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Abstract— Ensuring correct clock gating has been a major 

verification challenge. A chip can have dozens of clock gating 

islands, where each island has a control bit to enable/disable 

clock gating. We present an automated methodology for 

exhaustive clock-gating verification using Sequential Equivalence 

Checking (SEC) analysis. This automated methodology is 

enabled via an SEC formal verification “App”. This “App” 

performs various optimizations automatically to achieve deeper 

proof bounds or even full proofs, in many cases, taking 

advantage of the symmetry of the setup. We apply this 

methodology across the chip to illustrate its usefulness.  We 

found multiple clock gating bugs across many projects using this 

approach, where over half of these were found after supposedly 

high simulation coverage of the design.  
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I. INTRODUCTION 

Advances in the mobile technology are causing a shift on 
how designs are being architected these days. Low power and 
high performance in complex systems and processors, 
especially those targeted toward mobile applications, is one of 
the biggest concerns surrounding the industry. A plethora of 
devices, such as mobile phones, tablets, laptop computers, as 
well as wearable digital devices, are some of the examples of 
technologies where either custom processors or off-the-shelf 
System-On-Chips (SOCs) are used and rely deeply on 
prolonged battery life.  Hence, processors designed these days 
are focused highly on such use cases.  

 

 Clock gating is one of the common strategies being used 
for reducing dynamic power consumption of such designs, but 
it is not without risk [1]. A chip is traditionally divided into 
multiple functional islands (units) where each island may have 
one or more clock domains. The use of multiple clock domains 
does increase the complexity; however, it helps in reducing the 
power dissipation on execution.  

 

Clock gating can be classified into functional clock gating 
and non-functional clock gating [1]. Functional clock gating 
refers to gating of the clock that turns off functionality. This 

type of clock gating is part of the functionality and is required 
for correct execution. Hence, turning this clock gating off 
would yield incorrect results. On the other hand, non-
functional clock gating refers to the case where gating of the 
clock does not affect the functionality. In other words, the 
clock-gate logic is created in such a way that irrespective of the 
clock, the functionality is still correct. Usually, the clock 
enable of such clock-gater is designed in such a way that it is 
activated based on the presence of valid data, and in case of no-
data, the output result is not affected. This type of clock-gater 
is solely used for power savings. In this paper, our focus is on 
verification of non-functional clock-gating. 

 

Verification is known to be one of the biggest challenges in 
the design cycle of a chip. Ideally verification is started very 
close to the design phase. However, since clock gating is one 
of the late aspects of the functionality added into the design, 
verification of correct clock gating becomes even more 
burdensome. As a result, clock gating verification is left as one 
of the later things to do.  

 

Traditional simulation and coverage closure techniques are 
necessary but insufficient due to difficulty in evaluating timing 
corner cases. Furthermore, missed terms in the logic of clock 
gating enable are invisible in code coverage. Writing a 
comprehensive set of functional coverage goals for clock 
gating is difficult, and exercising such goals can take a lot of 
time and become engineering resource intensive. Secondly, 
when bugs are found in simulation, debugging the source of 
failures becomes very time-consuming. On the other hand, 
traditional formal property verification tools can be used where 
one writes assertions on correct functionality irrespective of 
clock gating on or off. This requires a large effort in getting the 
necessary set of clean environmental constraints, which carry a 
risk of over-constrained assumptions [5,6]. 

 

Given the late verification push on clock-gating, bugs do 
get slipped into the design. Such bugs due to clock gating can 
result in flawed functionality, including the erroneous 
shutdown of whole regions of the chip. To circumvent the bugs 
and avoid costly ECOs, software work-arounds are 
implemented which un-necessarily increase the complexity of 



the software. Also, to get around the bugs, large sections of the 
chip may be turned-off, which may result in loss of 
functionality. Given the target market of the chip, a big loss on 
power budget in most cases becomes un-acceptable [7].  

