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Abstract- Cover property coverage is an essential measure for verification closure today. In this paper, a symbolic 

computation based methodology for analyzing why a cover property is not hitting in simulation is shown. The 

methodology is built on a dyadic transformation to reduce a sequence expression to a form that aids the analysis process. 
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I. INTRODUCTION 

Coverage driven verification has become the leading functional verification methodology to scale the enormity of 

the modern digital logic verification task. Cover property [1] construct provides a quantitative metric in a coverage 

driven verification methodology. Cover properties, often embedded within RTL code of a design, show if specific 

properties of that design have been exercised or ‘hit’ during functional simulation.  A common observation is that 

majority of the cover properties in a constrained random verification environment are hit simply by running enough 

simulation seeds without needing any extra effort. However, a small number of the cover properties would not be hit 

easily and would need development of specific constraint (using the so-called ‘directed random’ approach) to hit 

these hard to achieve coverage targets.  This is often a time consuming process involving multiple iterations between 

various RTL designers and verifiers. The multi-level process often involves steps, such as, how to constraint the 

stimuli, how to implement those constraints, running simulations to generate the waveform and coverage reports, 

checking if the coverage point under consideration has been hit or not, and if not, examining the waveform and re-

evaluating the constraints, and possibly modifying them again. The overall process involves human effort and is 

prone to human errors.  

This paper describes a methodology based on a dyadic transformation to reduce, if not eliminate, the need of 

human involvement in creating the specification of the constraint that would hit a currently un-hit cover property. It 

points out exactly which conditions have to be met simultaneously on a given clock cycle in order for the cover 

property to be hit.  

Although this paper describes the proposed method for cover properties, it can be applied equally for any type of 

property (cover, assert or assume). 

The organization of this paper is as follows. Section II describes prior work done in related fields. Section III 

introduces mathematical foundation for the work. Section IV shows a flowchart of the algorithm and Section V 

gives several examples in gradual difficulties. Finally, Section VI draws the conclusion. 

 

II.   PRIOR WORKS 

To the best of the knowledge of the author, there is no previous work on conversion of literals spreading over 

two dimensional temporal and event space to one dimensional event space using Conjunctive Normal (i.e., AND of 

ORed expressions) and Disjunctive Normal (OR of ANDed expressions) Forms (CNF/DNF) based decision making 

in a property based environment that will be proposed in this paper. However, the foundation of this work is rooted 

to fundamental theories of symbolic computation.  

While the generic Arithmetical Normal Form (ANF) of writing Boolean expression has been established since 

early 1900s, the implication of using CNF/DNF for symbolic computation were not brought to light before seminal 

work done by Zhegalkin [4]. This foundation was further utilized by other ground breaking works, such as, by 

Karnaugh [6] and Veitch [5] in what is known as Karnaugh map today and by Quine and McCluskey [7][8] for 

Quine–McCluskey algorithm. 

 



III.   MATHEMATICAL MODEL 

Definition: A Nominally Expressed Property (NEP) in this paper is defined as a concurrent property P(e({v}), T) 

whose property expression is a generalized heterogeneous combination of conjunctive normal [2] and disjunctive 

normal forms [9] involving temporal or immediate events e on the set of variables {v} with T as the time horizon for 

the life cycle of a single spawn of the property.  

For this paper, any cover property under consideration is assumed to comply with the generic definition of NEP 

with no inherent constraint of any normality or simplification whatsoever. Assuming the form of the cover property 

to be generic also ascertains the generality of the methodology developed in this paper.   

Most of the difficulty in determining the reason why a property is not hit comes from the complexity of the 

analysis of each sequence of the property expression and how those sequences interact with one another to 

eventually make the hit happen. If such a cover property expression can be represented in CNF, the analysis 

becomes much easier. In that case, it would imply that all components of the conjunctivity must be true for a cover 

property to be hit at a given clock tick. It follows similarly that at least one of the disjunctive components within 

each conjunctive component must be true to make the cover property hit. If a property expression can be represented 

in CNF, it will take a very simple analysis on the waveforms for each components of conjunctivity.  

It should be noted that this method of analysis can be extended to assert properties (or assertions) as well. In such 

cases, the conjunctive components must not be all true at the same time per design intent. The same line of 

reasoning can be used for detecting why an assertion has been hit. 

