A Formal Verification App
Towards Efficient Chip-Wide
Clock Gating Verification

Presenter: Syed Suhaib

Authors: Prosenjit Chatterjee, Scott Fields and Syed Suhaib

NVIDIA.

Ve Problem Description
 Mobile Technology - Low Power is important

* Reduce Dynamic Power Consumption
— Solution: Clock Gating

* Multiple units on a chip with various clock
gated islands.

— Divide and Conquer

Clock Gating Classification

* Functional Clock Gating
— Turns off unit/functionality
— Controlled by super-unit / external unit.

— Used for functional + power saving.
* Non-functional Clock Gating (Our Focus)
— Activity turns on the lights

— Used only for power saving

— Defeature bits used to turn off clock gating for late
bugs.

Issues and Risks

* Clock gating usually come up late in the design
process.

* Functional verification has higher priority.

* Bugs missed or come very late in ECO process.
— Very Expensive

 Debugging bugs due to clock gating in silicon
can be a nightmare.

Uv= Work-Arounds

* Work-around clock gating bugs can be very
expensive.
— Rely on software potentially increasing complexity.
— “lights out” for large sections of the chip.
— Big loss on power budget could be un-acceptable.

“Nje . .
yve Prior Techniques

* Traditional simulation is necessary but not
sufficient.

* Debugging failures are time-consuming.

e Large effort with traditional model checking

— Lots of valid constraints needed.

CONFERENCE & EXHIBITION

Two instances of same DUT:

SFVO — Ungated Design
SFV1 — Clock Gated Design.

All inputs are mapped and tied
together.

Assertions are added on
corresponding output signals
to be equivalent.

Identify all non-functional
clock-gaters in design.

Force defeature bits to be high
in one instance, and random
but stable in other.

-

Approach

Fail-5afe de-feature bits
forced to 1

e

INPUTS

SR,
% shab

—- Sful.c

SFV0
Ungated

Fall-5afe de-feature bits
forced to be random and
stable during the proof

—~

T

sfvl.a

Sfvlc

SFV1

Clock Gated

OUTPUTS EQUAL ?

yye Assertions on Outputs

e Control Signals

assert property ((sfv0.output_ctrl_a == sfvl.output_ctrl_a));

e Data Signals

assert property (sfv0.output_ctrl_a [->
(sfvi.output_data_a == sfvi.output_data_a));

Reset Sequence

* Flops categorized into
— Resettable flops (Reset by design)
— Un-initialized flops (driven by some behavior)

* Setup also helps identify X-propagation issues.

e Option to initialize the un-initialized flops and
run the flow (constrained setup).

No
Ve FV Challenges

e Two instances of RTL doubles the size of
design under verification.

— Tricky for formal verification.

— Use various tricks to help with the proofs.
* Abstractions
* Assume-guarantee
* Intermediate cut-points
* Proof engines take advantage of symmetry.

DESIGN & VERIFICATION
')

r

CONFERENCE & EXHIBITION

Identify units not involved
with clock gating.

Abstract units out by proving
all signals are equal at its
input.

Add assumptions on output
signals to be equal.

FV Challenges

ASSERT
EQUAL?

— Black-boxed —

ASSUME
EQUAL

Dazhed Lines are Cut-off

-

SEC App (Jasper)

Ease of setup.

Automatically map signals across the two
Instances.

Automatically add assumptions to the inputs.
Automatically add assertions to the outputs.

Force defeature to be high in one instance,
and random but stable in other.

e Supports setups in “Wrapper Mode” (widely
used at Nvidia).

— Wrapper mode: Wrapper containing the two
instances of DUT.

* Able to reuse assumptions/setup used for
Formal Property Verification.

g

* Debugging:
— Two instances side by side.

— Ease of quickly identifying the mismatch and
debugging.

— Created a script which automatically plotted the
mismatches between signals until the first failure
was found.

* Reduced debugging time by about ~8-10 mins for some
designs.

Vi SEC App

e Better proof results:

— Blackboxing: Automatically map 1/0 for
blackboxed modules.

e Add assertions on inputs of Bboxed modules.
e Add assumptions on outputs of Bboxed modules.

check_sec -map -auto -spec dut0.a.ram -imp dutl.a.ram -type bbox_input -tag ram_input
check_sec -map -auto -spec dut0.a.ram -imp dutl.a.ram -type bbox_output -tag ram_output

_

W@ SEC App

2014

E & EXHIBITIO

e Cutpoints: Add cutpoints to internal signals for
assume-guarantee based approach.

* Once proven, use as assumptions in same setup.
e Two features*

e Single sided cutpoints — Remove logic from one partition when
proven.

* Double Sided cutpoints — Remove logic from both partitions when
proven.

check_sec -map -spec dut0.b.counter -imp dutl.b.counter -tag my_counter -with_attr cutpoint

*Feature of Jasper SEC App
-]

NE Application and Results
e Applied on multiple chips (GPUs, Tegras).
* Chip divided into multiple units/sub-units.

* Each unit/sub-unit evaluated for clock gating
islands.

Applications and Results

e Application on “Tegra”:
— 50 setups.
— Setup per unit took 15~30 mins. (Wrapper mode)

— Run by 20 engineers (FV, DV and Designers). Easy
to use and were quickly trained.
— Verification time: 1~3 weeks
* Adding constraints

e Debugging CEX

— ~40 bugs found (~¥50% after high simulation
coverage)

DESIGN & VERIFICATION

SEC App vs FPV

CONFERENCE & EXHIBITION

Clock Gate FPV Proof SEC Proof
Domains | Convergence Convergence

Unit A 4 30% 100%
Unit B 35k 4 100% 100%
Unit C 25k 8 70% 100%
Unit D 35k 9 40% 60%
Unit E 45k 14 25% 65%

Types of Bugs Found

* Missing terms in clock_enable used for clock gaters
causing signals to not get flopped correctly.

Clk en=vid_1||vid_2 || vid 3

e Use of incorrect clock _enable signal.

@(posedge clk_en_a2) vid_al_data2 <= al_data2;
Instead of:
@(posedge clk_en_al) vid_al datal <=al_datal;

NE Types of Bugs Found (2)

 Hang Case: clock_enable is stuck due to bad
logic driving it and not able to propagate valid
value to output.

@(posedge clk _en_stuck) vid_a3 <=vld_a2;

Signoff Checklist

e Resolve all cex

* Re-confirm all non-functional clock gaters part of setup.
e Re-confirm that all outputs have equivalence properties
« Remov ‘-nonResettableRegs 0’ for reset coverage

* |ncrease the per-property runtime to at least 10 h

* Review input constrains added with the designer. Enable
in simulation (if possible).

* Prove all equivalent asserts to an acceptable depth.

Uv> Acknowlegement

* Jasper Design Automation

* Engineers in GPU, Tegra teams at Nvidia for
driving this to closure.

Thank You