 

We present a methodology implemented by a formal 
verification “App” that enables clock gating verification of 
non-functional clock gaters in an effective and timely manner. 
We show how this methodology can be applied at the chip-
level or even for larger blocks by using divide and conquer 
approach.  The methodology is based on comparing two copies 
of the RTL, where in one instance, the clock is un-gated and in 
the other instance the clock is gated. Basic combinatorial logic 
equivalence checking tools, such as LEC, Formality, etc., are 
inadequate since our clock gating schema creates different state 
elements in the “new” clock gated design vs. the original un-
gated design. As a result, major control path registers do not 
match between the clock-gated version and un-gated version of 
the design. Furthermore, combinational equivalence checking 
tools do not support transactional equivalence [8]. 
Transactional equivalence in this scope means that a given 
transaction between the two instances of the RTL provides the 
same results.  

 

A clean recipe to achieve a sequential equivalence checking 
[9] between a clock-gated RTL and an un-gated version of 
RTL requires the following: (1) Ability to express temporal 
properties (SVA), (2) Ability to express constraints at the 
primary inputs as well as internal signals, (3) Ability to abstract 
initial state of the DUT for a subset of registers, (4) Ability to 
abstract logic functions, (5) Clean approach to automatic 
assume guarantee reasoning, (6) Ability to express 
transactional equivalence and (7) Ability to automatically 
populate the mismatching traces between the two instances of 
the RTL and point to the root cause of the mismatch, which 
speeds up the debugging capability of the design. The 
combination of above recipe requires that we need a sequential 
equivalence checking capable tool with formal property 
verification (FPV) features. For this methodology, we use 
JasperGold [11], which has the capabilities for formal property 
verification, along with an “App” that understand/creates the 
environment suitable for clock gating verification.  

 

In this paper, we show how this methodology is 
implemented and highlight key features of the “App” that helps 
in effective clock-gating verification. We show how we 
implement this methodology at the chip level, and we provide 
results of the case-studies. One thing to note is that this process 
helps in verifying the correctness of non-functional clock-
gating only. 

 

The paper is organized as follows: Section II describes the 
ports and relevant information of a common clock gater. In 
Section III, we discuss the verification setup and methodology. 
Section IV discusses how this approach is applicable to large 
designs and techniques to handle large state space issues 

associated with formal verification. Section V discusses the 
application of this methodology as well as results, followed by 
conclusion and future work in Section VI.  

 

II. CLOCK GATER 

The interface of a traditional clock gater consists of four 
ports as shown below:  

 

where clk_ul is the gated clock, which is output of the module, 
gclk is the un-gated global clock, func_en is the enable of the 
clock signal, which is used as enable signal with the gclk, and 
cg_cya_disable, which is the CYA disable that turns off clock 
gating. The cg_cya_disable signal equates the gclk to clk_ul. 
As a fail-safe, special defeature bits (controlled by software) 
are put in place to protect against the late bugs due to clock 
gating. These defeature bits are connected to cg_cya_disable 
ports. In some cases, the cg_cya_disable port is connected to 0 
for non-functional gaters, which results in clock gating always 
being enabled and may become troublesome if/when bugs arise 
in the logic. The source of the bugs is usually in the logic 
driving the func_en signal.  

  

III. SETUP 

A chip consists of multiple units with various 
functionalities that fulfil multiples tasks. Furthermore, each 
unit can potentially have multiple clock gating domains which 
can be enabled or disabled based on availability of inputs. 
Recall that in this paper, we address verification of non-
functional clock gaters. Hence, as a first step, for each unit all 
non-functional clock gaters are identified. Ideally, non-
functional clock gaters should be defined by a different module 
name than the functional clock gaters such that the usage is 
clearly expressed. A formal tool can be used to list out all the 
instances of such non-functional clock gaters. As mentioned in 
the previous section, the cg_cya_disable bit controls the 
enabling or disabling of the clock gating. We also look at the 
signals connecting the corresponding cg_cya_disable port for 
all such non-functional clock gaters because, as mentioned 
earlier, in some cases this bit mistakenly gets connected to 0. 
Ideally, there is a defeature bit connected to the cg_cya_disable 
port.   

