XILINX

A dynamic approach towards Register coverage generation and
collection to reduce compilation overhead of traditional UVM
register layers

Subham Banerjee
DVCon’2020, San Jose

Content

Motivation

Why Register Coverage ?
Problem Statement
Proposed Solution

Basic Register Coverage Flow

Typical UVM based Register Model
Implementation

Sampling Techniques

Sampling Timeline

User Control

Reporting

Register Cross Coverage Extension

Flow Implementation

Generic Cross Coverage Class
Example Spreadsheet Format
Reporting

Results & Performance Analysis

XILINX

Motivation
Why Register Coverage ?

Register Coverage is integral part of any verification sign-off

It helps to detect coverage holes, which otherwise go undetected

Let’s say there’s a register field ‘ADDR’, which is 3 bit wide, and not all values are realized in simulations
= Two distinct write of 3’b000 & 3’b111 can cover all the toggle coverage
= Based on the RTL implementation, code coverage can also be 100%

- Analog registers used inside Behavioral Model (BV) & Real Number Model (RNM), are never analyzed as part code coverage
- Coverage prior to reset and powerdown may be collected, as part of code coverage

Register Coverage can un-earth all these holes, and many more

Problem Statement

Register Coverage comes with a inherent problem of compilation overhead
Any typical UVM-RAL based automated-flow, attempts to generate covergroups/coverpoints per register/fields

The overhead grows with higher number of registers

Case Study:
The Gigabit Transceivers (SERDES) subsystems that we are working on, we have around 5000 odd register fields.

— In conventional approach, this was resulted in a massive line of code (around 25000), and classes
— This increased the compilation & elaboration time by

Proposed Solution

The proposed approach addresses this issue, by devising a fully reusable methodology which helps dynamic creation of all the covergroups/coverpoints,

All covergroups are created during run or simulation time, as oppose to compilation time.
Can be seamlessly extended to generate register cross coverage with minimal user intervention

XILINX

Basic Register Coverage Flow

A typical UVM-RAL based register model realization

Coverage database will be created based on each field of the registers

CODEC
uvm_reg_block
CONFIG INTRPT

uvm_reg i
ADDR STATUS

uvm_reg_field

MASK

-
} rand bit [2:0] ADDR
| rand bit [1:0] DS

|
| rand bit [1:0] OE

XILINX

Basic Register Coverage Flow
Implementation

RegDB.txt

- across all fields and values
UVM-Build LoadRegDB() SISO RegField[valid_val<0-N>] II
CovSample() F % RegField[<>].sample() II

22 XILINX

Basic Register Coverage Flow

class xvm field cov;

Generic Covergroup Creation

protected string m name;
One covergroup for

//Add coverage

- All Registers covergroup valid val cg(string name) with function sample(bit match);
— All Fields within each Registers option.per_instance = 1;
) option.name = name;
- A” Va|UeS Of the fleld match_cp - coverpoint match {
bins match ¢ = {1};
}

endgroup : valid val cg

o function new (string name);
Covergroup Instantiation Dbl
valid val cg = new(name);

Creation of covergroup wrapper class SRiTwactism. - new

Instantiate wrapper-class in uvm_build_phase " _
- - * Auxiliary methods to facilitate coverage

Better runtime control through uvm_config_db]
virtual function void sample();
// uvm_info(m name,$sformatf("Sampling Field "),UVM LOW)
valid val cg.sample(1);
endfunction : sample

endclass : xvm field cov

XILINX

Basic Register Coverage Flow

Sampling Techniques

—> field.sample() gets called whenever there’s a corresponding register write
—> Coverage collection happens with minimal or no user effort/intervention

- At End of UVM-Main-Phase, sample() gets called on whole register block
Sampling

-> User can call sample at any point-in-time through following APIs

1) RegBlock.sample()
2) RegBlock.Reg.Sample()

3) RegBlock.Reg.Field.sample()

XILINX

Basic Register Coverage Flow
Sampling Timelines e

UVM Run-Phase

Reset Sequences &
User Test-Sequence

Register

Register Configuration End-Of-Test

Randomization & =2 Change Attribute Checks

- Reset PLL/ILO/Channel
DUT POR - Re-Run Test-Sequence

Manual Sample Automatic

@ end-of-each UVM Main-Phase Sample @ end-

iteration of-Main-Phase

22 XILINX

Basic Register Coverage Flow

Use Control for flow integration

testparam/ /

XVill reg coverage on

XVl reg_coverage auto sample

xvim_reg_coverage all undef

Turn on/off the register coverage model creation and
sampling m dynamic manner.

For Register rea/write tests, coverage model creation will
be bypassed, to avoid any false coverage collection.

This will turn-on automatic coverage collection/sampling,
whenever any registers are updated/written

By default, it’s tuned off, and the samplng 1s manually
controlled from the test.