However, while any normalized boolean expression can be represented in a CNF, there exists no such method 

for an expression involving temporal transformation, such as, ##, |=>, #=#, and #-# in SystemVerilog [3] parlance, 

as it occurs in a property expression.  

To achieve this, we introduce Temporal Transformation Function (TTF) Φ
m,n

(c):c ← (c, m, n) as a function that 

returns true if any of the set of values a literal c had from m to n clock cycles earlier was true. Thus, Φ
n,n

(c):c ← (c, 

n, n) represents if a literal c was true exactly n clock cycles earlier. For simplicity, shorthand of Φ
n
(c) is used for the 

rest of the paper to represent Φ
n,n

(c). 

The TTF Φ
m,n

(c) can be implemented very easily using common SystemVerilog constructs. An example 

implementation of this is shown in Fig. 2 with implicit clocking. 

We define T as a dyadic transformation that maps an NEP compliant expression to a CNF involving a new set of 

events e’ involving a transformed set of variables v’ in the same time horizon T.  

T (e({v}), T) → ᴧe’({v’}, T)                                                                (1) 

The two parts that the dyadic transformation T consists of are  

 Part A) the transformation on the variables that do not need any temporal transformation and  

 Part B) on the ones that do.  

Since any normalized boolean expression can be represented in a CNF without any change in the set of variables, 

v’ can be expressed as a union of a proper subset of v and a converted form of rest of the variables of v through 

function Φ for the corresponding values of n (or m, n) associated with each variable. Or, in other words:  

v’ = s1 U s2 | s1 ⊂{v}, s2 = { Φ
m,n

({v}-s1)}                                                              (2) 

 

Substituting (2) in (1), we get,  

T (e({v}), T) → ᴧe’({s1 U s2 | s1 ⊂ {v}, s2 = { Φ
m,n

({v}-s1)}}, T)                                 (3) 

Using the formulation of T in (3), any property expression can be converted to its corresponding CNF.  

 

Theorem 1: A TTF Φ
n
(c) is distributive over c if c is in CNF.  

 

Proof: Using ᴠ and ᴧ to represent conjunction (i.e., logical AND) and disjunction (logical OR) operations, it is 

easy to see from Fig. 3 that 

Φ
n
(ᴠxij)=Φ

n
(x1ᴠx2ᴠ…)=Φ

n
(x1)ᴠΦ

n
(x2)ᴠ…                                                    (4) 

And similarly, 

Φ
n
(ᴧxij)=Φ

n
(x1ᴧx2ᴧ…)=Φ

n
(x)ᴧΦ

n
(x2)ᴧ…                                                   (5) 

Thus, applying (4) and (5) for a TTF on a CNF, we arrive at the rather simple result:  



Φ
n
(ᴧᴠxij)=ᴧ(Φ

n
(ᴠxij))=ᴧᴠΦ

n
(xij)                                                      (6) 

Thus, a TTF is distributive over a CNF transformation [QED]. 

 

IV. FLOWCHART OF THE ALGORITHM 

To summarize the mathematical model of the dyadic transformation developed in the previous section, the central 

theme of the algorithm is to convert any sequence expression into a CNF or DNF to determine on a specific clock 

cycle why a cover property has not been hit. Then the process can be repeated over the entire simulation time range. 

To avoid any repetition, for the rest of the paper, only CNF will be considered since the DNF will follow a similar 

but complementary path of analysis. While converting an immediate expression to CNF is trivial following classical 

logic analysis, a generic NEP may contain temporal expressions and the following flowchart in Fig. 1 summarizes 

how the TTF-based methodology developed in the previous section can be applied for these cases. Once a sequence 

expression is converted into a CNF, the sequence expression can only be true if each of the components of CNF is 

true. 

 

 

 
Figure 1: Flowchart of the methodology 



 As shown in the flowchart, a sequence expression parser receives the sequence expression. It first determines if 

the sequence expression has any sub-expression or literal that is operated by or preceded by a temporal expression. 

Without loss of generality, this paper primarily focuses on cycle delay (##`N or ##[`M:`N]) and implication (|-> and 

|=>) operations. However, the underlying theory remains the same with other temporal operators and expressions.  

If the input expression has any temporal operator expression, the next steps are to identify each of them and then 

to create a corresponding TTF transformation for the literal or subexpression that is affected by the temporal 

expression. This constitutes Part B of the dyadic transformation.  