Next, we create two instances of the same RTL, where in 
one instance (calling it un-gated version), we force the 
cg_cya_disable port of all non-functional clock gaters to 1 (to 
disable clock gating). This can be done by adding a cut-point to 
each cg_cya_disable that makes it free to take any value, and 
then force the value 1 (disable) by adding an assumption. On 
the other hand, in the clock gated instance of the RTL, we 
force the signal to be random and stable throughout the proof. 
This would give us the ability to ensure that all values in the 
clock gated instance are exhaustively verified. Again, this can 
be done by adding a cut-point, and an assumption which 
ensures that the value remains stable.  Figure 1 illustrates this 
setup, where we have two instances of RTL (sfv0 and sfv1), 

module cg_ul ( clk_ul, gclk, func_en, cg_cya_disable ); 



where sfv0 is the un-gated instance and sfv1 is the gated 
instance.  

 

 

 

The output signals can be classified into control and data 
signals. For each of the output control signals, assertions are 
added which state that signals in one instance are equal to the 
signals in the other instance.  

Below is an example assertion that is used for control 
signals: 

 

 

For each output data signal, we append the appropriate 
control signals as preconditions (as applicable). Note that the 
corresponding data signals between the two instances are 
allowed to be different as long as the corresponding control 
signals are low. Below is an example assertion that is used for 
data signals:  

 

 

Another important factor to consider is the reset values of 
the flops. The reset sequence can be configured in various 
forms: (1) Run the proofs with design initialized flops, and 
keep the uninitialized flops as they are. This is the ideal case, 
were we would catch not only clock-gating bugs, but also bugs 
due to x-propagation from un-initialized flops. (2) Run the 
proofs with design initialized flops, and force all un-initialized 
flops to be equal in both the instances. In this case, we only 
focus on clock-gating bugs. (3) Run the proofs with design 
initialized flops, and force the un-initialized flops to be 0 or 1. 
This is a subset of previous case; however, it might help with 

the depth of the proof runs. (4) Run the proofs with all un-
initialized but equal flops. This allows exploration of more 
states; however, one might end up debugging false failures.  

 

IV. APPROACH 

 Our methodology is based on formal verification techniques, 
and it has the issue of state space explosion. Given this issue, a 
complete chip setup with millions of gates and flops would not 
be tractable for formal tools. Hence, the chip is divided into 
smaller units which act as functional partitions of the design. 
These partitions are physical as well as logical decompositions 
of the chip, resulting in self-contained units. Some of the larger 
units of the design are further broken down into smaller sub-
units based on functional partitioning. The partitioning is done 
based on the segregation of the functional behaviors across the 
sub-units. Ideally, one must ensure not to create very small 
“unnecessary” partitions that would result in the addition of 
many assumptions. Furthermore, these extra partitions would 
result in unwanted setups, requiring additional engineer and 

compute time and resource overhead.  

 

A wrapper in the form of a formal verification “App” is created 
containing the two instances of the RTL with the inputs 
connected, and assertions generated for each of the output 
signals (as described in the previous section). This process is 
further simplified by the SEC “App” that takes in RTL and 
automatically creates the wrapper with connections 
surrounding the two instances of the RTL. The “App” also 
generates the necessary assertions on the output signals.  In this 
case, the “App” is part of the Jasper Gold verification 
environment. Hence, it uses the environment’s existing proof 
engines, which take advantage of the symmetry between the 
two instances of the DUT and help in achieving better proof 
convergence [11].  

 Furthermore, various techniques are employed to circumvent 
the state-space issue of the formal verification problem. 
Abstraction is one of the key techniques used to address the 
state space issue. We identify and abstract out sub-units in the 
design that have no clock gating. This is done by black-boxing 
them in the setup. The following steps are used: (1) Identify 
subunits within the design which are oblivious to clock-gating. 
(2) Black-box these sub-units in both the instances of the setup. 
This will make the outputs from these black-boxed sub-units as 
free signals. (3) Add assumptions on the output signals from 
black-boxed sub-units to be equal. This ensures no false 
failures are seen downstream. (4) Add assertions on the input 
signals to the black-boxed sub-units to be equal. This will 
ensure that the input signals are equivalent, and no bugs arise 
due to clock gating. Figure 2 illustrates this abstraction. One 
important thing to note is that if the sub-unit being black-boxed 
is driven from a gated clock, then care must be taken to ensure 
that none of the enable signals to the black-boxed unit must be 
high when the gated clock is low.  

