_counter -

tag countdown_count -with_attr cutpoint

@(posedge clk_en_a1) vld_a1_data1 <= a1_data1;

@(posedge clk_en_a2) vld_a1_data2 <= a1_data2;

@(posedge clk_en_stuck) vld_a3 <= vld_a2;

a set of theorems for equivalence checking and transform the

clock-gating in sequential space to combinational space. With

huge industrial designs, each clock-gating point would add

loops to the design making it difficult to use their approach.

Furthermore, this transformation can be often time-

consuming. Our work targets specific clock-gating (non-

functional) however is very efficient and does not require any

transformations. Similarly, [10] also looks at RTL

transformation and using combinational equivalence checking

for proving clock gating correctness.

On the other hand, [8] describes a framework for

sequential equivalence checking across arbitrary design

transformations. Their framework targets transformations that

arise from changes for performance, power, etc. for a design.

Their framework takes in two gate-level design

representations, generated from traditional synthesis process,

and checks equivalence based on their outputs. Our approach

is different from theirs in the way that they run a redundancy

removal algorithm which identifies equivalence classes of

gates that contain a representative gate for each of those

classes and construct a speculatively reduced model. They

create a mitre over each gate and its representative and prove

that miter is unreachable. Once proven that mitre is un-

reachable, they replace and merge the gates to reduce the

model. If a mitre is proven to be reachable, then they have to

select a new representative gate, and repeat the steps. Hence,

their process is very iterative and time-consuming.

 Model checking based sequential clock-gating is

proposed in [5]. In their approach, they use a model-checking

based approach to identify sequential clock-gating

opportunities. Using model-checking they identify intra-

register relationships across clock boundaries and map this

relationship to temporal properties. Based on the results of the

model-checker, they identify potential sequential clock-gating.

This approach is useful when clock-gating is unknown and

one needs to identify where it can be applied. In most

industrial cases, clock-gating is already added during the

design cycle. Furthermore, on larger designs this can be

challenging and time-consuming.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a methodology for

verification of non-functional clock gaters that are used for

dynamic power saving of the chip. These non-functional

clock gaters can also be referred to as “second-level clock

gating” as they are instantiated in the RTL and gate

downstream non-gated clock nodes, which are used to gate

off circuits that have low utilization and are not being used

during functional execution. This methodology is applied at

the chip-level by dividing the chip to smaller units/sub-

units that can be read by the formal tool. This approach

requires fewer assumptions than the traditional formal

property verification approach because assumptions are

only needed in case of mismatches (if they are not real

clock gating bugs.) between the two instances of the RTL.

Every assumption increases the risk for over-constraint, in

which an incorrect output in one instance is made to match

the incorrect output in the other instance. This is one of the

primary reasons for having a limited number of

assumptions.

Automated abstraction techniques were used,

including black-boxing and cut-points, which resulted in

full-proofs for many of the sub-units. Furthermore, the

approach was very efficient and required on average 2-3

weeks per unit, and it was very effective in finding bugs.

All these features were brought together in the SEC “App”,

which was easy to use by designers who were not experts in

formal verification.

This approach can be extended to block-level clock

gating as well, where an entire unit is turned off when the

unit is not active. This is highly desirable for power saving;

however, complexity rises due to controller logic that turns

off the clock of the unit/sub-unit and which is part of the

verification environment. In the future, our efforts are to

apply similar approach to block level clock gating.

REFERENCES

[1] F. Emnett and M. Biegel, “Power Reduction Through RTL Clock

Gating”,http://www.eng.auburn.edu/simvagrawal/COURSE/E6270Fall0
7/PROJECT/LUO/snug2000.pdf

[2] A. Raghunathan, N. Jha, and S. Dey, “High-Level Power Analysis and

Optimization. Norwell”, MA, USA: Kluwer Academic Publishers, 1998.

[3] A. Kuehlmann and C. van Eijk, Combinational and Sequential
Equivalence Checking, in Logic Synthesis and Verification. Kluwer
Academic Publishers, 2004.

[4] H. Savoj, D. Berthelot, A. Mishchenko and R. Brayton, Sequential
Equivalence Checking for Clock-Gated Circuits, in IWLS 2012.

[5] S. Ahuja, and S. Shukla. "MCBCG: Model checking based sequential
clock-gating." High Level Design Validation and Test Workshop, 2009.
HLDVT 2009. IEEE International. IEEE, 2009.

[6] J. Brandt, et al. "The model checking view to clock gating and operand
isolation." Application of Concurrency to System Design (ACSD), 2010
10th International Conference on. IEEE, 2010.

[7] B. Bentley, Bob. "Validating the Intel (R) Pentium (R) 4
microprocessor." Design Automation Conference, 2001. Proceedings.
IEEE, 2001.

[8] J. Baumgartner, et al. "Scalable sequential equivalence checking across
arbitrary design transformations." International Conference on
Computer Design, ICCD 2006.

[9] M. Mneimneh, and K. Sakallah, "Principles of sequential-equivalence
verification." IEEE Design & Test of Computers, 2005.

[10] C. Manovit, S. Narayanan and S. Subramanian, “Design and
Verification Challenges of Observability Don’t Care (ODC)-based
Clock Gating”, Poster Session, Design Automation Conference, 2011.

[11] Jasper Design Automation, http://jasper-da.com/

[12] Nvidia Tegra, http://www.nvidia.com/object/tegra.html