After this part, or if the input sequence expression does not have any temporal expression, the next step is to 

create an equivalent CNF expression for the input sequence expression. Once the equivalent CNF expression is 

created, a logic parser analyzes each component of the CNF expression and finds out components that are false for a 

specific clock cycle. These components are responsible for the cover property to remain un-hit for that clock cycle. 

It then creates the report on the finding. These steps constitute Part A of the dyadic transformation.  

   

V. EXAMPLES 

Let cp be a cover property consisting of the sequence seq which has a sequence expression s (see Fig. 4). `M and 

`N are assumed to be macros for a positive integers such that `M>`N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

 

 

 

 

 

  

 

 

 

 

 

function bit ttf (bit c, int m, int n=-1); 

bit equality; 

int i;   

if (n == -1) begin // if only m has been passed 

   ttf = $past(c, m); // note that some simulators need constant m to be passed 

end else begin // if both m and n have been passed 

   equality = 1’b0;  

   for (i=m; i<=n; i++) begin  

      equality = equality | $past(c, i); 

      if (equality == 1’b1) begin  

         i = n+1; 

      end 

   end 

   ttf = equality;  

end 

endfunction  

 

Figure 2: SystemVerilog implementation of TTF equality 
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Figure 3: Φn(x1ᴠx2ᴠ…) = Φn(x1)ᴠΦn(x2) ᴠ… 



 

 

 

 

 

 

 

 

Several examples are presented below from simple to more complex cases to illustrate the methodology. The 

examples have been deliberately chosen to show the cases in the minimalist way.  

 

Case 1: s: (aᴧcᴠbᴧc)  

In this case, s has no temporal transformation (i.e., there is no Part A, and the transformation has Part B only) 

and corresponding CNF can be derived using only non-temporal transformation for s which is c(aᴠb). If cp is unhit, 

to hit cp both c and (aᴠb) need to be hit. Since (aᴠb) can be hit if either a or b is hit, c and one of a or b need to be 

hit.  

 

 

 

 

 

 

 

 

 

An example of this is shown in Fig. 5. It is trivial to see in this example that write_en and either data_valid 

must be valid or retire_address[0:4] == addr) must be true. 

 

Case 2: s: aᴠbᴧc 

In this case also, s has no temporal transformation and corresponding CNF for s is (aᴠb)ᴧ(aᴠc). In order to hit cp 

both (aᴠc) and (aᴠb) need to be hit. Since (aᴠb) can be hit if either a or b is hit, and (aᴠc) can be hit if either a or c is 

hit, a or both b and c need to be hit. 

Fig. 6 shows an example of this where the CNF is ((irdy==0)|| $fell(trdy) && (irdy==0) || 

$fell(stop)). So, either (irdy==0) or $fell(trdy) and either (irdy==0) or $fell(stop) must be true in 

order to hit the cover property.  

 

 

 

 

 

 

 

 

Case 3: s: a ##`N b  

In this case, s does have a temporal transformation on a. Here, s can be expressed as a CNF as ttf(a,`N)ᴧb. To hit 

cp in this case, ttf(a, `N) and b need to be hit. 

Two examples of this are shown in Fig. 7 through Fig. 13. In Fig. 7, a simple sequence expression involving one 

delay parameter (##5) is shown.  

 

 

 

 

 

 

sequence seq; 

(write_en & data_valid) || 

(write_en && (retire_address[0:4]==addr)); 

endsequence  

cp: cover property @(posedge clk) seq;  

Figure 5: Example of Case 1 

sequence seq; 

(irdy==0)|| $fell(trdy) && $fell(stop); 

endsequence  

cp: cover property @(posedge clk) seq;  

Figure 6: Example of Case 2 

sequence seq; 

a ##5 b; 

endsequence  

cp: cover property @(posedge clk) seq;  

Figure 7: Sequence expression for Case 3 involving simple delay 

sequence seq; 

   s; 

endsequence  

cp: cover property @(posedge clk) seq;  

Figure 4: Example cover property 



This can be rewritten using the corresponding TTF as in Fig. 8. Thus, in order to hit cp, ttf (a, 5) and b must be 

true.  

 

 

 

 

 

 

  

 

This is illustrated in the waveform diagram in Fig. 9.  

