
A Formal Verification App

Towards Efficient Chip-Wide

Clock Gating Verification

Company

logo on first

slide ONLY

Presenter: Syed Suhaib

Authors: Prosenjit Chatterjee, Scott Fields and Syed Suhaib

Problem Description

• Mobile Technology - Low Power is important

• Reduce Dynamic Power Consumption

– Solution: Clock Gating

• Multiple units on a chip with various clock

gated islands.

– Divide and Conquer

Clock Gating Classification

• Functional Clock Gating

– Turns off unit/functionality

– Controlled by super-unit / external unit.

– Used for functional + power saving.

• Non-functional Clock Gating (Our Focus)

– Activity turns on the lights

– Used only for power saving

– Defeature bits used to turn off clock gating for late

bugs.

Issues and Risks

• Clock gating usually come up late in the design

process.

• Functional verification has higher priority.

• Bugs missed or come very late in ECO process.

– Very Expensive

• Debugging bugs due to clock gating in silicon

can be a nightmare.

Work-Arounds

• Work-around clock gating bugs can be very

expensive.

– Rely on software potentially increasing complexity.

– “lights out” for large sections of the chip.

– Big loss on power budget could be un-acceptable.

Prior Techniques

• Traditional simulation is necessary but not

sufficient.

• Debugging failures are time-consuming.

• Large effort with traditional model checking

– Lots of valid constraints needed.

Approach

Two instances of same DUT:

- SFV0 – Ungated Design

- SFV1 – Clock Gated Design.

• All inputs are mapped and tied

together.

• Assertions are added on

corresponding output signals

to be equivalent.

• Identify all non-functional

clock-gaters in design.

• Force defeature bits to be high

in one instance, and random

but stable in other.

Assertions on Outputs

• Control Signals

• Data Signals

assert property ((sfv0.output_ctrl_a == sfv1.output_ctrl_a));

assert property (sfv0.output_ctrl_a |->

(sfv1.output_data_a == sfv1.output_data_a));

Reset Sequence

• Flops categorized into

– Resettable flops (Reset by design)

– Un-initialized flops (driven by some behavior)

• Setup also helps identify X-propagation issues.

• Option to initialize the un-initialized flops and

run the flow (constrained setup).

FV Challenges

• Two instances of RTL doubles the size of

design under verification.

– Tricky for formal verification.

– Use various tricks to help with the proofs.

• Abstractions

• Assume-guarantee

• Intermediate cut-points

• Proof engines take advantage of symmetry.

FV Challenges

• Identify units not involved

with clock gating.

• Abstract units out by proving

all signals are equal at its

input.

• Add assumptions on output

signals to be equal.

SEC App (Jasper)

• Ease of setup.

• Automatically map signals across the two

instances.

• Automatically add assumptions to the inputs.

• Automatically add assertions to the outputs.

• Force defeature to be high in one instance,

and random but stable in other.

SEC App

• Supports setups in “Wrapper Mode” (widely

used at Nvidia).

– Wrapper mode: Wrapper containing the two

instances of DUT.

• Able to reuse assumptions/setup used for

Formal Property Verification.

SEC App

• Debugging:

– Two instances side by side.

– Ease of quickly identifying the mismatch and

debugging.

– Created a script which automatically plotted the

mismatches between signals until the first failure

was found.

• Reduced debugging time by about ~8-10 mins for some

designs.

SEC App

• Better proof results:

– Blackboxing: Automatically map I/O for

blackboxed modules.

• Add assertions on inputs of Bboxed modules.

• Add assumptions on outputs of Bboxed modules.

check_sec -map -auto -spec dut0.a.ram -imp dut1.a.ram -type bbox_input -tag ram_input

check_sec -map -auto -spec dut0.a.ram -imp dut1.a.ram -type bbox_output -tag ram_output

SEC App

• Cutpoints: Add cutpoints to internal signals for

assume-guarantee based approach.

• Once proven, use as assumptions in same setup.

• Two features*:
• Single sided cutpoints – Remove logic from one partition when

proven.

• Double Sided cutpoints – Remove logic from both partitions when

proven.

check_sec -map -spec dut0.b.counter -imp dut1.b.counter -tag my_counter -with_attr cutpoint

*Feature of Jasper SEC App

Application and Results

• Applied on multiple chips (GPUs, Tegras).

• Chip divided into multiple units/sub-units.

• Each unit/sub-unit evaluated for clock gating

islands.

Applications and Results

• Application on “Tegra”:

– 50 setups.

– Setup per unit took 15~30 mins. (Wrapper mode)

– Run by 20 engineers (FV, DV and Designers). Easy

to use and were quickly trained.

– Verification time: 1~3 weeks

• Adding constraints

• Debugging CEX

– ~40 bugs found (~50% after high simulation

coverage)

SEC App vs FPV

Name Flops Clock Gate

Domains

FPV Proof

Convergence

SEC Proof

Convergence

Unit A 25k 4 30% 100%

Unit B 35k 4 100% 100%

Unit C 25k 8 70% 100%

Unit D 35k 9 40% 60%

Unit E 45k 14 25% 65%

Types of Bugs Found

• Missing terms in clock_enable used for clock gaters

causing signals to not get flopped correctly.

• Use of incorrect clock_enable signal.

Clk_en = vld_1 || vld_2 || vld_3

@(posedge clk_en_a2) vld_a1_data2 <= a1_data2;

Instead of:

@(posedge clk_en_a1) vld_a1_data1 <= a1_data1;

Types of Bugs Found (2)

• Hang Case: clock_enable is stuck due to bad

logic driving it and not able to propagate valid

value to output.

@(posedge clk_en_stuck) vld_a3 <= vld_a2;

Signoff Checklist

• Resolve all cex

• Re-confirm all non-functional clock gaters part of setup.

• Re-confirm that all outputs have equivalence properties

• Remov ‘-nonResettableRegs 0’ for reset coverage

• Increase the per-property runtime to at least 10 h

• Review input constrains added with the designer. Enable

in simulation (if possible).

• Prove all equivalent asserts to an acceptable depth.

Acknowlegement

• Jasper Design Automation

• Engineers in GPU, Tegra teams at Nvidia for

driving this to closure.

Thank You