This will control the cover group creation of fields with
undefmed valid encoding n IPXACT (e.g. A SDM_DATA
[15:0])

If turned on, then create one covergroups for all possible field
values

If tuned off, then create two basic covergroups, one for
‘zero’ value and one for ‘non-zero’ value

XILINX

Basic Register Coverage Flow

Reporting

cal _I||udul[Ll"
req_model.local_model]
req.model. local_model[0].
req_model _model[0]
NLvalid_val[0xT]
N valid_val[0x

re‘?g_mr;ﬂel.lt_ _mi n'_1r-_rl[rl1
req model.local model[0]

"PL SDM_SEED.undel valid v
' valid_val[non_zero]

| id_val[0lT]

{ r:un{lel Iuca] |11..|dr-_l|[||l A LFL-| A_PLLFBDIV valid 1.-1][D:,_r]
req_model.local_modei] CFG.A_PLLFBDIN

3 al |] G.A_PLLFBC
req_model. local_ CFG.A_PLLFBDIV.
req_model.| _model[0].A_CFG.A_PLLFBD
req_model.local model[0].A_CFG.A_PLLFBDI\
req_model.Jocal_moded[0].A

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

btk i s ik | et

i |

i | it

b i | i

s

b |t | |t i |t | | i

KA

64
G4

Gl

a1 ALITO BN PRINT

WESSRAD

XILINX

Register Cross Coverage Extension
Flow Implementation

oo | —
RegDB.txt
cross_cov_db.txt

uvm re * ;
XVM_reg_cov Reusing ope covergoup VIl CrOSS COV
across all fields and values - -

LoadRegDB() BUlldCOV() RegFIeId[vaI<O-N>] II BUlldCfOSS_COVO
I
CrossField[val<0-N>] II

Register Cross Coverage Extension

Generic Cross Coverage Class

One covergroup for any cross

Each cross has multiple contributing fields

Any of these fields changes, cross is sampled

‘cross_details’ field in the covergroup will have all the individual field info

ctass xvm field cross;

//Add coverage
covergroup cross cov cg(string cross name,string cross details) with function sample(bit match);
option.per instance = 1;
option.name = cross name;
option.comment = cross details;
match cp : coverpoint match {
bins match c = {1};
}
endgroup : cross cov cg

extern function new (string a cross_name,string a cross_details);
extern virtual function void eval and sample cross();
extern virtual function void sample cg();

endclass : xvm field cross
- - XILINX

Register Cross Coverage Extension

Cross Coverage Spreadsheet Format

(ross name Register Fields To Be Crossed

GORX DATA WIDTH RY_PCS CFGORY_INT DATA WIDTH RY_PCS_CFGLRY_FABRIC DATA SEL RX PCS CFGLRY FIFO DATA SEL RX PCS CFGLUSE GB RY_PCS CFGMODE RX PCS CFGLRX 38108 EN PIPE CTRL CFG
1 : shit NA NA
1 {00,501} NA A
1 NA A
1 NA bl

Reporting

Testbench Group List
dashboard | hierarchy | modlist tests | asserts | userdata | hvp

| xvm_pkg:xvm_field_cross

AT AUTO PRINT
LEAST BIN MAX MISSING

64
64
64
64
64
64
64
64
64
64
64
64
64

SCORE WEIGHT GOAL

100
100
100
100
100
100
100
100
100
100
100
100
100

CROSS_USB_MODE_VRF_93
CROSS_USB_MODE_VRF_94
Group Instance : CROSS_8b10b_C1_VRF_100 CROSS_USB_MODE_VRF_95
Comment: [RX_PCS_CFG0.RX_DATA_WIDTH:0x7T* CROSS_USB_MODE_VRF_96
[RX_PCS_CFGO.RX_INT_DATA_WIDTH:Ox1J* CROSS_USB_MODE_VRF_97
[RX_PCS_CFG1.RX_FABRIC_DATA_SEL:0x4]* CROSS_USB_MODE_VRF_98
[RX_PCS_CFGI1.RX_FIFO_DATA_SEL:0x1]*
[RX_PCS_CFG2.RX_8B10B_EN:0x1]
AT AUTO PRINT CROSS 8bl0b
SCORE WEIGHT (GOAL ieast miNmax missiN CROSS_8b10b_C1_VRF_103
100.00 1 100 1 64 64 CROSS_8b10b_C1_VRF_106
CROSS_8b10b_C1_VRF_137
ROSS_8b10b_C1_VRF_18

1
1
1
1
1
1
1
1
1
1
1
1
1

e e e e e e

XILINX

Results & Analysis

Comparison Between Predefined vs Dynamic Flow

Coverage Methodology Data Metrics Performance/Results

Pre-Defined Coverage Database 5000 covergroups created Total Compilation time including parsing & elaboration
(Old Flow) ~15000 coverage bins & no cross-coverage was at 25 minutes for one SERDES block/QUAD
support For a subsystem with 2 SERDES-QUAD, the

25000 lines of extra code got added for compilation time was around 35~40 minutes

each SERDES block Simulation time for 1 test with 1024KB data transfer
Total 12800 tests are running as part of the was 25 minutes

whole regression suit Merging time for all 12800-coverage database from
individual tests, is ~3 to 3.5 hours

Coverage Methodology Data Metrics Performance/Results
Dynamic Coverage Database 5000 covergroups created On a VCS based simulation platform, the time
(New Flow) ~ 15000 coverage bins & 126800 cross consumed to create the whole coverage database was
coverage bins were created between 12~15 seconds
<100 lines of code are added, this is Compilation time reduced to 10~12minutes
constant for block level & subsystem level For a subsystem with 2 SERDES-QUAD, the
Total 12800 tests are running as part of the compilation time is around 18 minutes
whole regression suit Simulation time for 1 test with 1024KB data transfer is
same as before, no significant change
Merging time for all 12800-coverage database from
individual tests, is ~3 to 3.5 hours, which i
comparable with previous flow

XILINX

Results & Analysis

Conclusion

This approach fits well into any chip or IP tapeout execution
Makes verification engineer’s life a bit easier through a push button methodology for register coverage creation & collection

The actual effort can be quickly put into analysis, as oppose to spending time in coverage creation and dealing with higher
compilation overhead

XILINX

XILINX

Thank You

	�A dynamic approach towards Register coverage generation and collection to reduce compilation overhead of traditional UVM �register layers
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