 

 
 

Figure 9: Timing Diagram for Case3, Example 1 

 

Note that, a or b as literals can be sequence expressions themselves and thus, previous rules of redistribution as 

demonstrated in cases 1 and 2 will be still valid. One such example is given in Fig. 10.  

 

 

 

 

 

 

 

 

Here, the sequence expression (a | b) ## 3 c can be represented by equivalent CNF ttf(a | b, 3) & c (Fig. 11). To 

hit cp in this case, ttf(a | b, 3) and c need to be hit.  

 

 

 

 

 

 

 

 

 

This is illustrated in the waveform diagram in Fig. 12. 

sequence seq; 

ttf(a, 5) & b; 

endsequence  

cp: cover property @(posedge clk) seq;  

Figure 8: Rewritten sequence expression using CNF for Case 3. 

sequence seq; 

(a | b) ## 3 c; 

endsequence  

cp: cover property @(posedge clk) seq;  

Figure 10: Example of Case 3 where a literal is a sequence 

expression itself 

sequence seq; 

ttf(a | b, 3) & c; 

endsequence  

cp: cover property @(posedge clk) seq;  

Figure 11: CNF representation of the sequence expression in Fig. 10 



 
 

Figure 12: Timing Diagram for Case3, Example2 

Alternately, using Theorem 1, the CNF can be further simplified to ttf(a, 3) & c | ttf(b, 3) & c. Thus, either ttf(a, 

3) & c  or ttf(b, 3) & c must be true (Fig. 13). 

 

 

 

 

 

  

 

 

Case 4: s: a ## [`M:`N]b 

In this case, s has a temporal transformation on a over a spread of `M to `N clock cycles. Here, s can be 

expressed as a CNF as ttf(a,`M,`N) ᴧb. To hit cp in this case, ttf(a, `M,`N) and b must be hit.  

This case is similar to the first example of Case 3 (Fig. 7) and the corresponding CNF form is shown in Fig. 14.  

 

 

 

 

 

 

 

 

 

Case 5a: s: a |-> ##[`M:`N]b  

It should be noted that |-> is not a temporal transformation by itself. Thus, s in this case will be same as 

ttf(a,`M,`N) |-> b. But analyzing this further, it is easy to see that for cover property the non-vacuous success case 

will be ttf(a,`M,`N)ᴧb. Thus, to hit cp, both ttf(a,`M,`N) and b must be hit.  

An example sequence expression after CNF transformation in this case will be the same as shown in Fig. 13. 

  

Case 5b: s: a |=> ##[`M:`N]b 

This is same as a ##[`M+1:`N] `true |-> b.  

sequence seq; 

ttf(a, 3) & c | ttf(b, 3) & c; 

endsequence  

cp: cover property @(posedge clk) seq;  

Figure 13: Theorem 1 applied to the example of Fig. 10 

sequence seq; 

ttf(a, m, n) & b; 

endsequence  

cp: cover property @(posedge clk) seq (m, n);  

Figure 14: Example CNF for Case 4 



 

 

 

 

 

 

 

 

The example in Fig. 15 shows a property definition that combines many of the above cases. The CNF for the 

sequence expression is shown in Fig. 16.  

 

 

 

 

 

 

 

 

 

VI.   CONCLUSION AND FUTURE WORKS 

A methodology based on a dyadic transformation is proposed that will greatly aid, if not eliminate, human need 

for analysis of an un-hit cover property expression with both temporal and immediate components. A mathematical 

structure of the transformation is shown with associated examples.  

Future work on this will include creating an automatic parser that will implement the mathematical model to 

report why a specific cover property is not hit in a specific clock cycle or during the entire simulation time range. 

Future work will also include expanding the mathematical model to deal with other temporal operators for a 

sequence, such as cycle range delay, consecutive repetition, etc.  

Also, since the model is based on sequence and property in general, the same methodology can be used for 

analysis of assume or assert properties with minimal modification. This can be elaborated in future work as well. 
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sequence seq; 

a ##1 !b ##[2:4] b ##1 !b ##1 c; 

endsequence  

cp: cover property @(posedge clk) seq;  

Figure 15: A combined example 

sequence seq; 
ttf(ttf(ttf(ttf(a, 1) & !b, 2, 4) & b, 1) & !b, 1) & c; 
endsequence  
cp: cover property @(posedge clk) seq;  

Figure 16: TTF based implementation of the combined example described in Fig. 13. 
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