 Another helpful technique used with this methodology is 
assume-guarantee approach. This is done by adding 
intermediate cut-points at locations, where the signal in the un-

asrt_CORE_unit_data_output_signal_a: assert property 
        sfv0.output_control_a |->  
  sfv0.(sfv0.output_data_a == sfv1.output_data_a); 

asrt_CORE_unit_control_output_ctrl_a: assert property 
        (sfv0.output_ctrl_a == sfv1.output_ctrl_a); 

Figure 1. Formal Verification Setup 



gated version and clock-gated version of the RTL are equal. 
There are two steps to this procedure: (1) Add an assertion to 
ensure that these points are equal for the upstream logic. (2) If 
(1) is proven true, then add assumption that both signals are 
true for the down-stream logic. The SEC “App” easily enables 
this in the same environment internally. Furthermore, addition 
of cut-points at intermediate points helps to prune away the 
driving logic. Furthermore, cut-points can be added in one or 
both instances. The ideal choice would be adding cut-points to 
both instances; however, this may result in false failures. One 
of the reasons might be that the downstream logic was 
dependent on the behavior that got abstracted out as a result of 
the cut-point. Hence, a single side cut-point may help get away 
from this issue. Alternately, one may add helper assertions for 
each of the proven intermediate point that may also help in 
getting better proof convergence.   

   
  

Figure 2. Black-box Setup 
  

 When multiple cut-points are added in the design, ordering 
the evaluation of cut-points helps with better proof 
convergence. The idea here is to prove the easiest assertions 
first. These assertions usually have the smallest cone of 
influence (COI) compared to other properties in the design. 
Once proven, these helper assertions are used to prove the next 
set of properties. This ordering of assertions to enable an 
incremental proof convergence is referred to as “levelizing”. 
This is done based on Topological sort starting from output 
signals and measuring the depth to the corresponding primary 
inputs. The SEC “App” automates this process internally, and 
helps automatically with proof convergence with less user 
interaction.  

 

V. APPLICATION AND RESULTS 

 The SEC “App” and the approach were applied 
successfully to various chips across Nvidia. In this paper, we 

will discuss the results of two different chips, one from GPU 
and another one from Tegra, which is a mobile processor [12]. 
Note that we abstract out the details of the chip due to 
confidentiality.  

 In the GPU chip, this approach was applied to multiple 
units where each unit was broken into up to 5 different sub-
units based on the functional partitions. In total, there were 250 
different testbench setups. The break-down was such that the 
setup size was amenable to the formal verification tool. For 
each of the sub-units, all FIFOs and RAM modules were black-
boxed. Inputs to these were proven equivalent and primary 
outputs of the subunits were proven under the precondition that 
output of the black-boxed modules were proven. The FIFOs 
were proven separately. The initial values of the counters and 
major finite state machines were abstracted out to help achieve 
deeper proof depth. A wrapper was created in an internal 
macro based language where two instances of the sub-unit 
were declared, and the primary input signals were 
automatically connected. The setup time for each sub-unit was 
0.5 days on average. Around 1-4 weeks were spent on iterating 
over constraints and RTL fixes. OVL assertions per primary 
output were generated in the following form:  

  

 

 Table 1 illustrates sample results for some of the sub-units 
of a unit in GPU. It lists the approximate size of each unit 
along with maximum pipe stages as well as the clock gating 
domains in it. The table also lists the percentage of assertions 
that saw full proofs and the lowest cycle bounds for the worst 
case for assertions with bounded proofs. 

Table 1 Partial Results of SEC Application to GPU 

 

A total of 32 bugs were found related to clock-gating where 
simulation found 50% of the bugs, and other 50% were found 
by SEC approach. The simulation had started much earlier than 
SEC and continued until DV signoff. From a post-mortem 
analysis, simulation could have found 50% of the bugs found 
by SEC, but they would have appeared in the form of post FNL 
or post silicon bugs. The remaining 8 bugs found by SEC were 
very difficult–to-hit corner cases and would have required an 
additional 9 man-months of effort.  

