
A dynamic approach towards Register coverage generation and
collection to reduce compilation overhead of traditional UVM
register layers

Subham Banerjee
DVCon’2020, San Jose

Content
˃ Motivation

Why Register Coverage ?
Problem Statement
Proposed Solution

˃ Basic Register Coverage Flow
Typical UVM based Register Model
Implementation
Sampling Techniques
Sampling Timeline
User Control
Reporting

˃ Register Cross Coverage Extension
Flow Implementation
Generic Cross Coverage Class
Example Spreadsheet Format
Reporting

˃ Results & Performance Analysis

Motivation
˃ Why Register Coverage ?

Register Coverage is integral part of any verification sign-off
It helps to detect coverage holes, which otherwise go undetected

‒ Let’s say there’s a register field ‘ADDR’, which is 3 bit wide, and not all values are realized in simulations
 Two distinct write of 3’b000 & 3’b111 can cover all the toggle coverage
 Based on the RTL implementation, code coverage can also be 100%

‒ Analog registers used inside Behavioral Model (BV) & Real Number Model (RNM), are never analyzed as part code coverage
‒ Coverage prior to reset and powerdown may be collected, as part of code coverage

Register Coverage can un-earth all these holes, and many more

˃ Problem Statement
Register Coverage comes with a inherent problem of compilation overhead
Any typical UVM-RAL based automated-flow, attempts to generate covergroups/coverpoints per register/fields
The overhead grows with higher number of registers
Case Study:

‒ The Gigabit Transceivers (SERDES) subsystems that we are working on, we have around 5000 odd register fields.
‒ In conventional approach, this was resulted in a massive line of code (around 25000), and classes
‒ This increased the compilation & elaboration time by ~17mintues comparing to the NO_COVERAGE compilation

˃ Proposed Solution
The proposed approach addresses this issue, by devising a fully reusable methodology which helps dynamic creation of all the covergroups/coverpoints,
All covergroups are created during run or simulation time, as oppose to compilation time.
Can be seamlessly extended to generate register cross coverage with minimal user intervention

Basic Register Coverage Flow

˃ A typical UVM-RAL based register model realization
Coverage database will be created based on each field of the registers

Basic Register Coverage Flow
˃ Implementation

RUN

UVM-Build

IPXACT

RegDB.txt

UVM-Main

LoadRegDB()

CovSample()

RegField[valid_val<0-N>]

uvm_reg xvm_reg_cov

RegField[<>].sample()

BuildCov()

*Reusing one covergoup
across all fields and values

UVM-Build LoadRegDB() RegField[valid_val<0-N>]
BuildCov()

Basic Register Coverage Flow

˃ Generic Covergroup Creation
One covergroup for
‒ All Registers
‒ All Fields within each Registers
‒ All values of the field

˃ Covergroup Instantiation
Creation of covergroup wrapper class
Instantiate wrapper-class in uvm_build_phase
Better runtime control through uvm_config_db

Basic Register Coverage Flow

˃ Sampling Techniques

Sampling

Automatic
Sample

 field.sample() gets called whenever there’s a corresponding register write
 Coverage collection happens with minimal or no user effort/intervention

[* Very prone to false-coverage]

At End of UVM-Main-Phase, sample() gets called on whole register block

Manual
Sample()

 User can call sample at any point-in-time through following APIs
1) RegBlock.sample()
2) RegBlock.Reg.Sample()
3) RegBlock.Reg.Field.sample()

Basic Register Coverage Flow

˃ Sampling Timelines

UVM Run-Phase

Register
Randomization

Register
Configuration

&
DUT POR

Reset Sequences &
User Test-Sequence

 Change Attribute
 Reset PLL/ILO/Channel
 Re-Run Test-Sequence

End-Of-Test
Checks

Automatic
Sample @ end-
of-Main-Phase

Manual Sample
@ end-of-each

iteration
UVM Main-Phase

Basic Register Coverage Flow

˃ Use Control for flow integration

Basic Register Coverage Flow

˃ Reporting

Register Cross Coverage Extension
˃ Flow Implementation

RUN IPXACT

RegDB.txt

UVM-Main CovSample()

uvm_reg xvm_reg_cov

RegField[<>].sample()

*Reusing one covergoup
across all fields and values

UVM-Build LoadRegDB() RegField[val<0-N>]BuildCov()

xvm_cross_cov

cross_cov_db.txt

BuildCross_Cov()

CrossCovSample()

CrossField[val<0-N>]

cross_cov.xlx

Basic Register Coverage Register Cross Coverage

Register Cross Coverage Extension

˃ Generic Cross Coverage Class
One covergroup for any cross
Each cross has multiple contributing fields
Any of these fields changes, cross is sampled
‘cross_details’ field in the covergroup will have all the individual field info

Register Cross Coverage Extension
˃ Cross Coverage Spreadsheet Format

˃ Reporting

Register Cross Coverage

Results & Analysis
˃ Comparison Between Predefined vs Dynamic Flow

Coverage Methodology Data Metrics Performance/Results

Pre-Defined Coverage Database
(Old Flow)

• 5000 covergroups created
• ~15000 coverage bins & no cross-coverage

support
• 25000 lines of extra code got added for

each SERDES block
• Total 12800 tests are running as part of the

whole regression suit

• Total Compilation time including parsing & elaboration
was at 25 minutes for one SERDES block/QUAD

• For a subsystem with 2 SERDES-QUAD, the
compilation time was around 35~40 minutes

• Simulation time for 1 test with 1024KB data transfer
was 25 minutes

• Merging time for all 12800-coverage database from
individual tests, is ~3 to 3.5 hours

Coverage Methodology Data Metrics Performance/Results
Dynamic Coverage Database
(New Flow)

• 5000 covergroups created
• ~ 15000 coverage bins & 126800 cross

coverage bins were created
• <100 lines of code are added, this is

constant for block level & subsystem level
• Total 12800 tests are running as part of the

whole regression suit

• On a VCS based simulation platform, the time
consumed to create the whole coverage database was
between 12~15 seconds

• Compilation time reduced to 10~12minutes
• For a subsystem with 2 SERDES-QUAD, the

compilation time is around 18 minutes
• Simulation time for 1 test with 1024KB data transfer is

same as before, no significant change
• Merging time for all 12800-coverage database from

individual tests, is ~3 to 3.5 hours, which is
comparable with previous flow

Results & Analysis

˃ Conclusion
This approach fits well into any chip or IP tapeout execution
Makes verification engineer’s life a bit easier through a push button methodology for register coverage creation & collection
The actual effort can be quickly put into analysis, as oppose to spending time in coverage creation and dealing with higher
compilation overhead

Thank You

	�A dynamic approach towards Register coverage generation and collection to reduce compilation overhead of traditional UVM �register layers
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