 In the Tegra project, 52 setups were created, which were 
spread across 20 verification and design engineers. All the 
setups were up and running within the week. The smaller units 
had around 5k flops, whereas the larger units were over 250k 
flops. Hence, larger blocks were broken down into smaller sub-
sets to become friendlier for formal tool. A lot of features from 

Name Flops Pipe 
Stages 

Clock 
Gate 

Domains 

Proofs 
(full) 

Cycles Bugs 

Unit A 7k 2 3 83% 16+ 4 

Unit B 40k 5 4 7% 16+ 0 

Unit C 150k 13 8 5% 19+ 6 

Unit D 56k 15 7 9% 6+ 1 

wire cond_1x = sfv0_vld[0] == sfv1_vld[0] 

assert_always #(0,0,”equiv”) equiv_bit_1x (clk, reset_, cond_1x); 



the SEC “App” were used to speed up the verification time. 
The SEC “App” allowed quick and automatic mapping of the 
inputs and outputs. As some of the setups were created much 
earlier than the tool, a special mode was developed in the 
“App” called the “attached” mode which could read in existing 
setups and automatically map the inputs/outputs. Table 2 
illustrates a subset of results from SEC “App” vs running the 
setup in FPV. For some of the designs, much improvement was 
realized, and this was due to the fact of using automated 
abstraction along with “levelizing”, which proved easier 
properties first, then used them as assumptions to prove 
downstream properties. For some of the difficult models, the 
cut-points were applied to all the flops and evaluated for every 
level. Note that an automated tcl script was written that 
removed cut-points for the failing properties. After removal of 
these cut-points, the script would automatically rerun the 
proofs until all the properties were proven or bounded proven. 
For each of the units, we had a different acceptable bound 
point dependent on the number of cycles it took to hit the 
deepest cover property.     

 

Table 2. Subset of Results from SEC “App” vs FPV “App” 

 

Debugging capabilities of the “App” were very beneficial. It 
allowed viewing two instances of the RTL side by side and 
quickly identifying the mismatches. A script was developed 
which would automatically plot the mismatching signals in a 
breath-first search manner. This help save about 8-10 minutes 
of debugging time per failure. Over 40+ bugs were found via 
this approach where more than half were discovered after many 
months of simulation.  

 To improve upon the verification time, black-boxing of 
various unwanted sub-units was easily done. The below 
commands would automatically populate the assertions on all 
inputs of the black-boxed module and add assumptions on all 
its outputs. 

 

Furthermore, cut-points were added as discussed in Section IV 
to improve the proof depth. These were added by identifying 
which flops were to be equivalent. Below is a sample 
command used to add the cut-points.:  

 

We were able to achieve full proofs for many of the properties 
using these techniques.  

 There were various types of bugs found. Most of the bugs 
fell into one of the three buckets:  

1. Missing terms: A common bug across many sub-units 
was that a term was missed from the func_en term 
which was used as the enable for the clock gater.  
Given the following example,    

 

vld_3 was mistakenly omitted from clk_en1 which 
was driving the logic related to vld_3. 

2. Bad clocks: Incorrect clock enable was hooked in to 
func_en of the clock gater by mistake.  

 

 

3. Hang Case: Clock enable was stuck due to bad logic 
driving it. As a result, valid data was not getting 
propagated.  

 

 

Each of the units had a signoff checklist. The checklist had 
a variety of items, and was not limited to the following:  

• Resolve all counter-examples  

• Re-confirm that all relevant defeature bits are 
accounted for and exercised in the setup file.  

• Re-confirm that all outputs have equivalence 
properties. 

• Ensure that reset states for un-initialized flops is 
random to catch X-propagation issues.  

• Increase the per-property runtime to at least 10 hours 

• Review the input constrains with the designer or 
enable them in simulation. 

• Prove all assertions to an acceptable depth 

 

VI. RELATED WORK 

Various approaches to clock gating verification have been 

applied in the industry. [4] presents a solution where a 

sequential equivalence checking of clock gating can be 

reduced to a combinational equivalence checking problem 

based on specific preconditions of the design. They formulate 

Name Flops Clock 
Gate 

Domains 

FPV 
Proofs 
(SFV) 

SEC “App” 
Proofs (SFV) 

Unit A 25k 4 30% 100% 

Unit B 35k 4 100% 100% 

Unit C 25k 8 70% 100% 

Unit D 35k 9 40% 60% 

Unit E 45k 14 25% 65% 

clk_en1 = vld_1 || vld_2 || vld_3 

func_en = defeature_clk_en1|| clk_en1 

check_sec -map -auto -spec sfv0.a.ram -imp sfv1.a.ram -type 

bbox_input -tag ram_input 

check_sec -map -auto -spec sfv0.a.ram -imp sfv1.a.ram -type 

bbox_output -tag ram_output 

 

check_sec -map -spec sfv0.b.large_counter -imp sfv1.b.large_counter -

tag countdown_count -with_attr cutpoint 

@(posedge clk_en_a1) vld_a1_data1 <= a1_data1; 

@(posedge clk_en_a2) vld_a1_data2 <= a1_data2; 

@(posedge clk_en_stuck) vld_a3 <= vld_a2; 



a set of theorems for equivalence checking and transform the 

clock-gating in sequential space to combinational space. With 

huge industrial designs, each clock-gating point would add 

loops to the design making it difficult to use their approach. 

Furthermore, this transformation can be often time-

consuming. Our work targets specific clock-gating (non-

functional) however is very efficient and does not require any 

transformations. Similarly, [10] also looks at RTL 

transformation and using combinational equivalence checking 

for proving clock gating correctness.  

 

On the other hand, [8] describes a framework for 

sequential equivalence checking across arbitrary design 

transformations. Their framework targets transformations that 

arise from changes for performance, power, etc. for a design. 

Their framework takes in two gate-level design 

representations, generated from traditional synthesis process, 

and checks equivalence based on their outputs. Our approach 

is different from theirs in the way that they run a redundancy 

removal algorithm which identifies equivalence classes of 

gates that contain a representative gate for each of those 

classes and construct a speculatively reduced model. They 

create a mitre over each gate and its representative and prove 

that miter is unreachable. Once proven that mitre is un-

reachable, they replace and merge the gates to reduce the 

model. If a mitre is proven to be reachable, then they have to 

select a new representative gate, and repeat the steps. Hence, 

their process is very iterative and time-consuming.  

 

 Model checking based sequential clock-gating is 

proposed in [5]. In their approach, they use a model-checking 

based approach to identify sequential clock-gating 

opportunities. Using model-checking they identify intra-

register relationships across clock boundaries and map this 

relationship to temporal properties. Based on the results of the 

model-checker, they identify potential sequential clock-gating. 

This approach is useful when clock-gating is unknown and 

one needs to identify where it can be applied. In most 

industrial cases, clock-gating is already added during the 

design cycle. Furthermore, on larger designs this can be 

challenging and time-consuming.  

  

VII. CONCLUSION AND FUTURE WORK 

In this paper, we present a methodology for 

verification of non-functional clock gaters that are used for 

dynamic power saving of the chip. These non-functional 

clock gaters can also be referred to as “second-level clock 

gating” as they are instantiated in the RTL and gate 

downstream non-gated clock nodes, which are used to gate 

off circuits that have low utilization and are not being used 

during functional execution. This methodology is applied at 

the chip-level by dividing the chip to smaller units/sub-

units that can be read by the formal tool. This approach 

requires fewer assumptions than the traditional formal 

property verification approach because assumptions are 

only needed in case of mismatches (if they are not real 

clock gating bugs.) between the two instances of the RTL. 

Every assumption increases the risk for over-constraint, in 

which an incorrect output in one instance is made to match 

the incorrect output in the other instance. This is one of the 

primary reasons for having a limited number of 

assumptions.  

 

Automated abstraction techniques were used, 

including black-boxing and cut-points, which resulted in 

full-proofs for many of the sub-units. Furthermore, the 

approach was very efficient and required on average 2-3 

weeks per unit, and it was very effective in finding bugs. 

All these features were brought together in the SEC “App”, 

which was easy to use by designers who were not experts in 

formal verification.  

 

This approach can be extended to block-level clock 

gating as well, where an entire unit is turned off when the 

unit is not active. This is highly desirable for power saving; 

however, complexity rises due to controller logic that turns 

off the clock of the unit/sub-unit and which is part of the 

verification environment. In the future, our efforts are to 

apply similar approach to block level clock gating.    
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